首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effect of colchicine on the transport of proteins in the hypothalamo-neurohypophyseal tract of the rat was studied after injection of (35S) cysteine into the supraoptic nucleus (SON) region. Colchicine, dissolved in distilled water and administered subarachnoidally, inhibited the axonal transport of labelled proteins into the neurohypophysis: the radioactivity that was recovered in neurohypophyseal TCA precipitable material was markedly decreased and hardly any radioactivity was found in the neurohypophyseal proteins which were separated by polyacrylamide gel disc electrophoresis.As revealed by electron microscopy the SON cell bodies showed marked changes after treatment with colchicine: a deeply folded nucleolemma; a pronounced, granular nucleolus; a dispersed chromatin; a zonal distribution of cell organelles with mitochondria and lysosomes accumulated at the periphery, crowded ribosomes, often arranged as polyribosomes and richly branching short profiles of endoplasmic reticulum filled with filamentous material forming an inner perinuclear zone separated by enlarged Golgi complexes.The profiles of elongated Herring bodies in the infundibulum were increased. The axon terminals were filled with heavily osmiophilic neurosecretory granules. The neurofilaments were slightly or moderately increased in number. No apparent changes were observed with regard to the neurotubuli in the SON neurons. The glial cells of the supraopticoneurohypophyseal tract showed reactive changes with a proliferation of filamentous elements. The biochemical and ultrastructural findings are discussed especially with respect to the mechanisms of transport and release of neurosecretory granules.  相似文献   

2.
Axon collaterals emerging from the vasopressinergic neurons of the supraoptic (SON) and paraventricular (PVN) nuclei and recurving back towards their respective nuclei have been previously reported. Since such axon collaterals can play a role in the neuromodulation of SON and PVN, these nuclei have been further investigated immunohistochemically under the light and electron microscope. The PAP technique, using a commercial antibody, was employed. Vasopressin-positive axon collaterals were seen to recurve towards their nuclei of origin. In the latter, vasopressinergic intrinsic neurons were also observed. Under the electron microscope, axon terminals containing vasopressin-immunoreactive neurosecretory granules were noted. Such terminals presumably arise from the vasopressin-positive recurrent axon collaterals or from the intrinsic neurons for the purpose of neuromodulation within the SON and PVN.  相似文献   

3.
Synapses between neurons with corticotropin-releasing-factor-(CRF)-like immunoreactivities and other immunonegative neurons in the hypothalamus of colchicine-treated rats, especially in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) were observed by immunocytochemistry using CRF antiserum. The immunoreactive nerve cell bodies and fibers were numerous in both the PVN and the SON. The CRF-containing neurons had synaptic contacts with immunonegative axon terminals containing a large number of clear synaptic vesicles alone or combined with a few dense-cored vesicles. We also found CRF-like immunoreactive axon terminals making synaptic contacts with other immunonegative neuronal cell bodies and fibers. And since some postsynaptic immunonegative neurons contained many large neurosecretory granules, they are considered to be magnocellular neurosecretory cells. These findings suggest that CRF functions as a neurotransmitter and/or modulator in addition to its function as a hormone.  相似文献   

4.
The ultrastructure of the retrocerebral endocrine-aortal complex of the earwig, Euborellia annulipes has been studied. The space between the inner and outer stromal layers of the aorta is occupied by numerous axon terminals and pre-terminals containing large electron dense granules (NS-I) of approximately 100 to 220 nm and a few axon terminals having small granules (NS-II) of approximately 40 to 90 nm; the former appear to belong to medial neurosecretory A-cells, and the latter to the B-cells of the brain. The corpora cardiaca consist of intrinsic cells with mitochondria and multivesicular bodies. Granules of type NS-II and NS-III are observed in the axon terminals and pre-terminals in the corpora cardiaca. The NS-II are identical to those found in the aorta and are probably the secretions of the lateral B-cells. Granules of type NS-III are 40 to 120 nm and electron dense, and are intrinsic in origin. Similar granules occur in the intrinsic cells of the corpora cardiaca. E M studies have confirmed the rôle of the aorta as a neurohaemal organ for the medial neurosecretory cells, and the corpora cardiaca for the lateral neurosecretory cells of the brain. The corpora cardiaca also act as a reservoir for the intrinsic secretion. The corpus allatum is a solid body consisting of parenchymal cells with prominent nuclei, mitochondria, and endoplasmic reticulum. In between its cells are occasional glial cells and also neurosecretory as well as non-neurosecretory axons. The gland is devoid of A-cell NSM.  相似文献   

