首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High speed supernatants of Xenopus laevis oocyte nuclei efficiently assemble DNA into nucleosomes in vitro under physiological salt conditions. The assembly activity cofractionates with two histone complexes composed of the acidic protein N1/N2 in complex with histones H3 and H4, and nucleoplasmin in complex with histones H2B and H2A. Both histone complexes have been purified and their nucleosome assembly activities have been analysed separately and in combination. While the histones from the N1/N2 complexes are efficiently transferred to DNA and induce supercoils into relaxed circular plasmid DNA, the nucleoplasmin complexes show no supercoil induction, but can also transfer their histones to DNA. In combination, the complexes act synergistically in supercoil induction thereby increasing the velocity and the number of supercoils induced. Electron microscopic analysis of the reaction products shows fully packaged nucleoprotein structures with the typical nucleosomal appearance resulting in a compaction ratio of 2.8 under low ionic strength conditions. The high mobility group protein HMG-1, which is also present in the soluble nuclear homogenate from X. laevis oocytes, is not required for nucleosome core assembly. Fractionation experiments show that the synergistic effect in the supercoiling reaction can be exerted by histones H3 and H4 bound to DNA and the nucleoplasmin complexes alone. This indicates that it is not the synchronous action of both complexes which is required for nucleosome assembly, but that their cooperative action can be resolved into two steps: deposition of H3 and H4 from the N1/N2 complexes onto the DNA and completion of nucleosome core formation by addition of H2B and H2A from the nucleoplasmin complexes.  相似文献   

2.
J A Kleinschmidt  W W Franke 《Cell》1982,29(3):799-809
Oocyte nuclei of Xenopus laevis contain nucleosomal-core histones in large amounts and in a soluble, non-chromatin-bound form. Supernatant fractions (100,000 X g) from isolated nuclei are enriched in complexes containing histones H3 and H4, which are of distinct size (5.6S by sucrose gradient centrifugation, approximate molecular weight of 270,000 by gel filtration) and negatively charged (isoelectric at pH 4.4). These complexes bind to DEAE-Sephacel and can be separated from nucleoplasmin. In diverse fractionation experiments, histones H3 and H4 have been found to comigrate with a pair of polypeptides of molecular weight 110,000 that represent the most acidic major protein present in these nuclei. After enrichment by gel filtration, ion exchange chromatography and electrophoresis, this pair of acidic polypeptides has been the only nonhistone protein detected in the histone-complex fraction. We suggest that in the oocyte nucleus, large proportions of the soluble histones H3 and H4 are not contained in complexes of all four nucleosomal-core histones but are differentially associated with specific, very acidic proteins into distinct 5.6S complexes.  相似文献   

3.
A polypeptide pair designated N1/N2 (Mr 100 000 and 110 000) is an exceptionally acidic and abundant nuclear protein of oocytes of the toad, Xenopus laevis, and is characterized by a pronounced karyophilia. These proteins have been shown to form specific complexes with free, i.e., non-chromatin-bound histones H3 and H4 (Kleinschmidt & Franke, Cell 29 (1982) 799) [3]. In order to study these proteins and their possible counterparts in other species, antibodies were produced in guinea pigs against proteins N1/N2 purified from Xenopus oocyte nuclei. Using gel electrophoresis, peptide map analysis, immunoblotting techniques and immuno fluorescence microscopy the existence of polypeptides identical in Mr value and charge to polypeptide N1 of oocytes was demonstrated in cultured somatic cells of Xenopus laevis, where it was also highly enriched in cell nuclei, although the cellular concentration was much lower than in oocytes. A similar, if not identical protein, was recognized in nuclei of diverse other cell types including hepatocytes, enterocytes, ovarian follicle cells, and Sertoli cells of testis, of Xenopus, Rana temporaria, R. esculenta, Pleurodeles waltlii but not in erythrocytes and later stages of spermiogenesis. When nuclear proteins from oocytes of different amphibian species were examined with these antibodies it was found that the Mr values of N1/N2 proteins were considerably different in different species, ranging from Mr 110 000 to 190 000. Immunoprecipitation and gel electrophoretic analysis under non-denaturing conditions showed that a significant proportion of these proteins was contained in complexes with histones H3 and H4. The results demonstrate that proteins N1/N2 are not special proteins of oocytes of Xenopus laevis but occur in various other cells of diverse amphibian species. The widespread occurrence of these karyophilic proteins indicates that at least one function of these proteins, i.e., selective binding of the arginine-rich histones H3 and H4, is not exclusive to oocytes but may also contribute to the regulation of histone pools and chromatin formation in other cell types.  相似文献   

