首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
L Ke  R Liu  B Chu  X Yu  J Sun  B Jones  G Pan  X Cheng  H Wang  S Zhu  Y Sun 《PloS one》2012,7(7):e39974
Cotton plants engineered for resistance to the herbicides, glyphosate or glufosinate have made a considerable impact on the production of the crop worldwide. In this work, embryogenic cell cultures derived from Gossypium hirsutum L. cv Coker 312 hypocotyl callus were transformed via Agrobacterium tumefaciens with the rice cytochrome P450 gene, CYP81A6 (bel). In rice, bel has been shown to confer resistance to both bentazon and sulfanylurea herbicides. Transformed cells were selected on a liquid medium supplemented alternately or simultaneously with kanamycin (50mg/L) and bentazon (4.2 μmol). A total of 17 transgenic cotton lines were recovered, based on the initial resistance to bentazon and on PCR detection of the bel transgene. Bel integration into the cotton genome was confirmed by Southern blot and expression of the transgene was verified by RT-PCR. In greenhouse and experimental plot trials, herbicide (bentazon) tolerance of up to 1250 mg/L was demonstrated in the transgenic plants. Transgenic lines with a single copy of the bel gene showed normal Mendelian inheritance of the characteristic. Importantly, resistance to bentazon was shown to be stably incorporated in the T1, T2 and T3 generations of self-fertilised descendents and in plants outcrossed to another upland cotton cultivar. Engineering resistance to bentazon in cotton through the heterologous expression of bel opens the possibility of incorporating this trait into elite cultivars, a strategy that would give growers a more flexible alternative to weed management in cotton crops.  相似文献   

2.
Liu C  Li J  Gao J  Shen Z  Lu BR  Lin C 《PloS one》2012,7(2):e31625

Background

The major challenge of cultivating genetically modified (GM) rice (Oryza sativa) at the commercial scale is to prevent the spread of transgenes from GM cultivated rice to its coexisting weedy rice (O. sativa f. spontanea). The strategic development of GM rice with a built-in control mechanism can mitigate transgene spread in weedy rice populations.

Methodology/Principal Findings

An RNAi cassette suppressing the expression of the bentazon detoxifying enzyme CYP81A6 was constructed into the T-DNA which contained two tightly linked transgenes expressing the Bt insecticidal protein Cry1Ab and the glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), respectively. GM rice plants developed from this T-DNA were resistant to lepidopteran pests and tolerant to glyphosate, but sensitive to bentazon. The application of bentazon of 2000 mg/L at the rate of 40 mL/m2, which is approximately the recommended dose for the field application to control common rice weeds, killed all F2 plants containing the transgenes generated from the Crop-weed hybrids between a GM rice line (CGH-13) and two weedy rice strains (PI-63 and PI-1401).

Conclusions/Significance

Weedy rice plants containing transgenes from GM rice through gene flow can be selectively killed by the spray of bentazon when a non-GM rice variety is cultivated alternately in a few-year interval. The built-in control mechanism in combination of cropping management is likely to mitigate the spread of transgenes into weedy rice populations.  相似文献   

3.
The world market for the first generation of transgenic crops (insecticidal and herbicide-resistant plants) has been expanding since 2012, mostly owing to developing countries. The cautious attitude in the majority of economically developed countries to the first-generation transgenic agricultural crops is due to several objective circumstances: the negative impact of insecticidal Bt-crops on useful and endangered invertebrate species, the allergenic properties of Bt-toxin for humans, toxicity of glyphosate to humans and animals, the widely spreading resistance of weeds to glyphosate, the increasing resistance of–harmful–insects to insecticidal Bt-plants, the danger of–genetic pollution–of aboriginal plant varieties, and the flow of herbicide resistance traits to weed plants.  相似文献   