5.
48 hrs. after an intra-cerebroventricular injection of colchicine (100 micrograms), antisera to three putative peptides included in the rat melanin-concentrating hormone (MCH) precursor, strongly stained the secretory granules accumulated in perikarya. In control rats, these antisera stained endoplasmic reticulum, Golgi apparatus, or neurosecretory granules respectively. Colchicine also induced a dramatic decrease in hybridization signal obtained with a probe complementary to the prepro-MCH-mRNA. Similarly, colchicine induced a strong increase in vasopressin immunoreactivity in neurons of the paraventricular and supraoptic nuclei, and a strong decrease of the vasopressin precursor mRNA. These results demonstrated that, in two peptidergic neuron populations of the rat hypothalamus, colchicine lowers mRNAs and impairs neuropeptide protein synthesis, consecutively to the accumulation of neurosecretory granules in perikarya.  相似文献   

6.
Summary After perfusion with formaldehyde and glutaraldehyde the supraoptic nucleus and infundibular process of the neurohypophysis of the rat were dissected and prepared for electronmicroscope observation. This study was carried out in specimens under normal water balance, in others fed on dry food and in rats submitted to forced hydration.Two extreme types of neurons with intermediary stages were recognized in the normal supraoptic nucleus. The main difference between them is in the content of ribosomes, development and dilatation of the vacuolar system and in the number of elementary neurosecretory granules. In both types lysosome-like particles are observed. The volume of the elementary granules increases 1.7 times along the hypothalamic-hypophyseal tract while the increase in the dense core of the granule is of the order of 4.3 times.After forty-eight hours on dry food there is a general depletion of secretory granules from the perikaryon and nearby axons, the ribosomes are numerous and the endoplasmic reticulum is dilated in all cells and contains a macromolecular filamentous material. With more prolonged dehydration the neurosecretory granules reappear in relation to the Golgi complex and the vacuolar system becomes progressively flattened. With forced hydration the number of granules in the perikaryon increases considerably.These observations are interpreted as indicative that the early stages of synthesis take place at the level of the ribosomes. The product, in a dilute macromolecular form, is transferred into the cisternae of the endoplasmic reticulum and then condensed into granules within the Golgi complex. The increase in size of the granules along the axon is discussed in relation to the progressive increase in hormone content.Supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas and by the Air Force Office of Scientific Research No 963-65.Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas.  相似文献   

7.
Summary The general ultrastructural features of the hypothalamo-neurohypophysial system in rats with hereditary hypothalamic diabetes insipidus (DI-rats, Brattleboro strain) are described. There is no decisively distinguishing difference between the neurons of the supraoptic and paraventricular nuclei. The neurons of both nuclei show signs of active protein synthesis. The perikarya of the neurons are markedly hypertrophic, the nuclei are large and the nucleoli prominent. In the cytoplasm there are numerous ribosomes, abundant rough-surfaced endoplasmic reticulum and extensive Golgi complexes. However, very few neurosecretory granules are to be seen. The axons of the hypothalamo-neurohypophysial tract are likewise enlarged and the paucity of neurosecretory granules is a striking feature also in the area of the tract. The majority of nerve endings in the posterior pituitary of DI-rats are devoid of neurosecretory granules. Microvesicles are abundant in the nerve endings and there are findings which suggest that microvesicles are involved either in endoor exocytosis. The signs of active protein synthesis and the concomitant paucity of neurosecretory granules are interpreted to imply transportation of the secretory proteins in an extragranular phase. The possible mode of release of the secretory proteins from the nerve endings and the role of microvesicles therein are discussed.This study has been supported by grants from the Finnish Cultural Foundation and the Sigrid Jusélius Foundation. The collaboration of Professors Antti Arstila and Tapani Vanha-Perttula is gratefully acknowledged.The Brattleboro-rats were kindly provided by Dr. Heinz Valtin, to whom we express our thanks.  相似文献   

