首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hypothesis that elevated [CO(2)] alleviates ureide inhibition of N(2)-fixation was tested. Short-term responses of the acetylene reduction assay (ARA), ureide accumulation and total non-structural carbohydrate (TNC) levels were measured following addition of ureide to the nutrient solution of hydroponically grown soybean. The plants were exposed to ambient (360 micromol mol(-1)) or elevated (700 micromol mol(-1)) [CO(2)]. Addition of 5 and 10 mM ureide to the nutrient solution inhibited N(2)-fixation activity under both ambient and elevated [CO(2)] conditions. However, the percentage inhibition following ureide treatment was significantly greater under ambient [CO(2)] as compared with that under elevated [CO(2)]. Under ambient [CO(2)] conditions, ARA was less than that under elevated [CO(2)] 1 d after ureide treatment. Under ambient [CO(2)], the application of ureide resulted in a significant accumulation of ureide in all plant tissues, with the highest concentration increases in the leaves. However, application of exogenous ureide to plants subjected to elevated [CO(2)] did not result in increased ureide concentration in any tissues. TNC concentrations were consistently higher under elevated [CO(2)] compared with those under ambient [CO(2)]. For both [CO(2)] treatments, the application of ureide induced a significant decrease of TNC concentrations in the leaves and nodules. For both leaves and nodules, a negative correlation was observed between TNC and ureide levels. Results indicate that product(s) of ureide catabolism rather than tissue ureide concentration itself are critical in the regulation of N(2)-fixation.  相似文献   

2.
二氧化碳和臭氧浓度升高对春小麦生长及次生代谢的影响   总被引:2,自引:0,他引:2  
李果梅  史奕  陈欣 《应用生态学报》2008,19(6):1283-1288
通过开顶式气室(OTCs)研究了OTC对照(自然CO2浓度约342 μmol·mol-1,O3浓度约30 nmol·mol-1)、高浓度CO2(550 μmol·mol-1)、高浓度O3(浓度为80 nmol·mol-1)及其交互作用(CO2 550 μmol ·mol-1,O3 80 nmol·mol-1)对春小麦不同发育时期生物量、总酚量、黄酮含量及成熟期产量性状的影响.结果表明:CO2浓度增加条件下,春小麦生物量和产量性状都显著高于OTC对照(P<0.05);而O3浓度升高条件下,小麦生物量降低,株高、穗长、穗粒质量及千粒重也显著低于对照;CO2和O3交互作用下各项指标处于二者之间.说明CO2可以缓解O3对小麦的负效应,而O3对CO2的正效应具有削弱作用,但二者的作用并非简单的叠加.CO2、O3浓度增加及其交互作用显著增加了春小麦叶片中的总酚含量,其中两者交互作用的效应更大,但在小麦生长后期,总酚含量增加量比对照有所降低.在小麦生长前期,各处理总黄酮含量均低于对照;而在成熟期,各处理都显著高于对照.  相似文献   

3.
Changes in leaf-area index (LAI) may alter ecosystem productivity in elevated [CO2] or [O3]. By increasing the apparent quantum yield of photosynthesis (phi(c,max)), elevated [CO2] may increase maximum LAI. However, [O3] when elevated independently accelerates senescence and may reduce LAI. Large plots (20 m diameter) of soybean (Glycine max) were exposed to ambient (approx. 370 micromol mol(-1)) or elevated (approx. 550 micromol mol(-1)) CO2 or 1.2 times ambient [O3] using soybean free-air concentration enrichment (SoyFACE). In 2001 elevated CO2 had no detectable effect on maximum LAI, but in 2002 maximum LAI increased by 10% relative to ambient air. Elevated [CO2] also increased the phi(c,max) of shade leaves in both years. Elevated [CO2] delayed LAI loss to senescence by approx. 54% and also increased leaf-area duration. Elevated [O3] accelerated senescence, reducing LAI by 40% near the end of the growing season. No effect of elevated [O3] on photosynthesis was detected. Elevated [CO2] or [O3] affected LAI primarily by altering the rate of senescence; knowledge of this may aid in optimizing future soybean productivity.  相似文献   