4.
Exploiting novel endogenous glyphosate-tolerant alleles is highly desirable and has promising potential for weed control in rice breeding. Here,through fusions of different effective cytosine and adenine deaminases with nCas9-NG, we engineered an effective surrogate two-component composite base editing system, STCBE-2, with improved C-to-T and A-to-G base editing efficiency and expanded the editing window. Furthermore,we targeted a rice endogenous OsEPSPS gene for artificial evolution through ST...  相似文献   

5.
The ipt-type MAT vector uses the ipt gene for regeneration of marker-free transgenic plants. However, it was pointed out that this system was not suitable for most economically important crops that regenerated through auxin-dependent embryogenesis. We report a single-step transformation system of rice using MAT vector. When we transformed scutellum tissues of 5 days pre-cultured rice seeds, marker-free transgenic rice plants directly regenerated from 25.5% infected scutellum tissues without forming ipt-intermediates within 4 weeks after an infection. Excision of the ipt gene caused the regeneration of marker-free transgenic rice plants through embryogenic tissues. Therefore, this system needs no selective agent and no sexual crossing for identification of transgenic plants not containing a selectable marker gene. This system is highly effective for generation of marker-free transgenic plants in economically important crops.  相似文献   

6.
The objective of this study was to assess the frequency of pollen-mediated gene flow from a transgenic rice line, harbouring the gusA and the bar genes encoding respectively, -glucuronidase and phosphinothricin acetyl transferase as markers, to the red rice weed and conventional rice in the Spanish japonica cultivar Senia. A circular field trial design was set up to investigate the influence of the wind on the frequency of pollination of red rice and conventional rice recipient plants with the transgenic pollen. Frequencies of gene flow based on detection of herbicide resistant, GUS positive seedlings among seed progenies of recipient plants averaged over all wind directions were 0.036 ± 0.006% and 0.086 ± 0.007 for red rice and conventional rice, respectively. However, for both red rice and conventional rice, a clear asymmetric distribution was observed with pollination frequency favoured in plants placed under the local prevailing winds. Southern analyses confirmed the hemizygous status and the origin of the transgenes in progenies of surviving, GUS positive plants. Gene flow detected in conventional rice planted at 1, 2, 5 and 10 m distance revealed a clear decrease with increasing distance which was less dramatic under the prevailing wind direction. Consequences of these findings for containment of gene flow from transgenic rice crops to the red rice weed are discussed. The precise determination of the local wind conditions at flowering time and pollination day time appear to be of primary importance for setting up suitable isolation distances.  相似文献   

7.
8.
9.
In this study, we simulate a transgenic rice crop highly infested with red rice to examine transgene transfer from a transgenic line (A2504) resistant to glufosinate ammonium to cohabitant red rice. The red rice was sown along with the transgenic line at the highest density found in naturally infested crops in the region. Agricultural practices similar to those used to control red rice infestation in northern Italy rice fields were used to reproduce the local rice production system. During the first 2 years, the field was treated with herbicide at the appropriate time; in the first year the dosage of herbicide was three times the recommended amount. In this first year, detectable red rice plants that escaped herbicide treatment were manually removed. Nevertheless, two herbicide‐resistant hybrid plants (named 101 and 104) were identified in the experimental field during the second year of cultivation. Phenotypic and molecular characterisation suggests the hybrid nature of these two plants, deriving from crossing events involving A2504, respectively, with red rice (plant 101) and the buffer cultivar Gladio (plant 104). The progeny of two subsequent generations of the two plants were examined and the presence of the transgene detected, indicating stable transfer of the transgene across generations. In conclusion, despite control methods, red rice progeny tolerant to the herbicide can be expected following use of transgenic rice and, consequently, difficulties in controlling this weed with chemicals will emerge in a relatively short time.  相似文献   

