首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main aim of this work was to study the simultaneous wear-corrosion of titanium (Ti) in the presence of biofilms composed of Streptococcus mutans and Candida albicans. Both organisms were separately grown in specific growth media, and then mixed in a medium supplemented with a high sucrose concentration. Corrosion and tribocorrosion tests were performed after 48 h and 216 h of biofilm growth. Electrochemical corrosion tests indicated a decrease in the corrosion resistance of Ti in the presence of the biofilms although the TiO2 film presented the characteristics of a compact oxide film. While the open circuit potential of Ti indicated a tendency to corrosion in the presence of the biofilms, tribocorrosion tests revealed a low friction on biofilm covered Ti. The properties of the biofilms were similar to those of the lubricant agents used to decrease the wear rate of materials. However, the pH-lowering promoted by microbial species, can lead to corrosion of Ti-based oral rehabilitation systems.  相似文献   

2.
Bacteria are often found in close association with surfaces, resulting in the formation of biofilms. In Staphylococcus aureus (S. aureus), biofilms are implicated in the resilience of chronic infections, presenting a serious clinical problem world-wide. Here, S. aureus biofilms are grown under flow within clinical catheters at 37 °C. The lipid composition and biophysical properties of lipid extracts from these biofilms are compared with those from exponential growth and stationary phase cells. Biofilms show a reduction in iso and anteiso branching compensated by an increase in saturated fatty acids compared to stationary phase. A drastic reduction in carotenoid levels is also observed during biofilm formation. Thermotropic measurements of Laurdan GP and DPH polarization, show a reduction of lipid packing at 37 °C for biofilms compared to stationary phase. We studied the effects of carotenoid content on DMPG and DPPG model membranes showing trends in thermotropic behavior consistent with those observed in bacterial isolates, indicating that carotenoids participate in modulating lipid packing. Additionally, bending elastic constant (kc) measurements using vesicle fluctuation analysis (VFA) show that the presence of carotenoids can increase membrane bending rigidity. The antimicrobial peptide Magainin H2 was less activity on liposomes composed of stationary phase compared to biofilms or exponential growth isolates. This study contributes to an understanding of how Staphylococcus aureus modulates the composition of its membrane lipids, and how those changes affect the biophysical properties of membranes, which in turn may play a role in its virulence and its resistance to different membrane-active antimicrobial agents.  相似文献   

3.
The effect of surface electrochemical polarization on the growth of cells of Pseudomonas fluorescens (ATCC 17552) on gold electrodes has been examined. Potentials positive or negative to the potential of zero charge (PZC) of gold were applied, and these resulted in changes in cell morphology, size at cell division, time to division, and biofilm structure. At -0.2 V (Ag/AgCl-3 M NaCl), cells elongated at a rate of up to 0.19 microm min(-1), rendering daughter cells that reached up to 3.8 microm immediately after division. The doubling time for the entire population, estimated from the increment in the fraction of surface covered by bacteria, was 82 +/- 7 min. Eight-hour-old biofilms at -0.2 V were composed of large cells distributed in expanded mushroom-like microcolonies that protruded several micrometers in the solution. A different behavior was observed under positive polarization. At an applied potential of 0.5 V, the doubling time of the population was 103 +/- 8 min, cells elongated at a lower rate (up to 0.08 microm min(-1)), rendering shorter daughters (2.5 +/- 0.5 microm) after division, although the duplication times were virtually the same at all potentials. Biofilms grown under this positive potential were composed of short cells distributed in a large number of compact microcolonies. These were flatter than those grown at -0.2 V or at the PZC and were pyramidal in shape. Polarization effects on cell growth and biofilm structure resembled those previously reported as produced by changes in the nutritional level of the culture medium.  相似文献   

4.
Cathodic protection, using sacrificial anodes or impressed current, has been recognized for a long time as an effective way to prevent marine corrosion. Cathodic polarization leads to the formation of a protective calcareous layer on the surfaces. It is well documented that the attachment of bacteria to metal surfaces and subsequent biofilm formation changes some physical and chemical parameters at the interface and influences the corrosion process. The objective of this study was to determine whether there is a relationship between cathodic polarization and development of biofilms on surfaces exposed to both synthetic and natural seawater. Experiments were conducted on clean surfaces, biofilmed surfaces, in natural or synthetic seawater using bacterial monocultures and cocultures. In marine sediments, cathodically produced hydrogen encouraged growth of hydrogenase-containing sulphate-reducing bacteria while in aerated seawater biofilms competed with the magnesium and calcium deposition. Both low pH induced by bacterial metabolism and exopolymers affect the deposition process and the stability of the calcareous layer.  相似文献   