4.
The influence of chilling (8 °C, 5 d) at two photon flux densities [PFD, L = 200 and H = 500 μmol(photon) m−2 s−1] on the gas exchange and chlorophyll fluorescence was investigated in chilling-tolerant and chilling-sensitive maize hybrids (Zea mays L., K383×K130, K185×K217) and one cultivar of field bean (Vicia faba L. minor, cv. Nadwiślański). The net photosynthetic rate (P N) for the both studied plant species was inhibited at 8 °C. P N of both maize hybrids additionally decreased during chilling. Changes in the quantum efficiency of PS2 electron transport (ΦPS2) as a response to chilling and PFD were similar to P N. Measurements of ΦPS2CO2 ratio showed that in field bean seedlings strong alternative photochemical sinks of energy did not appear during chilling. However, the high increment in ΦPS2CO2 for maize hybrids can indicate reactions associated with chill damage generation. At 8 °C the non-photochemical quenching (NPQ) increased in all plants with chilling duration and PFD. The appearance of protective (qI,p) and damage (qI,d) components of qI and a decrease in qE (energy dependent quenching) took place. NPQ components of field bean and maize hybrids differed from each other. The amount of protective NPQ (qE + qI,p) components as part of total NPQ was higher in field bean than in maize hybrids at both PFD. On 5th day of chilling, the sum of qE and qI,p was 26.7 % of NPQ in tolerant maize hybrids and 17.6 % of NPQ in the sensitive one (averages for both PFD). The increased PFD inhibited the ability of all plants to perform protective dissipation of absorbed energy. The understanding of the genotypic variation of NPQ components in maize may have implications for the future selection of plants with a high chilling tolerance.  相似文献   

5.
Spring wheat (Triticum aestivum cv. Hanno) was grown at ambient (350 micromol mol(-1)) or elevated CO(2) (700 micromol mol(-1)) in charcoal/Purafil-filtered air (CFA <5 nmol mol(-1)) or ozone (CFA +75 nmol mol(-1) 7 h d(-1)) at three levels of N supply (1.5, 4 and 14 mM NO(-3)), to test the hypothesis that the combined impacts of elevated CO(2) and O(3) on plant growth and photosynthetic capacity are affected by nitrogen availability. Shifts in foliar N content reflected the level of N supplied, and the growth stimulation induced by elevated CO(2) was dependent on the level of N supply. At 60 d after transfer (DAT), elevated CO(2) was found to increase total biomass by 44%, 29%, 12% in plants supplied with 14, 4 and 1.5 mM NO(-3), respectively, and there was no evidence of photosynthetic acclimation to elevated CO(2) across N treatments; the maximum in vivo rate of Rubisco carboxylation (V(cmax)) was similar in plants raised at elevated and ambient CO(2). At 60 DAT, ozone exposure was found to suppress plant relative growth rate (RGR) and net photosynthesis (A) in plants supplied with 14 and 4 mM NO(-3). However, O(3) had no effect on the RGR of plants supplied with 1.5 mM NO(-3) and this effect was accompanied by a reduced impact of the pollutant on A. Elevated CO(2) counteracted the detrimental effects of O(3) (i.e. the same ozone concentration that depressed RGR and A at ambient CO(2) resulted in no significant effects when plants were raised at elevated CO(2)) at all levels of N supply and the effect was associated with a decline in O(3) uptake at the leaf level.  相似文献   

6.
Bunce JA 《Annals of botany》2005,95(6):1059-1066
BACKGROUND AND AIMS: Respiration is an important component of plant carbon balance, but it remains uncertain how respiration will respond to increases in atmospheric carbon dioxide concentration, and there are few measurements of respiration for crop plants grown at elevated [CO(2)] under field conditions. The hypothesis that respiration of leaves of soybeans grown at elevated [CO(2)] is increased is tested; and the effects of photosynthesis and acclimation to temperature examined. METHODS: Net rates of carbon dioxide exchange were recorded every 10 min, 24 h per day for mature upper canopy leaves of soybeans grown in field plots at the current ambient [CO(2)] and at ambient plus 350 micromol mol(-1) [CO(2)] in open top chambers. Measurements were made on pairs of leaves from both [CO(2)] treatments on a total of 16 d during the middle of the growing seasons of two years. KEY RESULTS: Elevated [CO(2)] increased daytime net carbon dioxide fixation rates per unit of leaf area by an average of 48 %, but had no effect on night-time respiration expressed per unit of area, which averaged 53 mmol m(-2) d(-1) (1.4 micromol m(-2) s(-1)) for both the ambient and elevated [CO(2)] treatments. Leaf dry mass per unit of area was increased on average by 23 % by elevated [CO(2)], and respiration per unit of mass was significantly lower at elevated [CO(2)]. Respiration increased by a factor of 2.5 between 18 and 26 degrees C average night temperature, for both [CO(2)] treatments. CONCLUSIONS: These results do not support predictions that elevated [CO(2)] would increase respiration per unit of area by increasing photosynthesis or by increasing leaf mass per unit of area, nor the idea that acclimation of respiration to temperature would be rapid enough to make dark respiration insensitive to variation in temperature between nights.  相似文献   

