首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li ZC  Bush DR 《Plant physiology》1990,94(1):268-277
Amino acid transport into plasma membrane vesicles isolated from mature sugar beet (Beta vulgaris L. cv Great Western) leaves was investigated. The transport of alanine, leucine, glutamine, glutamate, isoleucine, and arginine was driven by a trans-membrane proton concentration difference. ΔpH-Dependent alanine, leucine, glutamine, and glutamate transport exhibited simple Michaelis-Menten kinetics, and double-reciprocal plots of the data were linear with apparent Km values of 272, 346, 258, and 1981 micromolar, respectively. These results are consistent with carrier mediated transport. ΔpH-Dependent isoleucine and arginine transport exhibited biphasic kinetics, suggesting these amino acids may be transported by at least two transport systems. Symport mediated alanine transport was electrogenic as demonstrated by the effect of membrane potential (ΔΨ) on ΔpH-dependent flux. In the absence of significant charge compensation, a low rate of alanine transport was observed. When ΔΨ was held at 0 millivolt with symmetric potassium concentrations and valinomycin, the rate of flux was stimulated fourfold. In the presence of a negative ΔΨ, alanine transport increased sixfold. These results are consistent with an electrogenic transport process which results in a net flux of positive charge into the vesicles. The effect of changing ΔΨ on the kinetics of alanine transport altered Vmax with no apparent change in Km. Amino acid transport was inhibited by the protein modifier diethyl pyrocarbonate, but was insensitive to N-ethylmaleimide, 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid, p-chloromercuribenzenesulfonic acid, phenylglyoxal, and N,N′-dicyclohexylcarbodiimide. Four amino acid symport systems, two neutral, one acidic, and one basic, were resolved based on inter-amino acid competition experiments. One neutral system appears to be active for all neutral amino acids while the second exhibited a low affinity for isoleucine, threonine, valine, and proline. Although each symport was relatively specific for a given group of amino acids, each system exhibited some crossover specificity for amino acids in other groups.  相似文献   

2.
The proton transport properties of plasma membrane and tonoplast vesicles isolated from red beet (Beta vulgaris L.) storage tissue were examined and compared. Membrane vesicles isolated with 250 millimolar KCl in the homogenization media and recovered at low density following sucrose density gradient centrifugation displayed characteristics of proton transport (nitrate inhibition, no inhibition by orthovanadate, pH optimum of 7.75, pyrophosphate-driven proton transport) which were consistent with a tonoplast origin. When the KCl in the homogenization medium was replaced by 250 millimolar KI, sealed membrane vesicles were recovered at higher densities in sucrose gradients and displayed properties (orthovanadate sensitivity, no inhibition by nitrate, pH optimum of 6.5) consistent with a plasma membrane origin. A comparison of anion effects (potassium salts) upon ΔpH and ΔΨ revealed a direct correspondence between the relative ability of anions to stimulate proton transport and reduce ΔΨ. For tonoplast vesicles, the relative order for this effect was KI > KBr ≥ KCl > KClO3 > K2SO4 while for plasma membrane vesicles, a different order KI > KNO3 ≥ KBr ≥ KClO3 > KCl > K2SO4 was observed. Proton transport in plasma membrane and tonoplast vesicles was inhibited by fluoride; however, plasma membrane vesicles appeared to be more sensitive to this anion. In order to correlate anion effects in the two vesicle fractions with anion transport, the kinetics of anion stimulation of steady-state pH gradients established in the absence of monovalent ions was examined. Anions were added as potassium salts and the total potassium concentration (100 millimolar) was maintained through the addition of K+/Mes. For plasma membrane vesicles, chlorate and nitrate displayed saturation kinetics while chloride displayed stimulation of proton transport which followed a linear profile. For tonoplast vesicles, the kinetics of chloride stimulation of proton transport displayed a saturable component. The results of this study indicate differences in proton transport properties of these two vesicle types and provide information on conditions where proton transport in the two fractions can be optimized.  相似文献   

