首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CPT1c is a carnitine palmitoyltransferase 1 (CPT1) isoform that is expressed only in the brain. The enzyme has recently been localized in neuron mitochondria. Although it has high sequence identity with the other two CPT1 isoenzymes (a and b), no CPT activity has been detected to date. Our results indicate that CPT1c is expressed in neurons but not in astrocytes of mouse brain sections. Overexpression of CPT1c fused to the green fluorescent protein in cultured cells demonstrates that CPT1c is localized in the endoplasmic reticulum rather than mitochondria and that the N-terminal region of CPT1c is responsible for endoplasmic reticulum protein localization. Western blot experiments with cell fractions from adult mouse brain corroborate these results. In addition, overexpression studies demonstrate that CPT1c does not participate in mitochondrial fatty acid oxidation, as would be expected from its subcellular localization. To identify the substrate of CPT1c enzyme, rat cDNA was overexpressed in neuronal PC-12 cells, and the levels of acylcarnitines were measured by high-performance liquid chromatography-mass spectrometry. Palmitoylcarnitine was the only acylcarnitine to increase in transfected cells, which indicates that palmitoyl-CoA is the enzyme substrate and that CPT1c has CPT1 activity. Microsomal fractions of PC-12 and HEK293T cells overexpressing CPT1c protein showed a significant increase in CPT1 activity of 0.57 and 0.13 nmol.mg(-1).min(-1), respectively, which is approximately 50% higher than endogenous CPT1 activity. Kinetic studies demonstrate that CPT1c has similar affinity to CPT1a for both substrates but 20-300 times lower catalytic efficiency.  相似文献   

2.
The effects of prolonged ethanol feeding on both carnitine palmitoyltransferase I activity and enzyme sensitivity to inhibition by malonyl-CoA were studied in rat liver, heart, skeletal muscle and kidney cortex mitochondria. Heart and skeletal muscle enzymes showed the highest specific activity and sensitivity to malonyl-CoA. Carnitine palmitoyltransferase I in extrahepatic tissues showed no changes on ethanol feeding. Only the liver enzyme activity was altered after long term ethanol administration, by suffering a progressive decrease in activity and a parallel increase in sensitivity to malonyl-CoA. These alterations reversed after 10 days of ethanol withdrawal. These results are discussed in relation to the control of carnitine palmitoyltransferase I and the effects of ethanol on fatty acid metabolism.  相似文献   

3.
Administration of lovastatin to male, Sprague-Dawley rats by addition of the drug to the normal chow diet caused a two-fold increase in the activity of the hepatic mitochondrial outer carnitine palmitoyltransferase, but lovastatin apparently did not affect the sensitivity of the outer carnitine palmitoyltransferase to inhibition by malonyl-CoA. There was also no effect of lovastatin on the activity of the hepatic mitochondrial inner carnitine palmitoyltransferase. Feeding of cholestyramine to rats did not affect either the mitochondrial outer carnitine palmitoyltransferase or the mitochondrial inner carnitine palmitoyltransferase.  相似文献   