7.
Zhang XC  Yu XF  Ma YF 《应用生态学报》2011,22(3):673-680
采用开顶式气室盆栽培养小麦,设计2个大气CO2浓度(正常:400 μmol.mol-1;高:760 μmol·mol-1)、2个氮素水平(0和200 mg·kg-1土)的组合处理,通过测定小麦抽穗期旗叶氮素和叶绿素浓度、光合速率(Pn)-胞间CO2浓度(C1)响应曲线及荧光动力学参数,来测算小麦叶片光合电子传递速率等,研究了高大气CO2浓度下施氮对小麦旗叶光合能量分配的影响.结果表明:与正常大气CO2浓度相比,高大气CO2浓度下小麦叶片氮浓度和叶绿素浓度降低,高氮处理的小麦叶片叶绿素a/b升高.施氮后小麦叶片PSⅡ最大光化学效率(Fv/Fm)、PSⅡ反应中心最大量子产额(Fv'/Fm')、PSⅡ反应中心的开放比例(qr)和PSⅡ反应中心实际光化学效率(φPSⅡ)在大气CO2浓度升高后无明显变化,虽然叶片非光化学猝灭系数(NPQ)显著降低,但PSⅡ总电子传递速率(JF)无明显增加;不施氮处理的Fv'/Fm'、φPSⅡ和NPQ在高大气CO2浓度下显著降低,尽管Fv/Fm和qp无明显变化,JF仍显著下降.施氮后小麦叶片JF增加,参与光化学反应的非环式电子流传递速率(Jc)明显升高.大气CO2浓度升高使参与光呼吸的非环式电子流传递速率(J0)、Rubisco氧化速率(V0)、光合电子的光呼吸/光化学传递速率比(J0/Jc)和Rubisco氧化/羧化比(V0/Vc)降低,但使Jc和Rubisco羧化速率(Vc)增加.因此,高大气CO2浓度下小麦叶片氮浓度和叶绿素浓度降低,而增施氮素使通过PSⅡ反应中心的电子流速率显著增加,促进了光合电子流向光化学方向的传递,使更多的电子进入Rubisco羧化过程,Pn显著升高.  相似文献   

8.
A whole-tree chamber (WTC) system was installed at Flakaliden in northern Sweden to examine the long-term physiological responses of field-grown 40-year-old Norway spruce trees [Picea abies (L.) Karst.] to climate change. The WTCs were designed as large cuvettes to allow the net tree-level CO(2) and water fluxes to be measured on a continuous basis. A total of 12 WTCs were used to impose combinations of atmospheric carbon dioxide concentration, [CO(2)], and air temperature treatments. The air inside the ambient and elevated [CO(2)] WTCs was maintained at 365 and 700 micromol mol(-1), respectively. The air temperature inside the ambient temperature WTCs tracked air temperature outside the WTCs. Elevated temperatures were altered on a monthly time-step and ranged between +2.8 and +5.6 degrees C above ambient temperature. The system allowed continuous, long-term measurement of whole-tree photosynthesis, night-time respiration and transpiration. The performance of the WTCs was assessed using winter and spring data sets. The ability of the WTC system to measure tree-level physiological responses is demonstrated. All WTCs displayed a high level of control over tracking of air temperatures. The set target of 365 micromol mol(-1) in the ambient [CO(2)] chambers was too low to be maintained during winter because of tree dormancy and the high natural increase in [CO(2)] over winter at high latitudes such as the Flakaliden site. Accurate control over [CO(2)] in the ambient [CO(2)] chambers was restored during the spring and the system maintained the elevated [CO(2)] target of 700 micromol mol(-1) for both measurement periods. Air water vapour deficit (VPD) was accurately tracked in ambient temperature WTCs. However, as water vapour pressure in all 12 WTCs was maintained at the level of non-chambered (reference) air, VPD of elevated temperature WTCs was increased.  相似文献   

