首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two distinct thioredoxin/thioredoxin reductase systems are present in the cytosol and the mitochondria of mammalian cells. Thioredoxins (Txn), the main substrates of thioredoxin reductases (Txnrd), are involved in numerous physiological processes, including cell-cell communication, redox metabolism, proliferation, and apoptosis. To investigate the individual contribution of mitochondrial (Txnrd2) and cytoplasmic (Txnrd1) thioredoxin reductases in vivo, we generated a mouse strain with a conditionally targeted deletion of Txnrd1. We show here that the ubiquitous Cre-mediated inactivation of Txnrd1 leads to early embryonic lethality. Homozygous mutant embryos display severe growth retardation and fail to turn. In accordance with the observed growth impairment in vivo, Txnrd1-deficient embryonic fibroblasts do not proliferate in vitro. In contrast, ex vivo-cultured embryonic Txnrd1-deficient cardiomyocytes are not affected, and mice with a heart-specific inactivation of Txnrd1 develop normally and appear healthy. Our results indicate that Txnrd1 plays an essential role during embryogenesis in most developing tissues except the heart.  相似文献   

2.
Thioredoxin reductases (Txnrd) maintain intracellular redox homeostasis in most organisms. Metazoan Txnrds also participate in signal transduction. Mouse embryos homozygous for a targeted null mutation of the txnrd1 gene, encoding the cytosolic thioredoxin reductase, were viable at embryonic day 8.5 (E8.5) but not at E9.5. Histology revealed that txnrd1-/- cells were capable of proliferation and differentiation; however, mutant embryos were smaller than wild-type littermates and failed to gastrulate. In situ marker gene analyses indicated that primitive streak mesoderm did not form. Microarray analyses on E7.5 txnrd-/- and txnrd+/+ littermates showed similar mRNA levels for peroxiredoxins, glutathione reductases, mitochondrial Txnrd2, and most markers of cell proliferation. Conversely, mRNAs encoding sulfiredoxin, IGF-binding protein 1, carbonyl reductase 3, glutamate cysteine ligase, glutathione S-transferases, and metallothioneins were more abundant in mutants. Many gene expression responses mirrored those in thioredoxin reductase 1-null yeast; however, mice exhibited a novel response within the peroxiredoxin catalytic cycle. Thus, whereas yeast induce peroxiredoxin mRNAs in response to thioredoxin reductase disruption, mice induced sulfiredoxin mRNA. In summary, Txnrd1 was required for correct patterning of the early embryo and progression to later development. Conserved responses to Txnrd1 disruption likely allowed proliferation and limited differentiation of the mutant embryo cells.  相似文献   

3.
Postnatal cerebellum development involves the generation of granule cells and Bergmann glias (BGs). The granule cell precursors are located in the external germinal layer (EGL) and the BG precursors are located in the Purkinje layer (PL). BGs extend their glial fibers into the EGL and facilitate granule cells' inward migration to their final location. Growth arrest specific gene 1 (Gas1) has been implicated in inhibiting cell-cycle progression in cell culture studies (G. Del Sal et al., 1992, Cell 70, 595--607). However, its growth regulatory function in the CNS has not been described. To investigate its role in cerebellar growth, we analyzed the Gas1 mutant mice. At birth, wild-type and mutant mice have cerebella of similar size; however, mature mutant cerebella are less than half the size of wild-type cerebella. Molecular and cellular examinations indicate that Gas1 mutant cerebella have a reduced number of granule cells and BG fibers. We provide direct evidence that Gas1 is required for normal levels of proliferation in the EGL and the PL, but not for their differentiation. Furthermore, we show that Gas1 is specifically and coordinately expressed in both the EGL and the BGs postnatally. These results support Gas1 as a common genetic component in coordinating EGL cell and BG cell proliferation, a link which has not been previously appreciated.  相似文献   