8.
Summary Antisera, with cross reactive antibodies removed by affinity chromatography, were used in the immunoperoxidase-bridge technique to study the distribution of oxytocin and vasopressin together with neurophysin in the hypothalamo-neurohypophysial system of the rat. The hormones were demonstrated in different areas of the supraoptic nucleus (SON) and paraventricular nucleus (PVN), in neurosecretory fibres of the hypothalamoneurohypophysial tract, median eminence, and in nerve terminals of the neurohypophysis. Intact normal and rats with hereditary hypothalamic diabetes insipidus (Brattleboro strain), and rats dehydrated by the administration of oral hypertonic saline were studied. In dehydrated rats the hormone concentration in the neurons, and the number of neurons containing hormone varied according to the time of dehydration stress.The observations support the hypotheses that: 1) oxytocin and oxytocinneurophysin, and vasopressin and vasopressin-neurophysin are synthesised in different neurons and are transported along different axons; 2) the SON and PVN are functionally indistinguishable in that neurons containing oxytocin or vasopressin are present in both nuclei; and 3) the two types of neurons respond to osmotic stimulation in a way that is qualitatively the same but quantitatively different.This work was supported by a grant from the Medical Research Council of New Zealand  相似文献   

9.
Summary A histological, histochemical and ultrastrucutral study of the pars intercerebralis (PI) has been made in Locusta migratoria. The acellular neural lamella is made up of an elastic tissue and collagen fibrils. The cells of the perilemma contain numerous lysosome structures and lipid granules.Three different types of neurosecretory cells (NSC A, B and C) have been distinguished in the PI associated with giant neurons.The cells termed A and B seem not to have an activity cycle during the two last larval instars. At the moment of sexual maturity the NSC A show an important accumulation of neurosecretory material and their number increases at the expense of the NSC B. The NSC A, which are characterized by a highly developped endoplasmic reticulum, contain numerous secretory granules which appear to be individualized in the Golgi complex in three different ways. The NSC B, with a reduced endoplasmic reticulum and an almost quiescent Golgi complex, contain abundant lysosome structures and more seldom some neurosecretory granules. In fact, the study of the fine structure shows different intermediate types, linking in a continuous way typical A cells and typical B cells. NSC A and NSC B might correspond to two opposed stages of secretory activity of one single cell type: the A cell representing the activity stage and the B cell the quiescent stage.NSC C show an accumulation of their neurosecretory products in relation to metamorphosis and sexual maturity. Ultrastructural evidence confirms their neurosecretory activity.A mode of regulating neurosecretion in NSC A and B by internal catabolism of the secretion and formation of lysosome like structures is discussed in the present paper.The giant neurons, which are surrounded by a glial envelope (trophospongium), contain several dense granules originated from Golgi complex.  相似文献   

10.
The results obtained with various methods applied to the cytochemical detection of carbohydrates at an ultrastructural level, confirm the existence of glycoproteins in neurosecretory material in the neurohypophysis as well as in the hypothalamic magnocellular nuclei. This glycoproteic component, however, is not present in all the secretory granules and, according to their cytochemical behaviour, it is possible to distinguish two types of neurosecretory fibres: one where all the granules respond negatively; the other where most of the granules are reactive. The existence of two types of neurons corresponding to these two fibres cannot yet be asserted, but seems very likely, perhaps connected with the hormonal duality of the magnocellular nuclei. The reactions are also positive on the Golgi apparatus, in accordance with its function in glycoprotein synthesis. But the difference of reactivity between the Golgi cisternae and the neurosecretory product suggests that glycoprotein synthesis is still going on in the neurosecretory granules outside the Golgi area.  相似文献   