9.
The atmospheric concentration of CO2 will probably rise to about 700 micromol mol(-1) by the end of this century. The effects of elevated growth CO2 on photosynthesis are still not fully understood. Effects of elevated growth CO2 on the capacity for photosynthesis of a single leaf and a whole plant were investigated with the radish cultivar White Cherish. The plants were grown under ambient ( approximately 400 micromol mol(-1)) or elevated CO2 ( approximately 750 micromol mol(-1)). The rates of net photosynthesis per leaf area with a whole plant and a single leaf of plants of various ages (15-26 d after planting) were measured under ambient and elevated CO2. The rates of photosynthesis were increased by 20-28% by elevated CO2. There was no effect of elevated growth CO2 on the rate of photosynthesis, clearly indicating no downward acclimation of photosynthesis to elevated CO2. Elevated CO2 increased dry weight accumulation by >27%. The effect of elevated CO2 on other growth characteristics will also be shown.  相似文献   

10.
The temperature dependence of C3 photosynthesis is known to vary according to the growth environment. Atmospheric CO2 concentration and temperature are predicted to increase with climate change. To test whether long-term growth in elevated CO2 and temperature modifies photosynthesis temperature response, wheat (Triticum aestivum L.) was grown in ambient CO2 (370 micromol mol(-1)) and elevated CO2 (700 micromol mol(-1)) combined with ambient temperatures and 4 degrees C warmer ones, using temperature gradient chambers in the field. Flag leaf photosynthesis was measured at temperatures ranging from 20 to 35 degrees C and varying CO2 concentrations between ear emergence and anthesis. The maximum rate of carboxylation was determined in vitro in the first year of the experiment and from the photosynthesis-intercellular CO2 response in the second year. With measurement CO2 concentrations of 330 micromol mol(-1) or lower, growth temperature had no effect on flag leaf photosynthesis in plants grown in ambient CO2, while it increased photosynthesis in elevated growth CO2. However, warmer growth temperatures did not modify the response of photosynthesis to measurement temperatures from 20 to 35 degrees C. A central finding of this study was that the increase with temperature in photosynthesis and the photosynthesis temperature optimum were significantly higher in plants grown in elevated rather than ambient CO2. In association with this, growth in elevated CO2 increased the temperature response (activation energy) of the maximum rate of carboxylation. The results provide field evidence that growth under CO2 enrichment enhances the response of Rubisco activity to temperature in wheat.  相似文献   

11.
红豆草与土壤氮含量对大气二氧化碳浓度升高的响应   总被引:1,自引:0,他引:1  
在封闭的植物培养箱中,通过盆栽实验,研究了红豆草和土壤氮含量对CO2浓度增加的响应.结果表明,与正常CO2浓度(355~370 μmol·mol-1)相比,CO2浓度升高(700 μmol·mol-1),植物生物量增加25.1%(P<0.01),但植物体氮浓度降低25.3%(P<0.001),植物全氮没有显著的变化.经3个月盆栽实验后,与原始土壤相比,两种CO2浓度处理土壤全N、NO3--N和NH4+-N都有所降低,而土壤微生物氮则显著增加,这可能与植物生长有关.不同CO2浓度处理土壤NH4+-N浓度基本一致,但在高CO2浓度下,土壤NO3--N浓度显著降低,而微生物生物氮显著增加.对整个土壤-植物系统而言,盆栽实验后,整个系统全氮有少量增加,但变化不显著,特别是在高CO2浓度条件下,土壤-植物系统全氮最大,这可能与培养材料红豆草为豆科植物,而且在高CO2浓度下生物量增加,导致氮的固定量增加有关.  相似文献   