10.
Glyphosate herbicide-resistant crop plants, introduced commercially in 1994, now represent approximately 85% of the land area devoted to transgenic crops. Herbicide resistance in commercial glyphosate-resistant crops is due to expression of a variant form of a bacterial 5-enolpyruvylshikimate-3-phosphate synthase with a significantly decreased binding affinity for glyphosate at the target site of the enzyme. As a result of widespread and recurrent glyphosate use, often as the only herbicide used for weed management, increasing numbers of weedy species have evolved resistance to glyphosate. Weed resistance is most often due to changes in herbicide translocation patterns, presumed to be through the activity of an as yet unidentified membrane transporter in plants. To provide insight into glyphosate resistance mechanisms and identify a potential glyphosate transporter, we screened Escherichia coli genomic DNA for alternate sources of glyphosate resistance genes. Our search identified a single non-target gene that, when overexpressed in E. coli and Pseudomonas, confers high-level glyphosate resistance. The gene, yhhS, encodes a predicted membrane transporter of the major facilitator superfamily involved in drug efflux. We report here that an alternative mode of glyphosate resistance in E. coli is due to reduced accumulation of glyphosate in cells that overexpress this membrane transporter and discuss the implications for potential alternative resistance mechanisms in other organisms such as plants.  相似文献   

11.
In recent years, concerns about the use of glyphosate‐resistant crops have increased because of glyphosate residual levels in plants and development of herbicide‐resistant weeds. In spite of identifying glyphosate‐detoxifying genes from microorganisms, the plant mechanism to detoxify glyphosate has not been studied. We characterized an aldo‐keto reductase gene from Pseudomonas (PsAKR1) and rice (OsAKR1) and showed, by docking studies, both PsAKR1 and OsAKR1 can efficiently bind to glyphosate. Silencing AKR1 homologues in rice and Nicotiana benthamiana or mutation of AKR1 in yeast and Arabidopsis showed increased sensitivity to glyphosate. External application of AKR proteins rescued glyphosate‐mediated cucumber seedling growth inhibition. Regeneration of tobacco transgenic lines expressing PsAKR1 or OsAKRI on glyphosate suggests that AKR can be used as selectable marker to develop transgenic crops. PsAKR1‐ or OsAKRI‐expressing tobacco and rice transgenic plants showed improved tolerance to glyphosate with reduced accumulation of shikimic acid without affecting the normal photosynthetic rates. These results suggested that AKR1 when overexpressed detoxifies glyphosate in planta.  相似文献   

12.
Plant biotechnology provides a powerful solution to boost agricultural productivity and nutritional quality. The development process of a transgenic crop includes multiple steps that consist of gene isolation for a target trait, generation of T0 transgenic crops, characterization of the transgene, evaluation of agronomic performance of transgenic crops, selection of elite transgenic lines and assessment of target trait efficacy. Here, we developed elite insect-resistant transgenic rice plants that may satisfy the standards of biosafety assessments. We made a construct with the insecticide cry1Ac gene for a target trait. A total of 310 T0 transgenic lines were generated and underwent extensive analysis. We selected four T3 lines that contain a single-copy transgene inserted into intergenic regions of the rice genome. During this process, we critically analyzed the transgenic lines with five checkpoints that include single copy of transgene, its integration into intergenic region, clean T-DNA arrangement, stability of transgene through generations and substantial equivalence of transgenic plants in agronomic traits other than insect resistance. Consequently, we obtained insect-resistant transgenic rice plants that can be used in practical agriculture.  相似文献   

13.
Bentazon and sulfonylurea are two different classes of herbicides that have been widely used to kill broad-leaf weeds in rice fields. A cytochrome P450 gene, CYP81A6, encoding a monooxygenase has been previously identified to confer resistance to these two classes of herbicides in wild-type rice. In this study, we introduced the rice CYP81A6 gene into Arabidopsis and tobacco plants to test the possibility of engineering tolerance to these two types of herbicides in other susceptible plants. Arabidopsis and tobacco plants expressing CYP81A6 showed tolerance to both bentazon and bensulfuron-methyl (BSM), a widely applied sulfonylurea herbicide. The optimal concentrations of bentazon and BSM for the selection of CYP81A6 transgenic plants were also determined. In addition, we also demonstrated that CYP81A6 can be used as a selection marker to effectively screen for positive transgenic Arabidopsis plants. The selection efficiency of CYP81A6 was comparable to that of the bar gene in Arabidopsis. These results suggest that CYP81A6 can not only be used to produce transgenic plants tolerant to both bentazon and sulfonylureas, but that it can also be used as a novel plant-derived selection marker in plant transformation.  相似文献   