11.
Using the rapid Golgi technique four types of neurons have been observed in the paraventricular nucleus : magnocellular neurosecretory neurons, parvocellular neurons with "extrahypophyseal" axon, parvocellular neurons with recurrent axon (possibly inhibitory interneurons) and neurons of reticular type.  相似文献   

12.
L Andersen 《Acta anatomica》1986,127(2):125-132
The neurons of the supraoptic nucleus (SON) in the rat have been analysed by electron microscopy and morphometry, when the secretion of the antidiuretic hormone was fully suppressed by water loading. The water was supplied through a catheter inserted in the external jugular vein for 1.5, 2.5 and 24 h, respectively. The SON was also examined in normal rats and in rats that had been deprived of water for 72 h. The rats were fixed through chronically implanted catheters, so that at the time of fixation, the animal was uninfluenced by anaesthesia and surgery. The morphology of the granular endoplasmic reticulum and the Golgi complex showed that the water load suppressed the synthetic activity and the water deprivation stimulated it. The total volumes of the vasopressin-containing neurosecretory granules (NG) were 1.6, 2.8 and 5.0 X 10(4) micron3 after a 24-hour water load, in the normal state and after 72-hour water deprivation, respectively. In steady states there was a positive correlation between the secretory activity and the content of NG in the perikaryon.  相似文献   

13.
E. Fliers  D.F. Swaab 《Peptides》1983,4(2):165-170
The activity of the hypothalamo-neurohypophyseal system (HNS) was determined in male Wistar rats from 3 to 32 months of age. Plasma levels of vasopressin (AVP) and oxytocin (OXT) were measured by means of a radioimmunoassay. In addition, the distribution of the Golgi apparatus marker enzyme thiamine-pyrophosphatase (TPP-ase) was measured as a parameter for neurosecretory activity in the hypothalamic supraoptic and paraventricular nuclei (SON and PVN). Plasma levels of radioimmunoassayable AVP were increased in the 32-month-old animals. Plasma levels of radioimmunoassayable OXT in 32-month-old animals did not differe from the levels found in the youngest group, but were higher than in 11-month-old animals. Neurosecretory activity in the SON was similar in 3- and 32-month-old animals, whereas in the PVN neurosecretory activity was increased in the 32-month-old animals. Urine excretion decreased between 6 and 11 months of age and remained on the same level until 32 months of age. In other words, instead of a loss of HNS function as has been suggested in the literature, an increased neurosecretory activity was observed in aged rats.  相似文献   

14.
C Iwai  H Ochiai  Y Nakai 《Acta anatomica》1989,136(4):279-284
The neuropeptide Y (NPY) immunoreactive synaptic input to neurons containing neurophysin II (NP II), the carrier protein of vasopressin (VP), was observed in the paraventricular nucleus (PVN) of the rat hypothalamus by double-labeling immunocytochemistry combining the preembedding peroxidase-antiperoxidase (PAP) method with the postembedding immunogold staining method at the electron-microscopic level. NPY-like immunoreactivities were detected by the PAP method in the dense granular vesicles (70-100 nm in diameter) in the immunoreactive presynaptic axon terminals. NP II-like immunoreactive large neurosecretory granules labeled with gold particles were found in the neurons receiving synaptic input of the NPY-like immunoreactive terminals. This suggests that NPY may be a neurotransmitter or neuromodulator and that NPY neurons may, through synaptic contacts, regulate the secretion of VP neurons.  相似文献   