3.
Bush DR 《Plant physiology》1989,89(4):1318-1323
Sucrose is the predominant form of photosynthetically reduced carbon transported in most plant species. In the experiments reported here, an active, proton-coupled sucrose transport system has been identified and partially characterized in plasmalemma vesicles isolated from mature sugar beet (Beta vulgaris L. cv Great Western) leaves. The isolated vesicles concentrated sucrose fivefold in the presence of an imposed pH gradient (basic interior). The presence of carbonyl cyanide m-chlorophenylhydrazone, a protonophore, prevented sucrose accumulation within the vesicles. ΔpH-dependent sucrose transport exhibited saturation kinetics with an apparent Km of 1.20 ± 0.40 millimolar, suggesting translocation was carrier-mediated. In support of that conclusion, two protein modifiers, diethyl pyrocarbonate and p-chloromercuribenzenesulfonic acid, were found to be potent inhibitors with 50% inactivation achieved at 750 and 30 micromolar, respectively. ΔpH-Dependent sucrose transport was not inhibited by glucose, fructose, raffinose, or maltose suggesting the transport system was specific for sucrose. Transport activity was associated with the plasmalemma because ΔpH-dependent sucrose transport equilibrated on a linear sucrose gradient at 1.17 grams per cubic centimeter and comigrated with a plasmalemma enzyme marker, vanadate-sensitive K+, Mg2+-ATPase. Taken together, these results provide the first In vitro evidence in support of a sucrose-proton symport in the plasmalemma of mature leaf tissue.  相似文献   

4.
Several lines of evidence with intact tissues suggest amino acid transport is mediated by a proton-amino acid symport (L Rheinhold, A Kaplan 1984 Annu Rev Plant Physiol 35: 45-83). However, biochemical studies of proton-coupled amino acid transport in isolated membrane vesicles have not been reported. In the experiments presented here, amino acid transport was studied in membrane vesicles isolated from zucchini (Cucurbita pepo L. cv Black Beauty) hypocotyls. An imposed pH gradient (basic interior) was used to energize isolated membrane vesicles and drive amino acid transport. Proton-coupled amino acid accumulation was demonstrated for alanine, glutamate, glutamine, leucine, and tabtoxinine-β-lactam. Alanine transport into the isolated membrane vesicles was studied in detail. Alanine transport was protonophore sensitive and accumulation ratios exceeding 10 times that predicted by diffusion alone were observed. ΔpH-Dependent alanine transport exhibited saturation kinetics, suggesting translocation was mediated via a carrier transport system. In support of that conclusion, 50 micromolar N,N′-dicyclohexylcarbodiimide, a hydrophobic modifier of protein carboxyls, completely inhibited proton-coupled alanine accumulation. Transport activity, equilibrated on a linear sucrose gradient, peaked at 1.16 grams per cubic centimeter and co-migrated with a plasmalemma marker (vanadate-sensitive K+-Mg2+-ATPase). These results provide direct evidence in support of a proton-amino acid symport in the plasmalemma of higher plants.  相似文献   

5.
The mechanism of hexose transport into plasma membrane vesicles isolated from mature sugarbeet leaves (Beta vulgaris L.) was investigated. The initial rate of glucose uptake into the vesicles was stimulated approximately fivefold by imposing a transmembrane pH gradient (ΔpH), alkaline inside, and approximately fourfold by a negative membrane potential (ΔΨ), generated as a K+-diffusion potential, negative inside. The -fold stimulation was directly related to the relative ΔpH or ΔΨ gradient imposed, which were determined by the uptake of acetate or tetraphenylphosphonium, respectively. ΔΨ- and ΔpH-dependent glucose uptake showed saturation kinetics with a Km of 286 micromolar for glucose. Other hexose molecules (e.g. 2-deoxy-d-glucose, 3-O-methyl-d-glucose, and d-mannose) were also accumulated into plasma membrane vesicles in a ΔpH-dependent manner. Inhibition constants of a number of compounds for glucose uptake were determined. Effective inhibitors of glucose uptake included: 3-O-methyl-d-glucose, 5-thio-d-glucose, d-fructose, d-galactose, and d-mannose, but not 1-O-methyl-d-glucose, d- and l-xylose, l-glucose, d-ribose, and l-sorbose. Under all conditions of proton motive force magnitude and glucose and sucrose concentration tested, there was no effect of sucrose on glucose uptake. Thus, hexose transport on the sugarbeet leaf plasma membrane was by a H+-hexose symporter, and the carrier and possibly the energy source were not shared by the plasma membrane H+-sucrose symporter.  相似文献   