4.
5.
Thioredoxin reductase 1 (Txnrd1) and thioredoxin reductase 2 (Txnrd2) are selenoproteins whose expression and function depends on adequate supply of the trace element selenium (Se). As homozygous (-/-) knockout of both Txnrd1 and Txnrd2 is embryonically lethal, we investigated the effect of their hemizygosity (+/-) alone and in combination with dietary Se on enzymatic activity in various tissues. To assess the overall health of the corresponding mice, the growth, viability and fertility of the different experimental groups were also compared. Se depletion led to a marked decrease in Se organ contents. Se depletion was most prominent in lung, followed by liver, kidney, heart, muscle and brain. We found no major effect of Txnrd1 or Txnrd2 hemizygosity and/or Se on male fertility and the viability of offspring. A gene dose effect under Se-adequate conditions for Txnrd1 and Txnrd2 in all organs was observed. Haploid insufficiency decreased Txnrd activity to an extent that can be further decreased by Se deficiency, but not to levels below those observed for Se depletion alone. The only exception was Txnrd2 activity in kidney, heart and muscle, where we found an additive effect.  相似文献   

6.
Purkinje cells (PCs) are the projection neurons of the cerebellar cortex. They receive two major types of synaptic input - that from the inferior olive via climbing fibres and that from the granule neurons via parallel fibres. The precursors of granule neurons proliferate at the surface of the developing cerebellumin the external granule layer (EGL), which persists until postnatal day 14 in the mouse [1]. PCs are thought to provide trophic support for granule neurons [2][3] and to stimulate the proliferation of cells in the EGL [4], but the signalling molecules that mediate these cell-cell interactions have not been identified. I show here that PCs in the developing mouse cerebellum express the gene encoding the morphogen Sonic hedgehog (Shh) and that dividing cells in the EGL express Patched (Ptc) and Gli1, two target genes of which expression is upregulated in response to Hedgehog signalling (see [5] and references therein). Treatment of developing mice with hybridoma cells that secrete neutralizing anti-Shh antibodies [6] disrupted cerebellar development and reduced bromodeoxyuridine (BrdU) incorporation in the EGL of neonatal mice, whereas treatment of dissociated granule neuron cultures with recombinant Shh stimulated BrdU incorporation. These results suggest that PC-derived Shh normally promotes the proliferation of granule neuron precursors in the EGL.  相似文献   

7.
8.
9.
Reelin is an extracellular matrix molecule that is involved in the normal development of the cerebellar lamination, Bergmann glial fibres alignment, Purkinje cell monolayer arrangement and granule cell migration. In this study, we have examined the effects of maternal exposure of deltamethrin (DLT), a type II pyrethroid insecticide, on the structural and functional development of rat cerebellum during postnatal life. DLT (0.75 mg/kg body weight, intraperitoneally dissolved in dimethylsulphoxide) was administered in timed pregnant rats during two different gestational time periods, i.e. gestational days of 7–10 and 11–14, respectively. In DLT exposed rats, a significant overexpression of reelin was observed in the cells of the external granule cell layer (EGL) and internal granule cell layer along with an ectopic expression of reelin in the EGL as well as in the migrating granule cells just below the EGL, revealing an arrest of granule cell migration in this zone. Mis-orientation and hypertrophy of the Bergmann glial fibres further hampered the journey of the granule cells to their final destination. Possibly reelin overexpression also caused misalignment of the Purkinje cells and inhibited the neurite growth leading to a significant decrease in the spine density, main dendritic length and width of the dendritic arbour. Thus, it is proposed that the DLT exerts its neurotoxic effects possibly via the intracellular accumulation and low release of reelin leading to an impaired granule cell and Purkinje cell migration, inhibition of neurite outgrowth and reduced spine density. Such impaired cerebellar development leads to motor coordination deficits.  相似文献   