15.
Summary The neurosecretory hypothalamic nuclei and the inner zone of the median eminence of castrated rats were studied under the electron microscope. After one month of castration all the neurosecretory neurons of both nuclei show signs of hyperactivity characterized by dilated cisternae of the endoplasmic reticulum containing a macromolecular filamentous material and an increase in the number of ribosomes. After six months of castration, some neurosecretory neurons show an increased number of neurotubules and larger lysosomes than in the controls. Other neurons show a very significant hypertrophy of the endoplasmic reticulum, with large amounts of intracisternal filamentous material. These cells have few neurosecretory granules and in the adjacent synapses the number of granulated vesicles is increased. In the supraoptic nucleus there are two kinds of neurosecretory axons: the clear ones, which are similar to those that appear in control animals and the dark ones, which have smaller elementary granules. In the inner zone of the median eminence the axons show an increase in the number of neurosecretory granules with respect to the controls. After supplementary administration of sexual hormones, all the modifications produced by castration disappear. The ultrastructural changes observed in the neurosecretory nuclei after castration are discussed in relation to those previously described in the neurohypophysis under the same experimental conditions. A feedback regulatory action of sex hormones on hypothalamic neurosecretory neurons is postulated.Supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas and by the Air Force Office of Scientific Research (AF-AFOSR 963-67).We are deeply indebted to Mrs. Defilippi-Novoa and Mr. Alberto Saenz for their skillful assistence.  相似文献   

16.
The sorting domain for the different types of granules and small synaptic vesicles in neurosecretion is still largely a matter of debate. Some authors state that an exocytotic process has to precede granule formation. In previous studies, we favoured the idea that neurosecretory packages in terminals are assembled from axonal reticulum membranes simply by differentiation at the axon ending, the axonal reticulum being an extension of the Golgi apparatus. By ligating bovine splenic nerve, a de novo differentiation can be induced. After ligation, granules and granulo-tubular complexes appear. They were immunoreactive for SV2, VMAT2 and synaptobrevin II, which are all known to be highly enriched in large dense granules. Previously the granulo-tubular structures have already been recognized as precursor stadia of neurosecretory granules.It is concluded that at a de novo differentiation, a sorting out and aggregation is taking place of molecules typical for large dense granules. The small dense granules and tubules can be considered unripe, precursor forms of the large dense granules. All this occurs in the absence of signs of exocytosis. The present findings corroborate the view that granule formation occurs via local differentiation at an axon ending.  相似文献   

17.
The objective of this immunohistochemical research was to reveal the distribution of a proline-rich peptide-1 (PRP-1) in various brain structures of intact and trauma-injured rats and to identify the mechanisms of promotion of neuronal recovery processes following PRP-1 treatment. PRP-1, produced by bovine hypothalamic magnocellular cells and consisting of 15 amino acid residues, is a fragment of neurophysin vasopressin associated glycoprotein isolated from bovine neurohypophysis neurosecretory granules. PRP-1-immunoreactivity (PRP-1-IR) was detected in the brain of intact rats in the neurons of paraventricular (PVN) and supraoptic (SON) nuclei in the hypothalamus, in almost all cell groups in the medulla oblongata, in Purkinje and some cerebellar nuclei cells, and in nerve fibers. At 3 weeks after hemisection of the spinal cord (SC) an asymmetry of PRP-1 localization in the PVN and SON was observed: no PRP-1-IR was exhibited at the affected sides of both nuclei. Daily intramuscular administration of PRP-1 for 3 weeks significantly increased the number of PRP-1-immunoreactive (PRP-1-Ir) varicose nerve fibers, and cells in PVN and SON and in cell groups of the limbic system and brain stem. Tanycytes in the median eminence and covering ependyma also demonstrated strong PRP-1-IR. PRP-1 treatment also activated neuropeptide Y-IR (NPY-IR) in nerve fibers and immunophilin fragment-IR (IphF-IR) in lymphocytes and nerve cells. A strong increase of PRP-1-IR was observed in the PVN and SON of SC-injured rats following the treatment with another PRP (PRP-3). Preliminary physiological data demonstrate that PRP-3 is more "aggressive" in the recovery processes than PRP-1. Based on the findings regarding PRP action on neurons survival, axons regeneration, and the number of IphF-Ir lymphocytes and NPY-Ir nerve fibers, PRP is suggested to act as a neuroprotector, functioning as a putative neurotransmitter and immunomodulator.  相似文献   

