首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nucleotide sequences of the subgenomic coat protein messengers (RNA4's) of two related bromoviruses, brome mosaic virus (BMV) and cowpea chlorotic mottle virus (CCMV), have been determined by direct RNA and CDNA sequencing without cloning. BMV RNA4 is 876 b long including a 5' noncoding region of nine nucleotides and a 3' noncoding region of 300 nucleotides. CCMV RNA 4 is 824 b long, including a 5' noncoding region of 10 nucleotides and a 3' noncoding region of 244 nucleotides. The encoded coat proteins are similar in length (188 amino acids for BMV and 189 amino acids for CCMV) and display about 70% homology in their amino acid sequences. Length difference between the two RNAs is due mostly to a single deletion, in CCMV with respect to BMV, of about 57 b immediately following the coding region. Allowing for this deletion the RNAs are indicate that mutations leading to divergence were constrained in the coding region primarily by the requirement of maintaining a favorable coat protein structure and in the 3' noncoding region primarily by the requirement of maintaining a favorable RNA spatial configuration.  相似文献   

2.
Expression of brome mosaic virus (BMV) coat protein and internal genes of many other positive-strand RNA viruses requires initiation of subgenomic mRNA synthesis from specific internal sites on minus-strand genomic RNA templates. Biologically active viral cDNA clones were used to investigate the sequences controlling production of BMV subgenomic RNA in vivo. Suitable duplications directed production of specifically initiated, capped subgenomic RNAs from new sites in the BMV genome. Previously implicated promoter sequences extending 20 bases upstream (-20) and 16 bases downstream (+16) of the subgenomic RNA initiation site directed only low-level synthesis. Subgenomic RNA production at normal levels required sequences extending to at least -74 but not beyond -95. Loss of an (rA)18 tract immediately upstream of the -20 to +16 "core promoter" particularly inhibited subgenomic RNA synthesis. The -38 to -95 region required for normal initiation levels contains repeats of sequence elements in the core promoter, and duplications creating additional upstream copies of these repeats stimulated subgenomic RNA synthesis above wild-type levels. At least four different subgenomic RNAs can be produced from a single BMV RNA3 derivative. For all derivatives producing more than one subgenomic RNA, a gradient of accumulation progressively favoring smaller subgenomic RNAs was seen.  相似文献   

3.
For various groups of plant viruses, the genomic RNAs end with a tRNA-like structure (TLS) instead of the 3' poly(A) tail of common mRNAs. The actual function of these TLSs has long been enigmatic. Recently, however, it became clear that for turnip yellow mosaic virus, a tymovirus, the valylated TLS(TYMV) of the single genomic RNA functions as a bait for host ribosomes and directs them to the internal initiation site of translation (with N-terminal valine) of the second open reading frame for the polyprotein. This discovery prompted us to investigate whether the much larger TLSs of a different genus of viruses have a comparable function in translation. Brome mosaic virus (BMV), a bromovirus, has a tripartite RNA genome with a subgenomic RNA4 for coat protein expression. All four RNAs carry a highly conserved and bulky 3' TLS(BMV) (about 200 nucleotides) with determinants for tyrosylation. We discovered TLS(BMV)-catalyzed self-tyrosylation of the tyrosyl-tRNA synthetase but could not clearly detect tyrosine incorporation into any virus-encoded protein. We established that BMV proteins do not need TLS(BMV) tyrosylation for their initiation. However, disruption of the TLSs strongly reduced the translation of genomic RNA1, RNA2, and less strongly, RNA3, whereas coat protein expression from RNA4 remained unaffected. This aberrant translation could be partially restored by providing the TLS(BMV) in trans. Intriguingly, a subdomain of the TLS(BMV) could even almost fully restore translation to the original pattern. We discuss here a model with a central and dominant role for the TLS(BMV) during the BMV infection cycle.  相似文献   