10.
A monoclonal antibody designated anti-Cl was obtained from a hybridoma clone isolated from a fusion of NS1 myeloma with spleen cells from BALB/c mice injected with homogenate of white matter from bovine corpus callosum. In the adult mouse neuroectoderm, C1 antigen is detectable by indirect immunohistology in the processes of Bergmann glial cells (also called Golgi epithelial cells) in the cerebellum and of Muller cells in the retina, whereas other astrocytes that express glial fibrillary acidic protein in these brain areas are negative for C1. In addition, C1 antigen is expressed in most, if not all, ependymal cells and in large blood vessels, but not capillaries. In the developing, early postnatal cerebellum, C1 antigen is not confined to Bergmann glial and ependymal cells but is additionally present in astrocytes of presumptive white matter and Purkinje cell layer. In the embryonic neuroectoderm, C1 antigen is already expressed at day 10, the earliest stage tested so far. The antigen is distinguished in radially oriented structures in telencephalon, pons, pituitary anlage, and retina. Ventricular cells are not labeled by C1 antibody at this stage. C1 antigen is not detectable in astrocytes of adult or nearly adult cerebella from the neurological mutant mice staggerer, reeler, and weaver, but is present in ependymal cells and large blood vessels. C1 antigen is expressed not only in the intact animal but also in cultured cerebellar astrocytes and fibroblastlike cells. It is localized intracellularly.  相似文献   

11.
Thioredoxin reductases (Txnrds) are a group of selenoenzymes participating in cellular redox regulation. Three Txnrd isoforms are known, each of which exhibits distinct cellular localisation and tissue-specific expression pattern. Txnrd1 is found in the cytoplasm, expression of Txnrd2 is restricted to mitochondria and Txnrd3 shows testis-specific expression. Recently, it was shown that Txnrd2 strongly affects the development of blood cells, since mouse embryos deficient for Txnrd2 are severely anaemic, show increased apoptosis in foetal liver and possess haematopoietic liver stem cells of reduced capacity to proliferate in vitro. However, because Txnrd2-deficient mice die at embryonic day 13.5, it was not known how this enzyme affects blood cell function in the adult animal. In the present study we show that conditional Txnrd2 knockouts generated using CD4- and CD19Cre transgenic mice lack Txnrd2 expression in CD4-- and CD19-positive T- and B-lymphocytes, respectively. However, the development and differentiation of both cell types in thymus and bone marrow was not significantly impaired. In addition, B-cell proliferation and activation in response to CD40 and IL-4 was unaltered in Txnrd2-deficient B-cells.  相似文献   

12.
Selenium, as an integral part of selenoproteins, is essential for mammals. Unequivocal evidence had been provided more than a decade ago when it was proven that mice incapable of producing any of the 24 selenoproteins failed to develop beyond the gastrulation stage (E6.5). Since then, more specific attempts have been made to unmask novel and essential functions of individual selenoproteins in mice. Genetic disruption of glutathione peroxidase 4 (GPx4; also referred to as phospholipid hydroperoxide glutathione peroxidase, PHGPx) in mice showed for the first time that a specific selenoenzyme is in fact required for early embryonic development. Later on, systemic ablation of cytosolic thioredoxin reductase (Txnrd1) or mitochondrial thioredoxin reductase (Txnrd2) yielded embryonic lethal phenotypes. Beside those three, no other selenoproteins have been found being indispensable for murine development so far. This review aims at summarizing mainly the in vivo findings on these important mammalian selenoenzymes, which have not only common attributes of being required for embryogenesis, but that they are also instrumental in the regulation of cellular redox metabolism.  相似文献   

13.
On the basis of our previous findings that a 50,000-dalton protein (GR-50) shows a marked increase in the hypoplastic cerebellum of jaundiced homozygous Gunn rats and its electrophoretic behavior is similar to that of glial fibrillary acidic protein (GFAP), we tried to identify GR-50 as GFAP by two-dimensional electrophoresis of rat cerebellar membrane proteins using an improved immunoblotting method. In this method a blot immunostained for a specific antigen was also visualized for other proteins, thereby enabling us to determine the location of the antigen on the blot more precisely. With the methodology it was found that GFAP antigen occupied exactly the same position as GR-50 on the blot, suggesting strongly the identity of both proteins. Immunohistochemical studies revealed that in the cerebellum of homozygotes compared with that of heterozygotes GFAP antigen was greatly increased and that it was especially rich in the homozygous rat cerebellar lobules with a high degree of hypoplasia. Further, it was shown that not only the fibers of the Bergmann glial cells but also their somata were intensely immunostained in the affected lobules. A 47,000-dalton protein (SG-47), which has been reported to be increased in staggerer mutant mice with cerebellar hypoplasia, also immunoreacted with the antiserum to GFAP.  相似文献   