4.
The nuclear transport of the chromatin remodeling protein nucleoplasmin and chromatin building histones is mediated by importins. Nucleoplasmin (NP) contains a classical bipartite nuclear localization signal (NLS) that is recognized by the importin α/β heterodimer, while histones present multiple NLS-like motifs that are recognized by importin β family members for nuclear targeting. To explore the possibility of a cotransport of histones and their chaperone NP to the nucleus, we have analyzed the assembly of complexes of NP/histones with importins by means of fluorescence anisotropy, centrifugation in sucrose gradients, and isothermal titration calorimetry. Data show that importin α ΔIBB (a truncated form of importin α lacking the autoinhibitory N-terminal domain) and histones (linker, H5, and nucleosomal core, H2AH2B) can simultaneously bind to NP. Analysis of the binding energetics reveals an enthalpy-driven formation of high affinity ternary, NP/Δα/H5 and NP/Δα/H2AH2B, complexes. We find that different amount of importin α molecules can be loaded on NP/histone complexes dependent on the histone type, linker or core, and the amount of bound histones. We further demonstrate that NP/H5 complexes can also incorporate importin α/β, thus forming quaternary NP/histones/α/β complexes that might represent a putative coimport pathway for nuclear import of histones and their chaperone protein NP, enhancing the histone import efficiency.  相似文献   

5.
Nucleoplasmin is one of the most abundant proteins in Xenopus laevis oocytes, and it has been involved in the chromatin remodeling that takes place immediately after fertilization. This molecule has been shown to be responsible for the removal of the sperm-specific proteins and deposition of somatic histones onto the male pronuclear chromatin. To better understand the latter process, we have used sedimentation velocity, sedimentation equilibrium, and sucrose gradient fractionation analysis to show that the pentameric form of nucleoplasmin binds to a histone octamer equivalent consisting of equal amounts of the four core histones, H2A, H2B, H3, and H4, without any noticeable preference for any of these proteins. Removal of the histone N-terminal "tail" domains or the major C-terminal polyglutamic tracts of nucleoplasmin did not alter these binding properties. These results indicate that interactions other than those electrostatic in nature (likely hydrophobic) also play a critical role in the formation of the complex between the negatively charged nucleoplasmin and positively charged histones. Although the association of histones with nucleoplasmin may involve some ionic interactions, the interaction process is not electrostatically driven.  相似文献   

6.
S M Dilworth  S J Black  R A Laskey 《Cell》1987,51(6):1009-1018
The composition and function of histone storage complexes of Xenopus eggs have been investigated using monoclonal antibodies. We show that core histones are contained in two distinct complexes: H2A and H2B are associated with nucleoplasmin, and H3 and H4 are associated with nuclear protein N1. Immunodepletion analyses demonstrate that both complexes are required for nucleosome core assembly by extracts in vitro, the product being a simple sum of the histones from each complex. In addition, the majority of the stored H2A is shown to be an unusual form that migrates close to the position of H3 by SDS-polyacrylamide gel electrophoresis and resembles a variant synthesized in a cell-cycle-independent manner in mammalian cells.  相似文献   

7.
Amounts of soluble histones in cells are tightly regulated to ensure supplying them for the newly synthesized DNA and preventing the toxic effect of excess histones. Prior to incorporation into chromatin, newly synthesized histones H3 and H4 are highly acetylated in pre-deposition complex, wherein H4 is di-acetylated at Lys-5 and Lys-12 residues by histone acetyltransferase-1 (Hat1), but their role in histone metabolism is still unclear. Here, using chicken DT 40 cytosolic extracts, we found that histones H3/H4 and their chaperone Asf1, including RbAp48, a regulatory subunit of Hat1 enzyme, were associated with Hat1. Interestingly, in HAT1-deficient cells, cytosolic histones H3/H4 fractions on sucrose gradient centrifugation, having a sedimentation coefficient of 5–6S in DT40 cells, were shifted to lower molecular mass fractions, with Asf1. Further, sucrose gradient fractionation of semi-purified tagged Asf1-complexes showed the presence of Hat1, RbAp48 and histones H3/H4 at 5–6S fractions in the complexes. These findings suggest the possible involvement of Hat1 in regulating cytosolic H3/H4 pool mediated by Asf1-containing cytosolic H3/H4 pre-deposition complex.  相似文献   