6.
The Na-K exchange pump is represented as a net stoichiometrically coupled reaction, r, involving ATP, Na+, and K+, and is located in the active region of the cell membrane. The reaction rate is Jr = Lrr (-ΔFr), where ΔFr is the free energy change of the reaction. ΔFr includes membrane potential ø2 in the absence of 1:1 coupling between Na+ and K+, and the reaction rate is potential dependent under these conditions. At the same time the pump will produce a potential H which is the difference between membrane potential and the diffusion potential as calculated with constant field assumptions. In the absence of 1:1 coupling, the pump is electrogenic. The feedback relation between reaction rate and membrane potential makes the membrane resistance in the presence of the pump less than or equal to the resistance in its absence, at the same membrane potential. H depends on stoichiometry, reaction rate, and passive ionic conductances. Experimental verification of the model will depend on the accuracy of permeability determinations. Dissipation and efficiency of transport can be calculated also.  相似文献   

7.
The mechanism of sucrose transport was investigated in plasma membrane (PM) vesicles isolated from spinach (Spinacia oleracea L.) leaves. PM vesicles were isolated by aqueous two-phase partitioning and were equilibrated in pH 7.8 buffer containing K+. The vesicles rapidly accumulated sucrose in the presence of a transmembrane pH gradient (ΔpH) with external pH set at 5.8. The uptake rate was slow at pH 7.8. The K+-selective ionophore, valinomycin, stimulated uptake in the presence of a ΔpH, and the protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP), greatly inhibited ΔpH-dependent sucrose uptake. Addition of sucrose to the vesicles resulted in immediate alkalization of the medium. Alkalization was stimulated by valinomycin, was abolished by CCCP, and was sucrose-specific. These results demonstrate the presence of a tightly coupled H+/sucrose symporter in PM vesicles isolated from spinach leaves.  相似文献   

8.
Uptake of [14C]sucrose by plasma membrane vesicles from leaves of tobacco (Nicotiana tabacum L.) was measured after the imposition of an inwardly directed proton gradient (ΔpH = 2) and an electrical gradient (Δψ = −68 mV, inside negative) across the vesicle membrane. The vesicles were isolated from a microsomal fraction by two-phase partitioning using media that contained 330 mM of either sorbitol or sucrose. Sucrose transport into vesicles isolated using the sorbitol-containing media showed the hallmarks of electrogenic H+ -symport, as it was highly dependent on ΔpH, could be increased three- to four-fold by Δψ, and was abolished by carbonylcyanide m-chlorophenylhydrazone (CCCP). Transport of [14C]sucrose into vesicles that were isolated using the sucrose-containing media apparently occurred by counter exchange. Its initial influx also depended on a low external pH, but it was insensitive to CCCP and hardly stimulated by Δψ. Both symport and counter exchange obeyed simple Michaelis-Menten kinetics. Transport that depends linearly on the external sucrose concentration could not be detected, indicating that the ‘linear’ component that has been observed in sucrose uptake by leaf tissues does not represent a transport route that is provided by the sucrose symporter. The potential role of H+/sucrose-symporters in phloem unloading is briefly discussed.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

9.
Salinity-induced alterations in tomato (Lypersicon esculentum Mill. cv Heinz 1350) root plasma membrane properties were studied and characterized using a membrane vesicle system. Equivalent rates of MgATP-dependent H+-transport activity were measured by quinacrine fluorescence (ΔpH) in plasma membrane vesicles isolated from control or salt-stressed (75 millimolar salt) tomato roots. However, when bis-[3-phenyl-5-oxoisoxazol-4-yl] pentamethine was used to measure MgATP-dependent membrane potential (ΔΨ) formation, salt-stressed vesicles displayed a 50% greater initial quench rate and a 30% greater steady state quench than control vesicles. This differential probe response suggested a difference in surface properties between control and salt-stressed membranes. Fluorescence titration of vesicles with the surface potential probe, 8-anilino-1-napthalenesulphonic acid (ANS) provided dissociation constants (Kd) of 120 and 76 micromolar for dye binding to control and salt-stressed vesicles, respectively. Membrane surface potentials (Ψo) of−26.0 and −13.7 millivolts were calculated for control and salt-stressed membrane vesicles from the measured Kd values and the calculated intrinsic affinity constant, Ki. The concentration of cations and anions at the surface of control and salt-stressed membranes was estimated using Ψo values and the Boltzmann equation. The observed difference in membrane surface electrostatic properties was consistent with the measured differences in K+-stimulated kinetics of ATPase activity between control and salt-stressed vesicles and by the differential ability of Cl ions to stimulate H+-transport activity. Salinity-induced changes in plasma membrane electrostatic properties may influence ion transport across the plasma membrane.  相似文献   