4.
Hypoglycemic sulfonylureas such as glibenclamide have been widely used to treat type 2 diabetic patients for 40 yr, but controversy remains about their mode of action. The widely held view is that they promote rapid insulin exocytosis by binding to and blocking pancreatic beta-cell ATP-dependent K+ (KATP) channels in the plasma membrane. This event stimulates Ca2+ influx and sets in motion the exocytotic release of insulin. However, recent reports show that >90% of glibenclamide-binding sites are localized intracellularly and that the drug can stimulate insulin release independently of changes in KATP channels and cytoplasmic free Ca2+. Also, glibenclamide specifically and progressively accumulates in islets in association with secretory granules and mitochondria and causes long-lasting insulin secretion. It has been proposed that nutrient insulin secretagogues stimulate insulin release by increasing formation of malonyl-CoA, which, by blocking carnitine palmitoyltransferase 1 (CPT-1), switches fatty acid (FA) catabolism to synthesis of PKC-activating lipids. We show that glibenclamide dose-dependently inhibits beta-cell CPT-1 activity, consequently suppressing FA oxidation to the same extent as glucose in cultured fetal rat islets. This is associated with enhanced diacylglycerol (DAG) formation, PKC activation, and KATP-independent glibenclamide-stimulated insulin exocytosis. The fat oxidation inhibitor etomoxir stimulated KATP-independent insulin secretion to the same extent as glibenclamide, and the action of both drugs was not additive. We propose a mechanism in which inhibition of CPT-1 activity by glibenclamide switches beta-cell FA metabolism to DAG synthesis and subsequent PKC-dependent and KATP-independent insulin exocytosis. We suggest that chronic CPT inhibition, through the progressive islet accumulation of glibenclamide, may explain the prolonged stimulation of insulin secretion in some diabetic patients even after drug removal that contributes to the sustained hypoglycemia of the sulfonylurea.  相似文献   

5.
Effects of non-esterified fatty acids (FAs) are accentuated when applied together with elevated glucose through preferential use of glucose as fuel, which leads to decreased oxidation of FAs. We examined how over-expression of the mitochondrial FA transporter carnitine palmitoyltransferase 1 (CPT1) affects glucose-stimulated insulin secretion (GSIS), apoptosis and ER stress in INS-1E cells cultured in the presence of elevated levels of glucose and palmitate. INS-1E cells were infected with Tet-ON regulated adenovirus containing CPT1 and cultured for 48 h in the presence of 0.5 mM palmitate and 20 mM glucose. Over-expressing CPT1 lowered basal insulin secretion in a dose-dependent manner thereby improving GSIS from INS-1E cells. Also, apoptosis was alleviated and ER-stress markers p-eIF2α and CHOP were decreased in cells over-expressing CPT1. We conclude that regulated over-expression of CPT1 is beneficial for glucolipotoxic beta-cells.  相似文献   

6.
Starvation (24h) increased the maximum activity of carnitine palmitoyltransferase 1 in rat liver and increased the concentration of malonyl-CoA required to cause 50% inhibition of the enzyme (I50). Re-feeding (24h) with a standard cube diet or a high-carbohydrate diet reversed both of these changes, whereas re-feeding with a high-fat diet did not. Administration of cycloheximide (200 micrograms/100 g body wt.) blocked the increases in carnitine palmitoyltransferase 1 activity and I50 on starvation. It is suggested that increase in carnitine palmitoyltransferase 1 activity in starvation may involve synthesis of new enzyme.  相似文献   

7.
Carnitine palmitoyltransferase I (CPT I), which is expressed as two distinct isoforms in liver (alpha) and muscle (beta), catalyzes the rate-limiting step in the transport of fatty acid into the mitochondria. Malonyl-CoA, a potent inhibitor of CPT I, is considered a key regulator of fatty acid oxidation in both tissues. Still unanswered is how muscle beta-oxidation proceeds despite malonyl-CoA concentrations that exceed the IC(50) for CPT Ibeta. We evaluated malonyl-CoA-suppressible [(14)C]palmitate oxidation and CPT I activity in homogenates of red (RG) and white (WG) gastrocnemius, soleus (SOL), and extensor digitorum longus (EDL) muscles. Adding 10 microM malonyl-CoA inhibited palmitate oxidation by 29, 39, 60, and 89% in RG, SOL, EDL, and WG, respectively. Thus malonyl-CoA resistance, which correlated strongly (0.678) with absolute oxidation rates (RG > SOL > EDL > WG), was greater in red than in white muscles. Similarly, malonyl-CoA-resistant palmitate oxidation and CPT I activity were greater in mitochondria from RG compared with WG. Ribonuclease protection assays were performed to evaluate whether our data might be explained by differential expression of CPT I splice variants. We detected the presence of two CPT Ibeta splice variants that were more abundant in red compared with white muscle, but the relative expression of the two mRNA species was unrelated to malonyl-CoA resistance. These results provide evidence of a malonyl-CoA-insensitive CPT I activity in red muscle, suggesting fiber type-specific expression of distinct CPT I isoforms and/or posttranslational modulations that have yet to be elucidated.  相似文献   