5.
Microbes in biofilms are generally found to be resistant to antimicrobial agents. One set of hypotheses attributes biofilm resistance to acquisition of special physiological traits (phenotypic resistance). Methods are presented that allow discrimination of subpopulations of Candida albicans cells that exhibit relative levels of phenotypic resistance to chlorhexidine. The assay for phenotypic resistance is based on microscopic detection of the rate of penetration of propidium iodide (PI) into single cells as their membranes become disrupted by chlorhexidine. Using the assay, it was found that batch cultures became progressively more resistant to the action of chlorhexidine during the transition from exponential growth to early stationary phase. Results are presented demonstrating that the methods can be used to characterize relative levels of phenotypic resistance exhibited by cells at the base of a C. albicans biofilm.  相似文献   

6.
We introduce a rigorously validated protocol based on extraction, derivatisation and GC/MS for the analysis of diatom metabolomes. Using this methodology we characterised general patterns of the metabolism of the diatom Skeletonema marinoi during different growth phases. Canonical analysis of principal coordinate revealed clearly that the intracellular metabolites differ between exponential, stationary and declining phase. In addition, diurnal variation during the exponential phase was observed. A detailed analysis of the metabolic changes is presented and discussed in the context of previous physiological studies of diatoms. The observed variability in metabolites has a significant consequence for further physiological and ecological studies. Investigations have to take into account that diatom metabolism is a highly dynamic process and that food quality, chemical defence and also the production of signal molecules might be dependent on different growth phases or diurnal variations. The introduced protocol is in general suitable for the monitoring of microalgae and has also the potential to be applied to complex plankton communities.  相似文献   

7.
The corrosion behavior of unalloyed copper and aluminum alloy 2024 in modified Baar's medium has been studied with continuous reactors using electrochemical impedance spectroscopy. An axenic aerobic biofilm of either Pseudomonas fragi K or Bacillus brevis 18 was able to lessen corrosion as evidenced by a consistent 20-fold increase in the low-frequency impedance value of copper as well as by a consistent four- to seven-fold increase in the polarization resistance of aluminum 2024 after six days exposure compared to sterile controls. This is the first report of axenic aerobic biofilms inhibiting generalized corrosion of copper and aluminum. Addition of the representative sulfate-reducing bacterium (SRB) Desulfovibrio vulgaris (to simulate consortia corrosion behavior) to either the P. fragi K or B. brevis 18 protective biofilm on copper increased the corrosion to that of the sterile control unless antibiotic (ampicillin) was added to inhibit the growth of SRB in the biofilm. Received: 24 May 1999 / Received revision: 6 July 1999 / Accepted: 1 August 1999  相似文献   

8.
The effect of surface electrochemical polarization on the growth of cells of Pseudomonas fluorescens (ATCC 17552) on gold electrodes has been examined. Potentials positive or negative to the potential of zero charge (PZC) of gold were applied, and these resulted in changes in cell morphology, size at cell division, time to division, and biofilm structure. At −0.2 V (Ag/AgCl-3 M NaCl), cells elongated at a rate of up to 0.19 μm min−1, rendering daughter cells that reached up to 3.8 μm immediately after division. The doubling time for the entire population, estimated from the increment in the fraction of surface covered by bacteria, was 82 ± 7 min. Eight-hour-old biofilms at −0.2 V were composed of large cells distributed in expanded mushroom-like microcolonies that protruded several micrometers in the solution. A different behavior was observed under positive polarization. At an applied potential of 0.5 V, the doubling time of the population was 103 ± 8 min, cells elongated at a lower rate (up to 0.08 μm min−1), rendering shorter daughters (2.5 ± 0.5 μm) after division, although the duplication times were virtually the same at all potentials. Biofilms grown under this positive potential were composed of short cells distributed in a large number of compact microcolonies. These were flatter than those grown at −0.2 V or at the PZC and were pyramidal in shape. Polarization effects on cell growth and biofilm structure resembled those previously reported as produced by changes in the nutritional level of the culture medium.  相似文献   