10.
Anion-sensitive, h-pumping ATPase in membrane vesicles from oat roots   总被引:20,自引:18,他引:2       下载免费PDF全文
H+-pumping ATPases were detected in microsomal vesicles of oat (Avena sativa L. var Lang) roots using [14C]methylamine distribution or quinacrine fluorescent quenching. Methylamine (MeA) accumulation into vesicles and quinacrine quench were specifically dependent on Mg,ATP. Both activities reflected formation of a proton gradient (ΔpH) (acid inside) as carbonyl cyanide m-chlorophenylhydrazone, nigericin (in the presence of K+), or gramicidin decreased MeA uptake or increased quinacrine fluorescence. The properties of H+ pumping as measured by MeA uptake were characterized. The Kmapp for ATP was about 0.1 millimolar. Mg,GTP and Mg, pyrophosphate were 19% and 30% as effective as Mg,ATP. MeA uptake was inhibited by N,N′-dicyclohexylcarbodiimide and was mostly insensitive to oligomycin, vanadate, or copper. ATP-dependent MeA was stimulated by anions with decreasing order of potency of Cl > Br > NO3 > SO42−, iminodiacetate, benzene sulfonate. Anion stimulation of H+ pumping was caused in part by the ability of permeant anions to dissipate the electrical potential and in part by a specific requirement of Cl by a H+ -pumping ATPase. A pH gradient, probably caused by a Donnan potential, could be dissipated by K+ in the presence or absence of ATP. MeA uptake was enriched in vesicles of relatively low density and showed a parallel distribution with vanadate-insensitive ATPase activity on a continuous dextran gradient. ΔpH as measured by quinacrine quench was partially vanadate-sensitive. These results show that plant membranes have at least two types of H+ -pumping ATPases. One is vanadate-sensitive and probably enriched in the plasma membrane. One is vanadate-resistant, anion-sensitive and has many properties characteristic of a vacuolar ATPase. These results are consistent with the presence of electrogenic H+ pumps at the plasma membrane and tonoplast of higher plant cells.  相似文献   

11.
Ewald Komor 《Planta》1977,137(2):119-131
Cotyledons of Ricinus communis take up externally supplied sucrose at a rate of up to 150 mol/h/g fresh weight, which is very high when compared with other sugar transport systems of higher plants. The uptake of sucrose is catalysed with a K m of 25 mmol l–1; at high sucrose concentrations a linear (diffusion) component becomes obvious. Other mono-, di-, or trisaccharides do not compete for sucrose uptake. Sucrose is accumulated by the cotyledons up to 100-fold, whereby most of the transported, externally supplied sucrose mixes with sucrose present in the tissue. At low sucrose concentrations, however; a small unexchangeable internal pool of sucrose becomes evident. Poisons of energy metabolism such as FCCP inhibit uptake and accumulation of sucrose. The transport of sucrose induces an increase of respiration, from which an energy requirement of 1.4 ATP/sucrose taken up can be calculated. Sucrose is taken up together with protons at an apparent stoichiometry of 0.3 protons/sucrose. Other sugars do not cause proton uptake. The K m for sucrose induced proton uptake is 5 mmol l–1; the discrepancy to the K m for sucrose uptake as well as the low proton: sucrose stoichiometry might possibly be caused by a large contribution of diffusion barriers. The estimated proton-motive potential difference would by sufficient to explain an electrogenic sucrose accumulation. The rate of uptake of sucrose is subject to feedback inhibition by internal sucrose. It is also regulated during growth of the seedlings since it develops rapidly during the first days of germination and declines again after the 4th day of germination, though no substantial increase of passive permeability resistance was observed.Abbreviations DMO dimethyloxazolidinedione - FCCP trifluoromethoxy (carbonyl-cyanide) phenylhydrazon - fr. wt. fresh weight  相似文献   