12.
Accurately predicting plant function and global biogeochemical cycles later in this century will be complicated if stomatal conductance (g(s)) acclimates to growth at elevated [CO(2)], in the sense of a long-term alteration of the response of g(s) to [CO(2)], humidity (h) and/or photosynthetic rate (A). If so, photosynthetic and stomatal models will require parameterization at each growth [CO(2)] of interest. Photosynthetic acclimation to long-term growth at elevated [CO(2)] occurs frequently. Acclimation of g(s) has rarely been examined, even though stomatal density commonly changes with growth [CO(2)]. Soybean was grown under field conditions at ambient [CO(2)] (378 micromol mol(-1)) and elevated [CO(2)] (552 micromol mol(-1)) using free-air [CO(2)] enrichment (FACE). This study tested for stomatal acclimation by parameterizing and validating the widely used Ball et al. model (1987, Progress in Photosynthesis Research, vol IV, 221-224) with measurements of leaf gas exchange. The dependence of g(s) on A, h and [CO(2)] at the leaf surface was unaltered by long-term growth at elevated [CO(2)]. This suggests that the commonly observed decrease in g(s) under elevated [CO(2)] is due entirely to the direct instantaneous effect of [CO(2)] on g(s) and that there is no longer-term acclimation of g(s) independent of photosynthetic acclimation. The model accurately predicted g(s) for soybean growing under ambient and elevated [CO(2)] in the field. Model parameters under ambient and elevated [CO(2)] were indistinguishable, demonstrating that stomatal function under ambient and elevated [CO(2)] could be modelled without the need for parameterization at each growth [CO(2)].  相似文献   

13.
以连续5年不同CO2浓度(开顶箱700μmol·mol-1、500μmol·mol-1、对照箱和裸地)处理的长白赤松和红松幼苗为研究对象,在2003年7~9月分别对幼苗根际土壤细菌、真菌、放线菌数量进行比较研究.结果表明,高浓度CO2处理对长白赤松幼苗根际土壤细菌数量起显著的(P≤0.001)促进作用,对根际真菌和放线菌数量的促进作用却不明显;对红松来说,除8月份700μmol·mol-1CO2处理和7月份500μmol·mol-1CO2处理之外,在各月份中受高浓度CO2处理的根际土壤细菌数量均较对照箱和裸地显著增多(P≤0.001),而根际土壤真菌数量变化除9月份(P≤0.001)外均不明显,放线菌数量受高浓度CO2的影响亦不明显.  相似文献   

14.
Several plant species defend themselves indirectly from herbivores by producing herbivore-induced volatile compounds that attract the natural enemies of herbivores. Here we tested the effects of elevated atmospheric CO(2) (720 micromol mol(-1)) concentration on this indirect defense, physiological properties, and constitutive and induced emissions of white cabbage (Brassica oleracea ssp. capitata, cvs Lennox and Rinda). We monitored the orientation behavior of the generalist predator Podisus maculiventris (Heteroptera: Pentatomidae) and the specialist parasitoid Cotesia plutellae (Hymenoptera: Braconidae) to plants damaged by Plutella xylostella (Lepidoptera: Plutellidae) in the Y-tube olfactometer. Elevated CO(2) levels did not affect stomatal densities but reduced specific leaf area and increased leaf thickness in cv Lennox. In addition to enhanced constitutive monoterpene emission, P. xylostella-damaged cabbages emitted homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene, sesquiterpene (E,E)-alpha-farnesene, and (Z)-3-hexenyl acetate. Growth at elevated CO(2) had no significant effect on the emissions expressed per leaf area, while minor reduction in the emission of homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-alpha-farnesene was observed at elevated CO(2) in one of two experiments. The generalist predator P. maculiventris discriminated only between the odors of intact and P. xylostella-damaged cv Rinda plants grown at ambient CO(2) concentration, preferring the odor of the damaged plants. The specialist parasitoid C. plutellae preferred the odor of damaged plants of both cultivars grown at ambient CO(2) but did not detect damaged cv Lennox plants grown at elevated CO(2). The results suggest that elevated atmospheric CO(2) concentration could weaken the plant response induced by insect herbivore feeding and thereby lead to a disturbance of signaling to the third trophic level.  相似文献   