9.
Pitting corrosion of aluminum 2024 in Luria Bertani medium was reduced by the secretion of anionic peptides by engineered and natural Bacillus biofilms and was studied in continuous reactors using electrochemical impedance spectroscopy. Compared to sterile controls, pitting was reduced dramatically by the presence of the biofilms. The secretion of a 20 amino acid polyaspartate peptide by an engineered Bacillus subtilis WB600/pBE92-Asp biofilm slightly reduced the corrosion rate of the passive aluminum alloy at pH 6.5; however, the secretion of gamma-polyglutamate by a Bacillus licheniformis biofilm reduced the corrosion rate by 90% (compared to the B. subtilis WB600/pBE92 biofilm which did not secrete polyaspartate or gamma-polyglutamate). The corrosion potential ( E(corr)) of aluminum 2024 was increased by about 0.15-0.44 V due to the formation of B. subtilis and B. licheniformis biofilms as compared to sterile controls. The increase of E(corr) and the observed prevention of pitting indicate that the pitting potential ( E(pit)) had increased. This result and the further decrease of corrosion rates for the passive aluminum alloy suggest that the rate of the anodic metal dissolution reaction was reduced by an inhibitor produced by the biofilms. Purified gamma-polyglutamate also decreased the corrosion rates of aluminum 2024.  相似文献   

10.
The antifouling potential of electric polarization combined and not combined with biocides was studied in nonsaline warm water with high organic content. Deinococcus geothermalis is a bacterium known for forming colored biofilms in paper machines and for its persistence against cleaning and chemical treatments. When D. geothermalis biofilms grown for 24 h in simulated paper machine water were exposed to cathodic or cathodically weighted pulsed polarization at least 60% (P < 0.05) of the biofilms were removed from stainless steel (AISI 316L). Biofilm removal by 25 ppm (effective substances 5-25 ppm) of oxidizing biocides (bromochloro-5,5-dimethylhydantoin, 2,2-dibromo-2-cyanoacetamide, peracetic acid) increased to 70% when combined with cathodically weighted pulsed polarization. Using a novel instrument that allows real-time detection of reactive oxygen species (ROS) we showed that the polarization program effective in antifouling generated ROS in a pulsed manner on the steel surface. We thus suggest that the observed added value of oxidative biocides combined with polarization depended on ROS. This suggestion was supported by the finding that a reductive biocide, methylene bisthiocyanate, counteracted the antifouling effect of polarization.  相似文献   

11.
In this article we describe a field study of biofouling and microbiologically influenced corrosion (MIC) of admiralty brass heat exchanger tubes in contact with running fresh water on the river Tagus close to Almaraz nuclear power plant in Spain. Dezincification originated by biofouling and MIC was studied using impedance, polarization resistance, gravimetric, scanning electron microscopy (SEM), and X-ray diffraction (XRD) measurements. Close correlation was observed between the biofilms formed and the corrosion process (dezincification) using the different experimental techniques. Impedance data showed a capacitive behavior including two time constants. Kramers-Kronig (KK) transforms were used to validate impedance data. The admiralty tubes' impedance data satisfied the KK relations.  相似文献   

12.
Bacterial biofilms cause serious problems, such as antibiotic resistance and medical device-related infections. To further understand bacterium-surface interactions and to develop efficient control strategies, self-assembled monolayers (SAMs) of alkanethiols presenting different functional groups on gold films were analyzed to determine their resistance to biofilm formation. Escherichia coli was labeled with green florescence protein, and its biofilm formation on SAM-modified surfaces was monitored by confocal laser scanning microscopy. The three-dimensional structures of biofilms were analyzed with the COMSTAT software to obtain information about biofilm thickness and surface coverage. SAMs presenting methyl, L-gulonamide (a sugar alcohol tethered with an amide bond), and tri(ethylene glycol) (TEG) groups were tested. Among these, the TEG-terminated SAM was the most resistant to E. coli biofilm formation; e.g., it repressed biofilm formation by E. coli DH5alpha by 99.5% +/- 0.1% for 1 day compared to the biofilm formation on a bare gold surface. When surfaces were patterned with regions consisting of methyl-terminated SAMs surrounded by TEG-terminated SAMs, E. coli formed biofilms only on methyl-terminated patterns. Addition of TEG as a free molecule to growth medium at concentrations of 0.1 and 1.0% also inhibited biofilm formation, while TEG at concentrations up to 1.5% did not have any noticeable effects on cell growth. The results of this study suggest that the reduction in biofilm formation on surfaces modified with TEG-terminated SAMs is a result of multiple factors, including the solvent structure at the interface, the chemorepellent nature of TEG, and the inhibitory effect of TEG on cell motility.  相似文献   