12.
To test the hypothesis that the carrier-mediated component of the indoleacetic acid (IAA) influx involves an electrogenic proton/IAA anion symport, the effects on the IAA influx of salts expected to depolarize the membrane potential were examined in suspension-cultured soybean (Glycine max [L.] Merr.) root cells. Although KCl does inhibit carrier-mediated uptake, the effect is specific to the anion at low concentrations and not due to more general processes such as changes in ionic or osmotic strength. Other anions such as bromide, iodide, and fluoride inhibit the carrier more strongly. Because potassium iminodiacetate, which is also expected to depolarize the membrane potential, has no inhibitory effect on the IAA influx, there is no evidence for the involvement of the membrane potential in carrier-mediated uptake. It is therefore most likely that in soybean cells, if carrier-mediated uptake occurs via a proton symport, the H+:IAA— stoichiometry is 1:1. At concentrations greater than 70 millimolar, sorbitol, a nonionic osmoticum, inhibits carrier-mediated IAA uptake. The effects of specific anions and osmotic potential on the uptake carrier necessitates the reevaluation of other auxin transport studies in which KCl was routinely used as an agent with which to depolarize the membrane potential.  相似文献   

13.
To understand the mechanism and molecular properties of the tonoplast-type H+-translocating ATPase, we have studied the effect of Cl, NO3, and 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid (DIDS) on the activity of the electrogenic H+-ATPase associated with low-density microsomal vesicles from oat roots (Avena sativa cv Lang). The H+-pumping ATPase generates a membrane potential (Δψ) and a pH gradient (ΔpH) that make up two interconvertible components of the proton electrochemical gradient (μh+). A permeant anion (e.g. Cl), unlike an impermeant anion (e.g. iminodiacetate), dissipated the membrane potential ([14C]thiocyanate distribution) and stimulated formation of a pH gradient ([14C]methylamine distribution). However, Cl-stimulated ATPase activity was about 75% caused by a direct stimulation of the ATPase by Cl independent of the proton electrochemical gradient. Unlike the plasma membrane H+-ATPase, the Cl-stimulated ATPase was inhibited by NO3 (a permeant anion) and by DIDS. In the absence of Cl, NO3 decreased membrane potential formation and did not stimulate pH gradient formation. The inhibition by NO3 of Cl-stimulated pH gradient formation and Cl-stimulated ATPase activity was noncompetitive. In the absence of Cl, DIDS inhibited the basal Mg,ATPase activity and membrane potential formation. DIDS also inhibited the Cl-stimulated ATPase activity and pH gradient formation. Direct inhibition of the electrogenic H+-ATPase by NO3 or DIDS suggest that the vanadate-insensitive H+-pumping ATPase has anion-sensitive site(s) that regulate the catalytic and vectorial activity. Whether the anion-sensitive H+-ATPase has channels that conduct anions is yet to be established.  相似文献   

14.
A model originally developed for transport of neutral substrates in bacterial systems was tested for its suitability for depicting sucrose transport across the plasmalemma of the maize scutellum cell. The model contains a sucrose—proton symporter, a negatively-charged free carrier and a neutral sucrose—proton—carrier complex. Sucrose transport is driven by the sucrose gradient and by a proton electrochemical gradient set up by a proton-translocating ATPase. The results of experiments on sucrose uptake in scutellum slices are in accord with predictions based on the model. Evidence was obtained for an electrogenic proton pump in the plasmalemma, for sucrose—proton symport and for a sucrose transport mechanism driven by both electrical potential and pH gradients. It was found that treatments (dinitrophenol, N-ethylmaleimide or HCl) causing a net proton influx into the slices also caused an efflux of sucrose. Interpretations of these results compatible with the model are given.  相似文献   

15.
The cloned intestinal peptide transporter is capable of electrogenic H+-coupled cotransport of neutral di- and tripeptides and selected peptide mimetics. Since the mechanism by which PepT1 transports substrates that carry a net negative or positive charge at neutral pH is poorly understood, we determined in Xenopus oocytes expressing PepT1 the characteristics of transport of differently charged glycylpeptides. Transport function of PepT1 was assessed by flux studies employing a radiolabeled dipeptide and by the two-electrode voltage-clamp-technique. Our studies show, that the transporter is capable of translocating all substrates by an electrogenic process that follows Michaelis Menten kinetics. Whereas the apparent K0.5 value of a zwitterionic substrate is only moderately affected by alterations in pH or membrane potential, K0.5 values of charged substrates are strongly dependent on both, pH and membrane potential. Whereas the affinity of the anionic dipeptide increased dramatically by lowering the pH, a cationic substrate shows only a weak affinity for PepT1 at all pH values (5.5–8.0). The driving force for uptake is provided mainly by the inside negative transmembrane electrical potential. In addition, affinity for proton interaction with PepT1 was found to depend on membrane potential and proton binding subsequently affects the substrate affinity. Furthermore, our studies suggest, that uptake of the zwitterionic form of a charged substrate contributes to overall transport and that consequently the stoichiometry of the flux-coupling ratios for peptide: H+/H3O+ cotransport may vary depending on pH. Received: 19 August 1996/Revised: 10 October 1996  相似文献   