18.
The incidence of diapause was shown to be determined humorally during the larval-pupal ecdysis by means of brain extirpation experiments.On the basis of this observation, light and electron microscopic changes in the neurosecretory type II cells in the pars intercerebralis-corpus cardiacum system during pharate pupal and early pupal stages were examined in insects reared under long day-length (non-diapause individuals) and in insects reared under short day-length (diapause individuals). In the diapause individuals, neurosecretory granules in NS-II cells increased during the pupal instar and large aggregates of granules packed the cytoplasm. Thereafter, inclusion bodies showing cytoplasmic breakdown of the granules appeared.In the non-diapause individuals, on the contrary, electron micrographs suggesting the release of neurosecretory material from axon terminals were obtained just after the pupal ecdysis. There were very few granules, with many Golgi bodies and much rough ER 8 to 12 hr after the ecdysis.It is concluded that adult development is determined by the release of neurosecretory material from the axon terminals of NS-II cells at the larval-pupal ecdysis. If release does not occur, the pupae enter diapause. It is also thought that differences in day-length during the larval stages influence the activities of NS-II cells before pupation.  相似文献   

19.
The vasopressin-producing neurons of the hypothalamo-neurohypophysial system are a particularly good model with which to consider the relationship between the Golgi apparatus nd GERL and their roles in secretory granule production because these neurons increase their synthesis and secretion of vasopressin in response to hyperosmotic stress. Enzyme cytochemical techniques for acid phosphatase (AcPase) and thiamine pyrophosphatase (TPPase) activities were used to distinguish GERL from the Golgi apparatus in cell bodies of the supraoptic nucleus from normal mice, mice hyperosmotically stressed by drinking 2% salt water, and mice allowed to recover for 5-10 d from hyperosmotic stress. In nonincubated preparations of control supraoptic perikarya, immature secretory granules at the trans face of the Golgi apparatus were frequently attached to a narrow, smooth membrane cisterna identified as GERL. Secretory granules were occasionally seen attached to Golgi saccules. TPPase activity was present in one or two of the trans Golgi saccules; AcPase activity appeared in GERL and attached immature secretory granules, rarely in the trans Golgi saccules, and in secondary lysosomes. As a result of hyperosmotic stress, the Golgi apparatus hypertrophied, and secretory granules formed from all Golgi saccules and GERL. Little or no AcPase activity could be demonstrated in GERL, whereas all Golgi saccules and GERL-like cisternae were TPPase positive. During recovery, AcPase activity in GERL returned to normal; however, the elevated TPPase activity and secretory granule formation seen in GERL-like cisternae and all Golgi saccules during hyperosmotic stress persisted. These results suggest that under normal conditions GERL is the predominant site for the secretory granule formation, but during hyperosmotic stress, the Golgi saccules assume increased importance in this function. The observed cytochemical modulations in Golgi saccules and GERL suggest that GERL is structurally and functionally related to the Golgi saccules.  相似文献   

20.
Hypothalamo-pituitary neurosecretory system (HPNS) of the Northern redbacked vole, Clethrionomys rutilus was studied at different stages of the population cycle using paraldehyde-fuchsin staining and immunohistochemical revealing of vasopressin and oxytocin. We found at the stages of high voles number (peak and recession), an increase of vasopressin synthesis in the neurosecretory cells (NSC) of paraventricular (PVN) and supraoptic (SON) nuclei, as well as its active transport and release to the portal capillaries of the outer zone of median eminence (ME). At the stages of low voles number (depression and growth) was demonstrated that level of oxytocin synthesis in the NSC of SON was high and moderate in the NSC of PVN, which was accompanied by an extensive release of oxytocin to capillaries of the posterior pituitary (PP). Increased supply of vasopressin to portal blood flow of the vole pituitary in conditions of overpopulation is suggested to have highly stimulating influence on adrenocorticotropic function of pituitary, which negatively affects the reproductive function of the voles and leads to a decrease of their number. At the stages of low number of population in conditions favoring the life of the voles, the increased supply of oxytocin to the systemic blood flow stimulates the reproductive behavior of the voles, which results in rise of their population during this period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号