8.
Carnitine palmitoyltransferase (CPT) 1A adopts a polytopic conformation within the mitochondrial outer membrane, having both the N- and C-terminal segments on the cytosolic aspect of the membrane and a loop region connecting the two transmembrane (TM) segments protruding into the inter membrane space. In this study we demonstrate that the loop exerts major effects on the sensitivity of the enzyme to its inhibitor, malonyl-CoA. Insertion of a 16-residue spacer between the C-terminal part of the loop sequence (i.e. between residues 100 and 101) and TM2 (which is predicted to start at residue 102) increased the sensitivity to malonyl-CoA inhibition of the resultant mutant protein by more than 10-fold. By contrast, the same insertion made between TM1 and the loop had no effects on the kinetic properties of the enzyme, indicating that effects on the catalytic C-terminal segment were specifically induced by loop-TM2 interactions. Enhanced sensitivity was also observed in all mutants in which the native TM2-loop pairing was disrupted either by making chimeras in which the loops and TM2 segments of CPT 1A and CPT 1B were exchanged or by deleting successive 9-residue segments from the loop sequence. The data suggest that the sequence spanning the loop-TM2 boundary determines the disposition of this TM in the membrane so as to alter the conformation of the C-terminal segment and thus affect its interaction with malonyl-CoA.  相似文献   

9.
The relation between carnitine palmitoyltransferase (CPT) activity and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity was investigated. Rats were treated with aminocarnitine or 1-carnitine overnight. In rats, in which CPT activity was inhibited by aminocarnitine, plasma and hepatic triacylglycerol contents were increased 5- to 6-fold. The plasma cholesterol concentration was unchanged, while the hepatic cholesterol content was lowered (-16%). Hepatic cholesterol synthesis, determined by following the incorporation of 14C-acetate and 3H2O into digitonin-precipitable sterols, in liver slices was increased 5- to 7-fold. HMG-CoA reductase activity in liver microsomes was increased to the same extent.  相似文献   

10.
Serum amyloid A (SAA) has a number of proatherogenic effects including induction of vascular proteoglycans. Chronically elevated SAA was recently shown to increase atherosclerosis in mice. The purpose of this study was to determine whether a brief increase in SAA similarly increased atherosclerosis in a murine model. The recombination activating gene 1-deficient (rag1−/−) × apolipoprotein E-deficient (apoe−/−) and apoe−/− male mice were injected, multiple times or just once respectively, with an adenoviral vector encoding human SAA1 (ad-SAA); the injected mice and controls were maintained on chow for 12–16 weeks. Mice receiving multiple injections of ad-SAA, in which SAA elevation was sustained, had increased atherosclerosis compared with controls. Strikingly, mice receiving only a single injection of ad-SAA, in which SAA was only briefly elevated, also had increased atherosclerosis compared with controls. Using in vitro studies, we demonstrate that SAA treatment leads to increased LDL retention, and that prevention of transforming growth factor beta (TGF-β) signaling prevents SAA-induced increases in LDL retention and SAA-induced increases in vascular biglycan content. We propose that SAA increases atherosclerosis development via induction of TGF-β, increased vascular biglycan content, and increased LDL retention. These data suggest that even short-term inflammation with concomitant increase in SAA may increase the risk of developing CVD.  相似文献   