16.
Cell envelope vesicles prepared from H. halobium contain bacteriorhodopsin and upon illumination protons are ejected. Coupled to the proton motive force is the efflux of Na+. Measurements of 22Na flux, exterior pH change, and membrane potential, ΔΨ (with the dye 3,3′-dipentyloxadicarbocyanine) indicate that the means of Na+ transport is sodium/proton exchange. The kinetics of the pH changes and other evidence suggests that the antiport is electrogenic (H+/Na+ > 1). The resulting large chemical gradient for Na+ (outside > inside), as well as the membrane potential, will drive the transport of 18 amino acids. The 19th, glutamate, is unique in that its accumulation is indifferent to ΔΨ: this amino acid is transported only when a chemical gradient for Na+ is present. Thus, when more and more NaCl is included in the vesicles glutamate transport proceeds with longer and longer lags. After illumination the gradient of H+ collapses within 1 min, while the large Na+ gradient and glutamate transporting activity persists for 10–15 min, indicating that proton motive force is not necessary for transport. A chemical gradient of Na+, arranged by suspending vesicles loaded with KCl in NaCl, drives glutamate transport in the dark without other sources of energy, with Vmax and Km comparable to light-induced transport. These and other lines of evidence suggest that the transport of glutamate is facilitated by symport with Na+, in an electrically neutral fashion, so that only the chemical component of the Na+ gradient is a driving force. The transport of all amino acids but glutamate is bidirectional. Actively driven efflux can be obtained with reversed Na+ gradients (inside > outside), and passive efflux is considerably enhanced by intravesicle Na+. These results suggest that the transport carriers are functionally symmetrical. On the other hand, noncompetitive inhibition of transport by cysteine (a specific inhibitor of several of the carriers) is only obtained from the vesicle exterior and only for influx: these results suggest that in some respects the carriers are asymmetrical. A protein fraction which binds glutamate has been found in cholate-solubilized H. halobium membranes, with an apparent molecular weight of 50,000. When this fraction (but not the others eluted from an Agarose column) is reconstituted with soybean lipids to yield lipoprotein vesicles, facilitated transport activity is regained. Neither binding nor reconstituted transport depend on the presence of Na+. The kinetics of the transport and of the competitive inhibition by glutamate analogs suggest that the protein fraction responsible is derived from the intact transport system.  相似文献   

17.
The process of sucrose transport was investigated in sealed putative tonoplast vesicles isolated from sugarbeet (Beta vulgaris L.) taproot. If the vesicles were allowed to develop a steady state pH gradient by the associated transport ATPase and 10 millimolar sucrose was added, a transient flux of protons out of the vesicles was observed. The presence of an ATPase produced pH gradient allowed [14C]sucrose transport into the vesicles to occur at a rate 10-fold higher than the rate observed in the absence of an imposed pH gradient. Labeled sucrose accumulated into the sealed vesicles could be released back to the external medium if the pH gradient was dissipated with carbonylcyanide-m-chlorophenyl hydrazone (CCCP). When the kinetics of ATP dependent [14C]sucrose uptake were examined, the kinetic profile followed the simple Michaelis-Menten relationship and a Michaelis constant of 12.1 millimolar was found. When a transient, inwardly directed sucrose gradient was imposed on the vesicles in the absence of charge compensating ions, a transient interior negative membrane potential was observed. This membrane potential could be prevented by the addition of CCCP prior to sucrose or dissipated by the addition of CCCP after sucrose was added. These results suggest that an electrogenic H+/sucrose antiport may be operating on the vesicle membrane.  相似文献   