8.
We have fractionated the whole cell extract of Xenopus oocytes (oocyte S-150) and isolated the endogenous components required for DNA supercoiling and nucleosome formation. Histone H2B and the three oocyte-specific H2A proteins were purified as free histones. Histones H3 and H4 were purified 100-fold in a complex with the acidic protein N1. In the presence of DNA topoisomerase I or II, histone H3/H4.N1 complexes supercoil DNA in a reaction that is inhibited by Mg2+, and this inhibition is relieved by NTPs. The supercoiling reaction induced by H3/H4.N1 complexes is enhanced by free histone H2A-H2B dimers, which by themselves do not supercoil DNA. Nuclease digestions and protein analyses indicate that H3/H4.N1 complexes form subnucleosomal particles containing histones H3 and H4. Nucleosomes containing 146-base pair DNA and the four histones are formed when histones H2A and H2B complement the reaction.  相似文献   

9.
The nucleoplasmin family of histone chaperones is a key player in governing the dynamic architecture of chromatin, thereby regulating various DNA-templated processes. The crystal structure of the N-terminal domain of Arabidopsis thaliana FKBP43 (AtFKBP43), an FK506-binding immunophilin protein, revealed a characteristic nucleoplasmin fold, thus confirming it to be a member of the FKBP nucleoplasmin class. Small-Angle X-ray Scattering (SAXS) analyses confirmed its pentameric nature in solution, and additional studies confirmed the nucleoplasmin fold to be highly stable. Unlike its homolog AtFKBP53, the AtFKBP43 nucleoplasmin core domain could not interact with histones and required the acidic arms, C-terminal to the core, for histone association. However, SAXS generated low-resolution envelope structure, ITC, and AUC results revealed that an AtFKBP43 pentamer with C-terminal extensions interacts with H2A/H2B dimer and H3/H4 tetramer in an equimolar ratio, like AtFKBP53. Put together, AtFKBP43 belongs to a hitherto unreported subclass of FKBP nucleoplasmins that requires the C-terminal acidic stretches emanating from the core domain for histone interaction.  相似文献   

10.
Existence of a Mr = 56,000 polypeptide associated with 10S DNA polymerase alpha was shown by production of a monoclonal anti-calf thymus 10S DNA polymerase alpha antibody secreted from a hybridoma line named 3H1. The antibody bound three polypeptides with Mr = 180,000, 56,000 and 32,000 in hydroxylapatite fraction of 10S DNA polymerase alpha by immunoblot. The antibody co-precipitated the polypeptides with the large polypeptide (Mr = 150,000-140,000) of 10S DNA polymerase alpha with the aid of second antibody. Among three polypeptides, the Mr = 56,000 polypeptide was co-purified with DNA polymerase alpha through DNA-cellulose chromatography and repeated sucrose rate-zonal centrifugations. The Mr = 56,000 polypeptide was still associated with 10S DNA polymerase alpha after second sucrose rate-zonal centrifugation, but the amount of it was reduced. The polypeptide was banded at pH 7.2-8.0 and displayed microheterogeneity in respect of isoelectric point by isoelectrofocusing with 7 M urea, and showed weak DNA-binding property after blotting onto a nitrocellulose. The antibody against the polypeptide precipitated DNA polymerase alpha from human, rat, and mouse, and Mr = 56,000 and 32,000 polypeptides were detected in these DNA polymerase alpha fractions by immunoblot. These results suggest that the polypeptide with Mr = 56,000 may take part in the DNA polymerase reaction.  相似文献   

11.
12.
We previously identified and purified a nucleolar phosphoprotein, nucleophosmin/B23, as a stimulatory factor for replication from the adenovirus chromatin. We show here that nucleophosmin/B23 functions as a histone chaperone protein such as nucleoplasmin, TAF-I, and NAP-I. Nucleophosmin/B23 was shown to bind to histones, preferentially to histone H3, to mediate formation of nucleosome, and to decondense sperm chromatin. These activities of B23 were dependent on its acidic regions as other histone chaperones, suggesting that B23/nucleophosmin is a member of histone chaperone proteins.  相似文献   

13.
Fertilization requires decondensation of promatine-condensed sperm chromatin, a dynamic process serving as an attractive system for the study of chromatin reprogramming. Nucleoplasmin is a key factor in regulating nucleosome assembly as a chaperone during fertilization process. However, knowledge on nucleoplasmin in chromatin formation remains elusive. Herein, magnetic tweezers (MT) and a chromatin assembly system were used to study the nucleoplasmin-mediated DNA decondensation/condensation at the single-molecular level in vitro. We found that protamine induces DNA condensation in a stepwise manner. Once DNA was condensed, nucleoplasmin, polyglutamic acid, and RNA could remove protamine from the DNA at different rates. The affinity binding of the different polyanions with protamine suggests chaperone-mediated chromatin decondensation activity occurs through protein–protein interactions. After decondensation, both RNA and polyglutamic acid prevented the transfer of histones onto the naked DNA. In contrast, nucleoplasmin is able to assist the histone transfer process, even though it carries the same negative charge as RNA and polyglutamic acid. These observations imply that the chaperone effects of nucleoplasmin during the decondensation/condensation process may be driven by specific spatial configuration of its acidic pentamer structure, rather than by electrostatic interaction. Our findings offer a novel molecular understanding of nucleoplasmin in sperm chromatin decondensation and subsequent developmental chromatin reprogramming at individual molecular level.  相似文献   