11.
CPT1a (carnitine palmitoyltransferase 1a) in the liver mitochondrial outer membrane (MOM) catalyzes the primary regulated step in overall mitochondrial fatty acid oxidation. It has been suggested that the fundamental unit of CPT1a exists as a trimer, which, under native conditions, could form a dimer of the trimers, creating a hexamer channel for acylcarnitine translocation. To examine the state of CPT1a in the MOM, we employed a combined approach of sizing by mass and isolation using an immunological method. Blue native electrophoresis followed by detection with immunoblotting and mass spectrometry identified large molecular mass complexes that contained not only CPT1a but also long chain acyl-CoA synthetase (ACSL) and the voltage-dependent anion channel (VDAC). Immunoprecipitation with antisera against the proteins revealed a strong interaction between the three proteins. Immobilized CPT1a-specific antibodies immunocaptured not only CPT1a but also ACSL and VDAC, further strengthening findings with blue native electrophoresis and immunoprecipitation. This study shows strong protein-protein interaction between CPT1a, ACSL, and VDAC. We propose that this complex transfers activated fatty acids through the MOM.  相似文献   

12.
Rats were pair-fed isocaloric diets containing either 25% (control diet) or 6% protein (low-protein diet) during the 5 weeks prior to conception and through the gestation and lactation periods; then, carnitine palmitoyltransferase I (CPT-I) activity was determined in liver and skeletal muscle mitochondria isolated from the corresponding pups. Maternal protein undernutrition increased the activity of hepatic CPT-I all along the suckling period, whereas the activity of the skeletal muscle enzyme was unaffected. Moreover, the sensitivity of hepatic CPT-I to inhibition by both malonyl-CoA and 4-hydroxyphenylglyoxylate was decreased in the low-protein group. These alterations in the properties of hepatic CPT-I may be involved in the appearance of hyperketonemia in the rat pup upon maternal administration of low-protein diets.  相似文献   

13.
Summary The effect of the carnitine palmitoyltransferase 1(CPT1) inhibitor, Etomoxir, on glucose oxidation rates was determined in ischemic hearts reperfused in the presence of fatty acids. Isolated working rat hearts were perfused with 11 mM (14C)-glucose and 1.2 mM palmitate at a 15 cm H2O preload, 80 mm Hg afterload. Hearts were subjected to either 60 min aerobic perfusion, or 15 min work followed by 25 min global ischemia then 60 min of aerobic reperfusion. Steady state glucose oxidation rates in reperfused ischemic hearts were not significantly different from non-ischemic hearts. If 10–9 M Etomoxir was added immediately prior to reperfusion no significant change in glucose oxidation occurred. Addition of 10–8 M and 10–6 M Etomoxir, however, significantly increased glucose oxidation. Etomoxir also significantly improved recovery of mechanical function at a concentration of 10i–8 M or greater. As we previously reported, no significant improvement of function was seen when 10–9 M Etomoxir was added to the perfusate (Lopaschuk GD et al., Circ Res 63: 1036–1043, 1988). Long chain acylcarnitine levels were significantly reduced in the presence of both 10–9 M and 10–8 M Etomoxir. These data demonstrate that the beneficial effect of Etomoxir on reperfusion recovery of ischemic hearts is not due to a lowering of long chain acylcarnitine levels. Etomoxir may improve recovery of function by overcoming fatty acid inhibition of glucose oxidation.  相似文献   

14.
1. Hepatic carnitine palmitoyltransferase activity was measured over a range of concentrations of palmitoyl-CoA and in the presence of several concentrations of the inhibitor malonyl-CoA. These measurements were made in mitochondria obtained from the livers of fed and starved (24 h) virgin female and fed and starved pregnant rats. 2. In the fed state overt carnitine palmitoyltransferase activity was significantly lower in virgin females than in age-matched male rats. 3. Starvation increased overt carnitine palmitoyltransferase activity in both virgin and pregnant females. This increase was larger than in the male and was greater in pregnant than in virgin females. 4. In the fed state pregnancy had no effect on the Hill coefficient or the [S]0.5 when palmitoyl-CoA was varied as substrate. Pregnancy did not alter the sensitivity of the enzyme to inhibition by malonyl-CoA. 5. Starvation decreased the sensitivity of the enzyme to malonyl-CoA. The change in sensitivity was similar in male, virgin female and pregnant rats. 6. The possible relevance of these findings to known sex differences and changes with pregnancy in hepatic fatty acid oxidation and esterification are discussed.  相似文献   