14.
The researches were conducted in order to observe the behaviour of conventional and glyphosate resistant transgenic maize to different weed control methods. In this paper, the obtained results are presented. The study was conducted in experimental years 2008-2009 in the frame of Didactical Station USAMVB Timisoara. In order to conduct this study, 4 variants cultivated with conventional maize DKC 5143 and 8 variants cultivated with transgenic maize DKC-MON88017 with resistance against Diabrotica virgifera virgifera and to glyphosate. The efficacy of weed control methods was assessed, as well as the herbicide selectivity to cultivated maize hybrid. The weed coverage degree in control plot (V2) was 304 weeds/sqm in the first year and 465 weeds/sqm in the second year. In the variants cultivated with transgenic maize the control was up to 90% much more than control percent achieved in conventional variants. Although, in order to achieve an efficient control (higher than 95%), even to transgenic maize, two glyphosate sequential treatments has to be done. The yield results were positive correlated to the different control methods. However those were affected by climatic conditions recorded in experimental years.  相似文献   

15.
Transgene spreading is a major concern in cultivating genetically modified (GM) corn. Cross-pollination may cause the spread of transgenes from GM cornfields to conventional fields. Occasionally, seed lot contamination, volunteers, mixing during sowing, harvest, and trade can also lead to transgene escape. Obviously, new biological confinement technologies are highly desired to mitigate transgene spreading in addition to physical separation and isolation methods. In this study, we report the development of a built-in containment method to mitigate transgene spreading in corn. In this method, an RNAi cassette for suppressing the expression of the nicosulfuron detoxifying enzyme CYP81A9 and an expression cassette for the glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene G10 were constructed and transformed into corn via Agrobacterium-mediated transformation. The GM corn plants that were generated were found to be sensitive to nicosulfuron but resistant to glyphosate, which is exactly the opposite of conventional corn. Field tests demonstrated that GM corn plants with silenced CYP81A9 could be killed by applying nicosulfuron at 40 g/ha, which is the recommended dose for weed control in cornfields. This study suggests that this built-in containment method for controlling the spread of corn transgenes is effective and easy to implement.  相似文献   

16.
Glyphosate has been used globally as a safe herbicide for weed control. It inhibits 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase (AroA), which is a key enzyme in the aromatic amino acid biosynthetic pathway in microorganisms and plants. A Pseudomonas putida strain, 4G-1, was isolated from a soil heavily contaminated by glyphosate in China. Its AroA-encoding gene (aroA) has been cloned, sequenced, and expressed in Escherichia coli. Phylogenetic analysis revealed that this AroA belongs neither to class I nor to class II AroA enzymes. When compared with E. coli AroA, 4G-1 AroA shows similar values for K(m)[PEP], K(m)[S3P], and specific enzyme activity. Moreover, 4G-1 AroA exhibits high tolerance to glyphosate, which indicates a protein with a high potential for structural and functional studies of AroA in general and its potential usage for the generation of transgenic crops resistant to the herbicide.  相似文献   