15.
大气CO2浓度升高可能对森林土壤的甲烷(CH4)氧化速率产生影响.本文采用开顶箱技术,对连续6年高浓度CO2(500 μmol·mol-1)处理的长白山森林典型树种蒙古栎树下土壤CH4氧化速率进行研究,并利用CH4氧化菌的16S rRNA特异性引物以及CH4单加氧酶功能基因引物分析了土壤中CH4氧化菌的群落结构与数量.结果表明:CO2浓度增高后,生长季土壤甲烷氧化量与对照和裸地相比分别降低了4%和22%;基于16S rRNA特异性引物的DGGE分析表明,CO2浓度增高导致两类甲烷氧化菌的多样性指数降低;CO2浓度增高对土壤中Ⅰ类甲烷氧化菌数量无显著影响,而使土壤中Ⅱ类甲烷氧化菌数量显著减少,功能基因pmoA拷贝数与对照和裸地相比分别降低了15%和46%.CO2浓度增高导致森林土壤甲烷氧化菌数量与活性降低,土壤含水量的增加可能是导致这一现象的主要原因.  相似文献   

16.
Roden JS  Ball MC 《Plant physiology》1996,111(3):909-919
Two species of eucalyptus (Eucalyptus macrorhyncha and Eucalyptus rossii) were grown for 8 weeks in either ambient (350 [mu]L L-1) or elevated (700 [mu]L L-1) CO2 concentrations, either well watered or without water additions, and subjected to a daily, 3-h high-temperature (45[deg]C, maximum) and high-light (1250 [mu]mol photons m-2 s-1, maximum) stress period. Water-stressed seedlings of E. macrorhyncha had higher leaf water potentials when grown in elevated [CO2]. Growth analysis indicated that increased [CO2] may allow eucalyptus species to perform better during conditions of low soil moisture. A down-regulation of photosynthetic capacity was observed for seedlings grown in elevated [CO2] when well watered but not when water stressed. Well-watered seedlings grown in elevated [CO2] had lower quantum efficiencies as measured by chlorophyll fluorescence (the ratio of variable to maximal chlorophyll fluorescence [Fv/Fm]) than seedlings grown in ambient [CO2] during the high-temperature stress period. However, no significant differences in Fv/Fm were observed between CO2 treatments when water was withheld. The reductions in dark-adapted Fv/Fm for plants grown in elevated [CO2] were not well correlated with increased xanthophyll cycle photoprotection. However, reductions in the Fv/Fm were correlated with increased levels of nonstructural carbohydrates. The reduction in quantum efficiencies for plants grown in elevated [CO2] is discussed in the context of feedback inhibition of electron transport associated with starch accumulation and variation in sink strength.  相似文献   

17.
不同氮营养水平下草莓叶片光合作用对高CO2浓度的适应   总被引:2,自引:0,他引:2  
研究了不同氮素水平(12mmol/L,4mmol/L,0、4mmol/L)下生长的‘丰香’草莓在富C02(700μL/L)和大气CO(390μL/L)下的光合作用。结果表明,高氮(12mmol/L)下,在富CO2环境中生长的‘丰香’草莓叶片未出现光合作用下调,富CO2下草莓叶片的净光合速率、最大羧化速率(Vc.max)、最大电子传递速率(Jmax)、碳同化的电子传递速率(Jc)和光化学猝灭系数(qp)等均显著提高;而在中氮(4mmol/L)、低氮(0.4mmol/L)下,富CO2下生长的草莓叶片的上述参数均出现不同程度的下降。富CO2下,无论氮素水平如何,草莓叶片的光呼吸电子传递速率(Jo)均降低高氮草莓叶片的非光化学猝灭系数(qN或NPQ)降低,光抑制降低,而低氮则相反。上述结果说明,氮素供应不足时草莓叶片在富CO2下光合作用出现下调,因此生产上进行CO2施肥时应适度增加氮素的供应。  相似文献   