13.
Conjugation is an important mode of horizontal gene transfer in bacteria, enhancing the spread of antibiotic resistance. In clinical settings, biofilms are likely locations for antibiotic resistance transfer events involving nosocomial pathogens such as Enterococcus faecalis. Here we demonstrate that growth in biofilms alters the induction of conjugation by a sex pheromone in E. faecalis. Mathematical modelling suggested that a higher plasmid copy number in biofilm cells would enhance a switch-like behaviour in the pheromone response of donor cells with a delayed, but increased response to the mating signal. Alterations in plasmid copy number, and a bimodal response to induction of conjugation in populations of plasmid-containing donor cells were both observed in biofilms, consistent with the predictions of the model. The pheromone system may have evolved such that donor cells in biofilms are only induced to transfer when they are in extremely close proximity to potential recipients in the biofilm community. These results may have important implications for development of chemotherapeutic agents to block resistance transfer and treat biofilm-related clinical infections.  相似文献   

14.
The composition of exopolymer complexes (EPCs), synthesized by the monocultures Desulfovibrio sp. 10, Bacillus subtilis 36, and Pseudomonas aeruginosa 27 and by microbial associations involved in the corrosion of metal surfaces has been studied. An analysis of the monosaccharide composition of carbohydrate components, as well as the fatty acid composition of the lipid part of EPCs, was carried out by gas-liquid chromatography (GLC). It was found that bacteria in biofilms synthesized polymers; this process was dominated by glucose, while the growth of bacteria in a suspension was marked by a high rhamnose content. Hexouronic acids and hexosamine have been revealed as a part of B. subtilis 36 and P. aeruginosa 27 EPCs. Qualitative differences were revealed in the fatty acid composition ofexopolymers in biofilms and in a bacterial suspension. It was shown that the transition to a biofilm form of growth led to an increase in the unsaturation degree of fatty acids in the exopolymers of associative cultures. The results can be used to develop methods to control microbial corrosion of metal surfaces.  相似文献   

15.
Polarization-dependent surface-enhanced Raman scattering (SERS) was studied for oxazine 720 molecules adsorbed on a scratched gold surface placed in situ and under electrochemical control. A quantitative method for evaluating the observed polarization dependence will be introduced. This method takes into account the polarization artifacts caused by optical elements in the light microscope used for Raman microscopy. Intensity of the SERS obtained from oxazine 720 adsorbed on scratches in gold showed a polarization dependence after correction was made for these artifacts. In contrast, intensity of the ordinary Raman signal obtained from perchlorate ions in the solution above a scratched gold surface was found to be polarization-independent. Therefore, polarization effects can be used to selectively remove solution-phase interference signals from the SERS spectrum of an adsorbed analyte. These polarization effects were found to be independent of the applied potential, meaning the methodology is applicable to electrochemical SERS studies.  相似文献   

16.
Kim YH  Lee Y  Kim S  Yeom J  Yeom S  Seok Kim B  Oh S  Park S  Jeon CO  Park W 《Proteomics》2006,6(23):6181-6193
This study examined the role of the periplasmic oxidative defense proteins, copper, zinc superoxide dismutase (SodC), and thiol peroxidase (Tpx), from the Shiga toxin-producing Escherichia coli O157:H7 (STEC) in the formation of biofilms. Proteomic analyses have shown significantly higher expression levels of both periplasmic antioxidant systems (SodC and Tpx) in STEC cells grown under biofilm conditions than under planktonic conditions. An analysis of their growth phase-dependent gene expression indicated that a high level of the sodC expression occurred during the stationary phase and that the expression of the tpx gene was strongly induced only during the exponential growth phase. Exogenous hydrogen peroxide reduced the aerobic growth of the STEC sodC and tpx mutants by more than that of their parental strain. The two mutants also displayed significant reductions in their attachment to both biotic (HT-29 epithelial cell) and abiotic surfaces (polystyrene and polyvinyl chloride microplates) during static aerobic growth. However, the growth rates of both wild-type and mutants were similar under aerobic growth conditions. The formation of an STEC biofilm was only observed with the wild-type STEC cells in glass capillary tubes under continuous flow-culture conditions compared with the STEC sodC and tpx mutants. To the best of our knowledge, this is the first mutational study to show the contribution of sodC and tpx gene products to the formation of an E. coli O157:H7 biofilm. These results also suggest that these biofilms are physiologically heterogeneous and that oxidative stress defenses in both the exponential and stationary growth stages play important roles in the formation of STEC biofilms.  相似文献   