14.
15.
W Q Gao  X L Liu  M E Hatten 《Cell》1992,68(5):841-854
In the neurological mutant mouse weaver, CNS precursor cells in the external germinal layer (EGL) of the cerebellar cortex proliferate normally, but fail to differentiate and die in the proliferative zone. To examine the autonomy of expression of the weaver gene, we carried out cell-mixing experiments in vitro. In homotypic, reaggregate cultures, weaver EGL precursor cells expressed the general neuronal markers N-CAM, L1, and MAP2, but failed to express the late neuronal antigens TAG-1 and astrotactin, to extend neurites or to migrate on glial fibers. After reaggregation with wild-type EGL precursor cells, weaver precursor cells extended neurites equivalent in length to wild-type cells, migrated along astroglial fibers, and expressed TAG-1 and astrotactin. Rescue of neurite production was also achieved by the addition of membranes from, but not by medium conditioned by wild-type cells. These findings suggest that the weaver gene acts non-autonomously, encoding a membrane-associated ligand that induces EGL neuronal differentiation.  相似文献   

16.
The normal cellular organization and layering of the vertebrate cerebellum is established during embryonic and early postnatal development by the interplay of a complex array of genetic and signaling pathways. Disruption of these processes and of the proper layering of the cerebellum usually leads to ataxic behaviors. Here, we analyzed the relative contribution of Fibroblast growth factor receptor 2 (FGFR2)-mediated signaling to cerebellar development in conditional Fgfr2 single mutant mice. We show that during embryonic mouse development, Fgfr2 expression is higher in the anterior cerebellar primordium and excluded from the proliferative ventricular neuroepithelium. Consistent with this finding, conditional Fgfr2 single mutant mice display the most prominent defects in the anterior lobules of the adult cerebellum. In this context, FGFR2-mediated signaling is required for the proper generation of Bergmann glia cells and the correct positioning of these cells within the Purkinje cell layer, and for cell survival in the developing cerebellar primordium. Using cerebellar microexplant cultures treated with an FGFR agonist (FGF9) or antagonist (SU5402), we also show that FGF9/FGFR-mediated signaling inhibits the outward migration of radial glia and Bergmann glia precursors and cells, and might thus act as a positioning cue for these cells. Altogether, our findings reveal the specific functions of the FGFR2-mediated signaling pathway in the generation and positioning of Bergmann glia cells during cerebellar development in the mouse.  相似文献   

17.
Neurogenesis in the cerebellum proceeds through a temporal series of cell production from two separate epithelia, the ventricular zone (VZ) and the external granule cell layer (EGL). Using the laacZ cell lineage tracer in transgenic mice, we describe cellular clones whose dates of birth span the entire period of cerebellar development and deduce a sequence of cell dispersion leading to the final allocation of cells in the cerebellum. Clones probably labeled early during neural tube formation show that individual progenitors can give rise to all cerebellar cell types. The distribution of clonally related granule cells in these clones indicates a mediolateral organization of EGL progenitors already established before the allocation of the EGL progenitors to the cerebellum. Clones restricted to the cerebellar VZ show that the VZ derives progenitors for deep nuclei and multipotent cortical progenitors, which lose their systematic lineage relationship when longitudinal cell intermingling in the cerebellar VZ becomes more limited. The small clones also show that cell dispersion is radial in the internal granule layer and tangential in the molecular layer. Together, the data demonstrate the broad maintenance of the relative order of cells from neural tube stages to the adult cerebellum.  相似文献   