18.
To reveal and quantify the interactive effects of drought stresses and elevated CO2 concentration [CO2] on photochemistry efficiency of cucumber seedlings, the portable chlorophyll meter was used to measure the chlorophyll content, and the Imaging-PAM was used to image the chlorophyll fluorescence parameters and rapid light response curves (RLC) of leaves in two adjacent greenhouses. The results showed that chlorophyll content of leaves was reduced significantly with drought stress aggravated. Minimal fluorescence (Fo) was increased while maximal quantum yield of PSII (Fv/Fm) decreased significantly by severe drought stress. The significant decrease of effective quantum yield of PSll (Y(Ⅱ)) accompanied by the significant increase of quantum yield of regulated energy dissipation (Y(NPQ)) was observed under severe drought stress condition, but there was no change of quantum yield of nonregulated energy dissipation (Y(NO)). We detected that the coefficient of photochemical quenching (Qp) decreased, and non-photochemical quenching (NPQ) increased significantly under severe drought stress. Furthermore, we found that maximum apparent electron transport rate (ETRmax) and saturating photosynthetically active radiation (PPFDsat) decreased significantly with drought stress aggravated. However, elevated [CO2] significantly increased FvlFm, Qp and PPFDsat, and decreased NPQ under all water conditions, although there were no significant effects on chlorophyll content, Fo, Y(Ⅱ), Y(NPQ), Y(NO) and ETRmax. Therefore, it is concluded that CO2-fertilized greenhouses or elevated atmospheric [CO2] in the future could be favorable for cucumber growth and development, and beneficial to alleviate the negative effects of drought stresses to a certain extent.  相似文献   

19.
Photosynthetic responses of sunflower plants grown for 52 d in ambient and elevated CO(2) (A=350 or E=700 micromol mol(-1), respectively) and subjected to no (control), mild or severe water deficits after 45 d were analysed to determine if E modifies responses to water deficiency. Relative water content, leaf water potential (Psi(w)) and osmotic potential decreased with water deficiency, but there were no effects of E. Growth in E decreased stomatal conductance (g(s)) and thereby transpiration, but increased net CO(2) assimilation rate (P(n), short-term measurements); therefore, water-use efficiency increased by 230% (control plants) and 380% (severe stress). Growth in E did not affect the response of P(n) to intercellular CO(2) concentration, despite a reduction of 25% in Rubisco content, because this was compensated by a 32% increase in Rubisco activity. Analysis of chlorophyll a fluorescence showed that changes in energy metabolism associated with E were small, despite the decreased Rubisco content. Water deficits decreased g(s) and P(n): metabolic limitation was greater than stomatal at mild and severe deficit and was not overcome by elevated CO(2). The decrease in P(n) with water deficiency was related to lower Rubisco activity rather than to ATP and RuBP contents. Thus, there were no important interactions between CO(2) during growth and water deficit with respect to photosynthetic metabolism. Elevated CO(2 )will benefit sunflower growing under water deficit by marginally increasing P(n), and by slowing transpiration, which will decrease the rate and severity of water deficits, with limited effects on metabolism.  相似文献   

20.
Elevated (700 μmol mol−1) and ambient (350 μmol mol−1) CO2 effects on total ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, photosynthesis (A), and photoinhibition during 6 d at low temperature were measured on wild type (WT), and rbcS antisense DNA mutants (T3) of tobacco (Nicotiana tabacum L.) with 60% of WT total Rubisco activity (Rodermel et al. (1988) Cell 55: 673–681). Prior to the low temperature treatment, A and quantum yield of PSII photochemistry in the light adapted state (φPSII) were significantly lower in T3 compared to WT at each CO2 level. At this time, total nonphotochemical quenching (NPQTotal) levels were near maximal (0.75–0.85) in T3 compared to WT (0.39–0.50). A was stimulated by 107% in T3 and 25% in WT at elevated compared to ambient CO2. Pre-treatment acclimation to elevated CO2 occurred in WT resulting in lower Rubisco activity per unit leaf area and reduced stimulation of A. At low temperature, A of WT was similar at elevated and ambient CO2 while stimulation of A by elevated CO2 in T3 was reduced. In addition, at low temperature we measured significantly lower photochemical quenching at elevated CO2 compared to ambient CO2 in both genotypes. NPQTotal was similar (0.80–0.85) among all treatments. However, a larger proportion of NPQTotal was composed of qI,d, the damage subcomponent of the more slowly relaxing NPQ component, qI, in both genotypes at elevated compared to ambient CO2. Greater qI,d, at elevated CO2 during and after the low temperature treatment was not related to pre-treatment differences in total Rubisco activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号