14.
Mouse nucleoplasmin M.NPM2 was recombinantly expressed and the protein consisting of the complete sequence was purified and characterized. Similar to its Xenopus laevis X.NPM2 counterpart, the protein forms stable pentameric complexes and exhibits an almost undistinguishable hydrodynamic ionic strength-dependent unfolding behavior. The interaction of N.PM2 with histones and mouse P1/P2 protamines revealed that these chromosomal proteins bind preferentially to the distal part of the nucleoplasmin pentamer. Moreover, the present work highlights the critical role played by histones H2B and H4 in the association of the histone H2A-H2B dimers and histone octamer with nucleoplasmin.  相似文献   

15.
16.
The composition of nucleosomes at an intermediate stage of male pronucleus formation was determined in sea urchins. Nucleosomes were isolated from zygotes harvested 10 min post-insemination, whole nucleoprotein particles were obtained from nucleus by nuclease digestion, and nucleosomes were subsequently purified by a sucrose gradient fractionation. The nucleosomes derived from male pronucleus were separated from those derived from female pronucleus by immunoadsorption to antibodies against sperm specific histones (anti-SpH) covalently bound to Sepharose 4B (anti-SpH-Sepharose). The immunoadsorbed nucleosomes were eluted, and the histones were analyzed by Western blots. Sperm histones (SpH) or alternatively, the histones from unfertilized eggs (CS histone variants), were identified with antibodies directed against each set of histones. It was found that these nucleosomes are organized by a core formed by sperm histones H2A and H2B combined with two major CS histone variants. Such a hybrid histone core interacts with DNA fragments of approximately 100 bp. It was also found that these atypical nucleosome cores are subsequently organized in a chromatin fiber that exhibits periodic nuclease hypersensitive sites determined by DNA fragments of 500 bp of DNA. It was found that these nucleoprotein particles were organized primarily by the hybrid nucleosomes described above. We postulate that this unique chromatin organization defines an intermediate stage of male chromatin remodeling after fertilization.  相似文献   

17.
In avian erythrocyte chromatin, heparin interacts differentially with H1, H5 and the nucleosomal core histones. In non-erythroid cells, a partial extraction of H2A, H2B and H1 yields H3/H4/DNA complexes and particles of unchanged nucleosomal composition. The assay system for this heparin effect includes sucrose gradients, formaldehyde fixation and cesium chloride gradient centrifugation. A comparison of avian erythrocyte nucleosomes with chromatin subunits from precursor cells shows that H5 interferes with the heparin effect whereas a removal of H5 renders the core histones accessible to the polyanion.  相似文献   

18.
19.
DNA- and RNA-binding proteins of chromatin from Escherichia coli   总被引:3,自引:0,他引:3  
The different proteins present in chromatin of Escherichia coli have been analyzed by a variety of techniques. The chromatin was isolated using a previously published procedure (Sj?stad, K., Fadnes, P., Krüger, P.G. Lossius, I. and Kleppe, K. (1982) J. Gen. Microbiol. 128, 3037) and solubilized by the action of micrococcal nuclease or DNAase I. The DNA-protein and RNA-protein complexes thus obtained were purified by sucrose gradient centrifugation and isopycnic gradient centrifugation in metrizamide in low ionic strength. The protein: DNA ratio of the DNA-protein complexes was estimated from the latter method and found to be approx. 1.75. The protein components were analyzed further by one- and two-dimensional gel electrophoresis. Approx. 15 major polypeptides were detected in the DNA-protein complex, whereas 10 were present in the RNA-protein complex. The majority of the polypeptides in both complexes had acidic isoelectric pH. The polypeptides in the two complexes differed markedly and only two polypeptides, having molecular weights of 57,000 and 37,000, respectively, were found to be common in both complexes. In agreement with earlier studies, the basic protein HU was not present in the DNA-protein complex. Affinity studies of the proteins from chromatin using DNA- and RNA-Sepharose columns in general confirmed the above conclusions. The two-dimensional gel electrophoretic patterns of the proteins in the different complexes were compared with those of proteins in the inner and outer membranes. Only one of the major polypeptides present in the inner membrane, having a molecular weight of 57,000, was enriched in the DNA-protein complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号