18.
Thioredoxin/glutathione reductase (TXNRD3) is a selenoprotein composed of thioredoxin reductase and glutaredoxin domains. This NADPH-dependent thiol oxidoreductase evolved through gene duplication within the Txnrd family, is expressed in the testes, and can reduce both thioredoxin and glutathione in vitro; however, the function of this enzyme remains unknown. To characterize the function of TXNRD3 in vivo, we generated a strain of mice bearing deletion of Txnrd3 gene. We show that these Txnrd3 knockout mice are viable and without discernable gross phenotypes, and also that TXNRD3 deficiency leads to fertility impairment in male mice. We found that Txnrd3 knockout animals exhibited a lower fertilization rate in vitro, a sperm movement phenotype, and an altered thiol redox status in sperm cells. Proteomic analyses further revealed a broad range of substrates reduced by TXNRD3 during sperm maturation, presumably as a part of sperm quality control. Taken together, these results show that TXNRD3 plays a critical role in male reproduction via the thiol redox control of spermatogenesis.  相似文献   

19.
Since testicular orphan nuclear receptor 4 (TR4) was cloned, its physiological function has remained largely unknown. Throughout postnatal development, TR4-knockout (TR4-/-) mice exhibited behavioral deficits in motor coordination, suggesting impaired cerebellar function. Histological examination of the postnatal TR4-/- cerebellum revealed gross abnormalities in foliation; specifically, lobule VII in the anterior vermis was missing. Further analyses demonstrated that the laminations of the TR4-/- cerebellar cortex were changed, including reductions in the thickness of the molecular layer and the internal granule layer, as well as delayed disappearance of the external granule cell layer (EGL). These lamination irregularities may result from interference with granule cell proliferation within the EGL, delayed inward migration of postmitotic granule cells, and a higher incidence of apoptotis. In addition, abnormal development of Purkinje cells was observed in the postnatal TR4-/- cerebellum, as evidenced by aberrant dendritic arborization and reduced calbindin staining intensity. Expression of Pax-6, Sonic Hedgehog (Shh), astrotactin (Astn), reelin, and Cdk-5, genes correlated with the morphological development of the cerebellum, is reduced in the developing TR4-/- cerebellum. Together, our findings suggest that TR4 is required for normal cerebellar development.  相似文献   

20.
Selenium exerts many, if not most, of its physiological functions as a selenocysteine moiety in proteins. Selenoproteins are involved in many biochemical processes including regulation of cellular redox state, calcium homeostasis, protein biosynthesis, and degradation. A neurodevelopmental syndrome called progressive cerebello-cortical atrophy (PCCA) is caused by mutations in the selenocysteine synthase gene, SEPSECS, demonstrating that selenoproteins are essential for human brain development. While we have shown that selenoproteins are required for correct hippocampal and cortical interneuron development, little is known about the functions of selenoproteins in the cerebellum. Therefore, we have abrogated neuronal selenoprotein biosynthesis by conditional deletion of the gene encoding selenocysteyl tRNA[Ser]Sec (gene symbol Trsp). Enzymatic activity of cellular glutathione peroxidase and cytosolic thioredoxin reductase is reduced in cerebellar extracts from Trsp-mutant mice. These mice grow slowly and fail to gain postural control or to coordinate their movements. Histological analysis reveals marked cerebellar hypoplasia, associated with Purkinje cell death and decreased granule cell proliferation. Purkinje cell death occurs along parasagittal stripes as observed in other models of Purkinje cell loss. Neuron-specific inactivation of glutathione peroxidase 4 (Gpx4) used the same Cre driver phenocopies tRNA[Ser]Sec mutants in several aspects: cerebellar hypoplasia, stripe-like Purkinje cell loss, and reduced granule cell proliferation. Parvalbumin-expressing GABAergic interneurons (stellate and/or basket cells) are virtually absent in tRNA[Ser]Sec-mutant mice, while some remained in Gpx4-mutant mice. Our data show that selenoproteins are specifically required in postmitotic neurons of the developing cerebellum, thus providing a rational explanation for cerebellar hypoplasia as occurring in PCCA patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号