15.
Soyasapogenol is a soyasaponin aglycone, which has been suggested to exert a more potent function than the glycoside form. In this study, the effect of soyasapogenol A and B on cultured adipocyte cell function was investigated using mouse 3T3-L1 adipocyte cells. 3T3-L1 cells were treated with insulin, dexamethasone, and 3-isobutyl-1-methylxanthine for differentiation to adipocytes, and the cells were then cultured in the presence of soyasapogenol A or B (6.25 or 12.5 µM). The media were harvested and refreshed every 2 d. After a 10 d culture, the cells were harvested and the triglyceride content of the cells was determined. The triglyceride content of soyasapogenol B-treated cells was significantly lower than those of vehicle-treated cells. Glycerol and free fatty acid levels in the soyasapogenol-treated cell media were higher than those in vehicle cells. However, there was no difference in the level of adipose triglyceride lipase among soyasapogenol A-, soyasapogenol B-, and vehicle-treated cells. The secreted adiponectin and resistin levels of soyasapogenol-treated cell media were also different compared with those of vehicle-treated cells. Especially, the secreted resistin level in soyasapogenol B-treated cell media was obviously reduced compared with that of vehicle-treated cells. Taken together, these results suggest that soyasapogenol B exerted an anti-obesity and anti-diabetic effect on adipocytes by lowering the cellular triglyceride level by accelerating triglyceride lipolysis with reduced resistin secretion.  相似文献   

16.
Treatment of cultured rat hepatocytes with certain amino acids stimulates the activity of the System N transporter. The present report investigates the mechanism by which the stimulatory amino acids elicit their effect. Activation of System N-mediated transport by amino acids is rapid, cycloheximide-insensitive, and involves neither trans-stimulation nor recruitment of additional carriers to the plasma membrane. In addition, the activation is Na(+)-dependent, supporting the related observation that the most effective stimulatory amino acids are substrates of Na(+)-dependent transport Systems A, ASC, and N whereas substrates of Na(+)-independent System L and non-amino acid metabolites are ineffective. The data suggest that active accumulation of amino acids via Na(+)-dependent carriers is necessary for the activation to occur. The amino acid-dependent stimulation is blocked in a concentration-dependent manner by increasing extracellular K+. Treatment of hepatocytes with an amino acid such as asparagine causes cell swelling and stimulation of System N activity; both of these effects are reduced by hypertonic media. Furthermore, swelling of rat hepatocytes with hypotonic media mimics the System N-stimulatory effects of asparagine. Among the Na(+)-dependent amino acid transport systems present in rat hepatocytes, System N is stimulated preferentially by amino acid-containing or hypotonic media. Collectively, these results demonstrate that cell swelling is a prerequisite for the amino acid-dependent activation of the hepatic System N transporter.  相似文献   