17.
Evaluation of transgenic crops under field conditions is a fundamental step for the production of genetically engineered varieties. In order to determine if there is pollen dispersal from transgenic to nontransgenic soybean plants, a field release experiment was conducted in the Cerrado region of Brazil. Nontransgenic plants were cultivated in plots surrounding Roundup Ready transgenic plants carrying the cp4 epsps gene, which confers herbicide tolerance against glyphosate herbicide, and pollen dispersal was evaluated by checking for the dominant gene. The percentage of cross-pollination was calculated as a fraction of herbicide-tolerant and -nontolerant plants. The greatest amount of transgenic pollen dispersion was observed in the first row, located at one meter from the central (transgenic) plot, with a 0.52% average frequency. The frequency of pollen dispersion decreased to 0.12% in row 2, reaching 0% when the plants were up to 10 m distance from the central plot. Under these conditions pollen flow was higher for a short distance. This fact suggests that the management necessary to avoid cross-pollination from transgenic to nontransgenic plants in the seed production fields should be similar to the procedures currently utilized to produce commercial seeds.  相似文献   

18.
A peptide from insects protects transgenic tobacco from a parasitic weed   总被引:1,自引:0,他引:1  
Parasitic plants present some of the most intractable weed problems for agriculture in much of the world. Species of root parasites such as Orobanche can cause enormous yield losses, yet few control measures are effective and affordable. An ideal solution to this problem is the development of parasite-resistant crops, but this goal has been elusive for most susceptible crops. Here we report a mechanism for resistance to the parasitic angiosperm Orobanche based on expression of sarcotoxin IA in transgenic tobacco. Sarcotoxin IA is a 40-residue peptide with antibiotic activity, originally isolated from the fly, Sarcophaga peregrina. The sarcotoxin IA gene was fused to an Orobanche-inducible promoter, HMG2, which is induced locally in the host root at the point of contact with the parasite, and used to transform tobacco. The resulting transgenic plants accumulated more biomass than non-transformed plants in the presence of parasites. Furthermore, plants expressing sarcotoxin IA showed enhanced resistance to O. aegyptiaca as evidenced by abnormal parasite development and higher parasite mortality after attachment as compared to non-transformed plants. The transgenic plants were similar in appearance to non-transformed plants suggesting that sarcotoxin IA is not detrimental to the host.  相似文献   

19.
The cbnA gene encoding the chlorocatechol dioxygenase gene from Ralstonia eutropha NH9 was introduced into rice plants. The cbnA gene was expressed in transgenic rice plants under the control of a modified cauliflower mosaic virus 35S promoter. Western blot analysis using anti-CbnA protein indicated that the cbnA gene was expressed in leaf tissue, roots, culms, and seeds. Transgenic rice calluses expressing the cbnA gene converted 3-chlorocatechol to 2-chloromucote efficiently. Growth and morphology of the transgenic rice plants expressing the cbnA gene were not distinguished from those of control rice plants harboring only a Ti binary vector. It is thus possible to breed transgenic plants that degrade chloroaromatic compounds in soil and surface water.  相似文献   

20.
One of the most discussed environmental effects associated with the use of transgenic plants is the flow of genes to plants in the environment. The flow of genes may occur through pollen since it is the reproductive system that is designed for gene movement. Pollen-mediated gene escape is hard to control in mating plants. Pollen from a wind pollinator can move over distances of more than 1000 m. To investigate the efficiency of transgenic pollen movement under realistic environmental conditions, the use of bait plants might be an effective tool. In this study, cytoplasmic male-sterile (CMS) sugar beets were tested with regard to their potential for monitoring transgene flow. As the pollen source, transgenic sugar beets were used that express recombinant DNA encoding viral (beet necrotic yellow vein virus) resistance, and antibiotic (kanamycin) and herbicide (glufosinate) tolerance genes. In a field trial, the effectiveness of a hemp (Cannabis sativa) stripe containment strategy was tested by measuring the frequency of pollinated CMS bait plants placed at different distances and directions from a transgenic pollen source. The results demonstrated the ineffectiveness of the containment strategy. Physiological and molecular tests confirmed the escape and production of transgenic offspring more than 200 m behind the hemp containment. Since absolute containment is unlikely to be effective, the CMS-bait plant detection system is a useful tool for other monitoring purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号