17.
This communication outlines the principles of application of scanning probe microscopy (SPM) as a tool for studying physico-chemical and biological phenomena and discusses the potential use of atomic force microscopy (AFM) , a form of SPM, for investigation of bacterial biofilms formed on metal surfaces and for studying corrosion of these surfaces in the presence of such biofilms. AFM images showing biofilms developed in pure cultures of either Pseudomonas species on copper, or by a marine isolate of sulphate-reducing bacterium on 304 stainless steel are presented to demonstrate usefulness of the SPM technique for both quantitative and qualitative determination of biocorrosion.  相似文献   

18.
Planktonic bacteria passing to a sessile state during the formation of a biofilm undergo many gene expression and phenotypic changes. These transformations require a significant time to establish. Inversely, cells extracted from a biofilm should also require a significant time before acquiring the same physiological characteristics as planktonic cells. Relatively few studies have addressed the kinetics of this inverse transformation process. We tested one aspect, namely, the contamination potential of freshly extracted Escherichia coli biofilm cells, precultured in a synthetic medium, in a rich liquid growth medium. We compared the time between inoculation and the beginning of the growth phase of freshly extracted biofilm cells, and suspended exponential and suspended stationary phase cells precultured in the same synthetic medium. Unexpectedly, the lag time for the extracted biofilm cells was the same as the lag time of the suspended exponential phase cells and significantly less than the lag time of the suspended stationary phase cells. The lag times were determined by an impedance technique. Cells extracted from biofilms, i.e., biofilms formed in canalizations and broken up by hydrodynamic forces, are an important source of contamination. Our work shows, in the case of E. coli, the high potential of freshly extracted biofilm cells to reinfect a new medium.  相似文献   

19.
A Biofilm Airlift Suspension (BAS) reactor was operated with nitrifying biofilm growth and heterotrophic suspended growth, simultaneously converting ammonium and acetate. Growth of heterotrophs in suspension decreases the diffusion limitation for the nitrifiers, and enlarges the nitrifying capacity of a biofilm reactor. Neither nitrifiers nor heterotrophs suffer from additional oxygen diffusion limitation when the heterotrophs grow in suspension. Control of the location of heterotrophic growth, either in suspension or in biofilms over the nitrifying biofilms, was possible by manipulation of the hydraulic retention time. A time delay for formation and disappearance of the heterotrophic biofilms of 10 to 15 days was observed. Surprisingly, it was found that in the presence of the heterotrophic layers the maximum specific activity on ammonia of the nitrifying biofilms increased. The reason for the increase in activity is unknown. The effect of heterotrophic biofilm formation on oxygen diffusion limitation for the nitrifiers is discussed. Some phenomena compensating the increased mass transfer resistance due to the growth of a heterotrophic layer are also presented. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 397-405, 1997.  相似文献   

20.
The presence of microbial cells on surfaces results in the formation of biofilms, which may also give rise to microbiologically influenced corrosion. Biofilms accumulate on all submerged industrial and environmental surfaces. The efficacy of disinfectants is usually evaluated using planktonic cultures, which often leads to an underestimate of the concentration required to control a biofilm. The aim of this study was to investigate the efficacy of monochloramine on biofilms developed in a cooling tower. The disinfectants selected for the study were commercial formulations recommended for controlling microbial growth in cooling towers. A cooling tower and a laboratory model recirculating water system were used as biofilm reactors. Although previous studies have evaluated the efficacy of free chlorine and monochloramine for controlling biofilm growth, there is a lack of published data concerning the use monochloramine in cooling towers. Stainless steel coupons were inserted in each tower basin for a period of 30 d before removal. Monochloramine and free chlorine were tested under identical conditions on mixed biofilms which had been allowed to grow on coupons. Monochloramine was found to be significantly more effective than free chlorine against cooling tower biofilms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号