18.
V-ATPases are conserved ATP-driven proton pumps that acidify organelles. Yeast V-ATPase assembly and activity are glucose-dependent. Glucose depletion causes V-ATPase disassembly and its inactivation. Glucose readdition triggers reassembly and resumes proton transport and organelle acidification. We investigated the roles of the yeast phosphofructokinase-1 subunits Pfk1p and Pfk2p for V-ATPase function. The pfk1Δ and pfk2Δ mutants grew on glucose and assembled wild-type levels of V-ATPase pumps at the membrane. Both phosphofructokinase-1 subunits co-immunoprecipitated with V-ATPase in wild-type cells; upon deletion of one subunit, the other subunit retained binding to V-ATPase. The pfk2Δ cells exhibited a partial vma growth phenotype. In vitro ATP hydrolysis and proton transport were reduced by 35% in pfk2Δ membrane fractions; they were normal in pfk1Δ. In vivo, the pfk1Δ and pfk2Δ vacuoles were alkalinized and the cytosol acidified, suggestive of impaired V-ATPase proton transport. Overall the pH alterations were more dramatic in pfk2Δ than pfk1Δ at steady state and after readdition of glucose to glucose-deprived cells. Glucose-dependent reassembly was 50% reduced in pfk2Δ, and the vacuolar lumen was not acidified after reassembly. RAVE-assisted glucose-dependent reassembly and/or glucose signals were disturbed in pfk2Δ. Binding of disassembled V-ATPase (V1 domain) to its assembly factor RAVE (subunit Rav1p) was 5-fold enhanced, indicating that Pfk2p is necessary for V-ATPase regulation by glucose. Because Pfk1p and Pfk2p are necessary for V-ATPase proton transport at the vacuole in vivo, a role for glycolysis at regulating V-ATPase proton transport is discussed.  相似文献   

19.
Microsomal vesicles of oat roots (Avena sativa var Lang) were separated with a linear dextran (0.5-10%, w/w) or sucrose (25-45%, w/w) gradient to determine the types and membrane identity of proton-pumping ATPases associated with plant membranes. ATPase activity stimulated by the H+/K+ exchange ionophore nigericin exhibited two peaks of activity on a linear dextran gradient. ATPase activities or ATP-generated membrane potential (inside positive), monitored by SCN distribution, included a vanadate-insensitive and a vanadate-sensitive component. In a previous communication, we reported that ATP-dependent pH gradient formation (acid inside), monitored by quinacrine fluorescence quenching, was also partially inhibited by vanadate (Churchill and Sze 1983 Plant Physiol 71: 610-617). Here we show that the vanadate-insensitive, electrogenic ATPase activity was enriched in the low density vesicles (1-4% dextran or 25-32% sucrose) while the vanadate-sensitive activity was enriched at 4% to 7% dextran or 32% to 37% sucrose. The low-density ATPase was stimulated by Cl and inhibited by NO3 or 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid (DIDS). The distribution of Cl-stimulated ATPase activity in a linear dextran gradient correlated with the distribution of H+ pumping into vesicles as monitored by [14C]methylamine accumulation. The vanadate-inhibited ATPase was mostly insensitive to anions or DIDS and stimulated by K+. These results show that microsomal vesicles of plant tissues have at least two types of electrogenic, proton-pumping ATPases. The vanadate-insensitive and Cl-stimulated, H+-pumping ATPase may be enriched in vacuolar-type membranes; the H+-pumping ATPase that is stimulated by K+ and inhibited by vanadate is most likely associated with plasma membrane-type vesicles.  相似文献   

20.
Abstract

Any electrogenic ion-pump carrying a net-current during turnover is an electromotive device creating a transmembrane potential in tight vesicles, which can be detected by the potential sensitive fluorochrome oxonol VI. For the Na+,K+-ATPase the coupling ratio Na+:K+:ATP during physiological Na+:K+-exchange is 3:2:1, giving one positive net-charge translocated per ATP split. The same stoichiometry is found for the electrogenic Na+:Na+-exchange, whereas during uncoupled Na+-efflux this net-charge stoichiometry changes to three, in accordance with a transport stoichiometry 3:0:1. By inducing internal electrostatic potentials in the proteoliposome bilayer using the hydrophobic ions TPB or TPP+ it could be shown that the backreaction which normally translocates K+ changes from electroneutral to electrogenic during the uncoupled Na+-efflux where no ions are returned.

For Ca2+-transport a stoichiometry of close to, but lower than 2 Ca2+-ions per ATP split is found. Recent findings indicate that protons may be exchanged during this transport, but it was uncertain if this proton transport took place primarily on the Ca2+-pump, or was a secondary consequence of the established membrane pump-potential. Using the pH-sensitive fluorescent probe pyranine we have investigated these questions by measurements of generated proton gradients associated with Ca -pump turnover during conditions where the pump potential is short-circuited. From this it can be concluded that protons are countertransported during Ca2+-transport, but the stoichiometry apparently varies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号