17.
Carnitine palmitoyltransferase 1 (CPT1) catalyzes the conversion of palmitoyl-CoA to palmitoylcarnitine in the presence of l-carnitine, thus facilitating the entry of fatty acids to mitochondria, in a process that is physiologically inhibited by malonyl-CoA. To examine the mechanism of CPT1 liver isoform (CPT1A) inhibition by malonyl-CoA, we constructed an in silico model of both its NH2- and COOH-terminal domains. Two malonyl-CoA binding sites were found. One of these, the "CoA site" or "A site," is involved in the interactions between NH2- and COOH-terminal domains and shares the acyl-CoA hemitunnel. The other, the "opposite-to-CoA site" or "O site," is on the opposite side of the enzyme, in the catalytic channel. The two sites share the carnitine-binding locus. To prevent the interaction between NH2- and COOH-terminal regions, we produced CPT1A E26K and K561E mutants. A double mutant E26K/K561E (swap), which was expected to conserve the interaction, was also produced. Inhibition assays showed a 12-fold decrease in the sensitivity (IC50) toward malonyl-CoA for CPT1A E26K and K561E single mutants, whereas swap mutant reverts to wild-type IC50 value. We conclude that structural interaction between both domains is critical for enzyme sensitivity to malonyl-CoA inhibition at the "A site." The location of the "O site" for malonyl-CoA binding was supported by inhibition assays of expressed R243T mutant. The model is also sustained by kinetic experiments that indicated linear mixed type malonyl-CoA inhibition for carnitine. Malonyl-CoA alters the affinity of carnitine, and there appears to be an exponential inverse relation between carnitine Km and malonyl-CoA IC50.  相似文献   

18.
Doh KO  Kim YW  Park SY  Lee SK  Park JS  Kim JY 《Life sciences》2005,77(4):435-443
This study examined the interrelation between the long-chain fatty acid (LCFA) oxidation rate and the carnitine palmitoyltransferase (CPT) 1 activity in various tissues containing L-CPT1 or M-CPT1. The Liver, kidney, heart, white and red gastrocnemius muscles, and white and brown adipose tissues obtained from Sprague-Dawley rats were examined. In the tissues containing L-CPT1 the liver showed a significantly higher (P<0.01) palmitate oxidation rate and CPT1 activity than the kidney. Among the tissues containing M-CPT1, the brown adipose tissue showed the highest palmitate oxidation rate and CPT1 activity. The tissues containing M-CPT1 (r2=0.907, p<0.001) showed a strong positive correlation between the palmitate oxidation rate and the CPT1 activity. The ratios of the palmitate oxidation rate to the CPT1 activity were calculated. The ratio in the liver was highest and the ratio in the kidney was lowest among the tissues. The ratios of the tissues containing M-CPT1 were similar. These results showed that the LCFA oxidation rates in the tissues containing M-CPT1 were directly proportional to the CPT1 activity, but not similarly proportional to the CPT1 activity in the tissues containing L-CPT1. In conclusion, CPT1 activity seems very important factor for LCFA oxidation, but it might be not the only rate-limiting step in LCFA oxidation.  相似文献   

19.
Prompted by an apparent relationship between ketosis and fatty acid utilization, we studied the capacities for fatty acid oxidation through β-oxidation and Krebs cycle in liver mitochondria isolated from fetal and suckling rats. Rates of state 3 oxidation, as measured by oxygen consumption, were low for both palmitylcarnitine and palmityl CoA plus carnitine at 2 days before term and at birth, but increased at least ninefold during the first 8 days of life and at least sixfold during the remaining suckling period. Despite these sharp increases, oxygen consumption in suckling rats did not exceed the value for fed adult rats. Also, the rates of state 3 oxidation of succinate were low in suckling rats. Respiratory control indices, determined with each of the three substrates, were lower in suckling rats than fed adults. By contrast, ratios of fatty acyl ester to succinate oxidation, a relative measure of the oxidation of palmitylcarnitine and palmityl CoA, were 21–66% and 27–77% higher in suckling than in fed adult rats. The increased ratios indicate that the capacity for fatty acid oxidation is higher during postnatal development than in the fetal stage or adulthood. The oxidation capacity was inversely related to glycogen content in the liver. Although hepatic carnitine concentration and carnitine palmityltransferase activity increased during suckling period, they are not rate limiting for fatty acid oxidation. Studies of the partitioning of fatty acids showed that about two-thirds of the fatty acid oxidized through β-oxidation did not enter Krebs cycle for further oxidation. These results support our working hypothesis that ketosis of suckling rats stems from rapid oxidation of fatty acids and increased partitioning of acetyl CoA into ketogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号