4.
Poliovirus infection is accompanied by translational control that precludes translation of 5'-capped mRNAs and facilitates translation of the uncapped poliovirus RNA by an internal initiation mechanism. Previous reports have suggested that the capped alfalfa mosaic virus coat protein mRNA (AIMV CP RNA), which contains an unstructured 5' leader sequence, is unusual in being functionally active in extracts prepared from poliovirus-infected HeLa cells (PI-extracts). To identify the cis-acting nucleotide elements permitting selective AIMV CP expression, we tested capped mRNAs containing structured or unstructured 5' leader sequences in addition to an mRNA containing the poliovirus internal ribosome entry site (IRES). Translations were performed with PI-extracts and extracts prepared from mock-infected HeLa cells (MI-extracts). A number of control criteria demonstrated that the HeLa cells were infected by poliovirus and that the extracts were translationally active. The data strongly indicate that translation of RNAs lacking an internal ribosome entry site, including AIMV CP RNA, was severely compromised in PI-extracts, and we find no evidence that the unstructured AIMV CP RNA 5' leader sequence acts in cis to bypass the poliovirus translational control. Nevertheless, cotranslation assays in the MI-extracts demonstrate that mRNAs containing the unstructured AIMV CP RNA 5' untranslated region have a competitive advantage over those containing the rabbit alpha-globin 5' leader. Previous reports of AIMV CP RNA translation in PI-extracts likely describe inefficient expression that can be explained by residual cap-dependent initiation events, where AIMV CP RNA translation is competitive because of a diminished quantitative requirement for initiation factors.  相似文献   

5.
6.
The Brome mosaic virus (BMV) coat protein (CP) accompanies the three BMV genomic RNAs and the subgenomic RNA into and out of cells in an infection cycle. In addition to serving as a protective shell for all of the BMV RNAs, CP plays regulatory roles during the infection process that are mediated through specific binding of RNA elements in the BMV genome. One regulatory RNA element is the B box present in the 5' untranslated region (UTR) of BMV RNA1 and RNA2 that play important roles in the formation of the BMV replication factory, as well as the regulation of translation. A second element is within the tRNA-like 3' UTR of all BMV RNAs that is required for efficient RNA replication. The BMV CP can also encapsidate ligand-coated metal nanoparticles to form virus-like particles (VLPs). This update summarizes the interaction between the BMV CP and RNAs that can regulate RNA synthesis, translation and RNA encapsidation, as well as the formation of VLPs.  相似文献   

7.
R Quadt  E M Jaspars 《FEBS letters》1991,278(1):61-62
The necessity of coat protein for infection of plants by alfalfa mosaic virus (AIMV) and other ilarviruses distinguishes this virus group from other plant virus groups. Recently, the presence of both a zinc-finger type motif and zinc in AIMV coat protein was described [(1989) Virology 168, 48-56]. We studied the effect of a zinc chelator on viral RNA synthesis. Strong inhibition of AIMV RNA-dependent RNA polymerase (RdRp) by ortho-phenanthroline (OP) was observed.  相似文献   

8.
Choi YG  Rao AL 《Journal of virology》2003,77(18):9750-9757
The three genomic and a single subgenomic RNA of brome mosaic virus (BMV), an RNA virus infecting plants, are packaged by a single-coat protein (CP) into three morphologically indistinguishable icosahedral virions with T = 3 quasi-symmetry. Genomic RNAs 1 and 2 are packaged individually into separate particles whereas genomic RNA3 and subgenomic RNA4 (coat protein mRNA) are copackaged into a single particle. We report here that packaging of dicistronic RNA3 requires a bipartite signal. A highly conserved 3' tRNA-like structure postulated to function as a nucleating element (NE) for CP subunits (Y. G. Choi, T. W. Dreher, and A. L. N. Rao, Proc. Natl. Acad. Sci. USA 99:655-660, 2002) and a cis-acting, position-dependent packaging element (PE) of 187 nt present in the nonstructural movement protein gene are the integral components of the packaging core. Efficient incorporation into BMV virions of nonviral RNA chimeras containing NE and the PE provides confirmatory evidence that these two elements are sufficient to direct packaging. Analysis of virion RNA profiles obtained from barley protoplasts transfected with a RNA3 variant lacking the PE provides the first genetic evidence that de novo synthesized RNA4 is incompetent for autonomous assembly whereas prior packaging of RNA3 is a prerequisite for RNA4 to copackage.  相似文献   

9.
Yi G  Gopinath K  Kao CC 《Journal of virology》2007,81(4):1601-1609
Differential expression of viral replication proteins is essential for successful infection. We report here that overexpression of the brome mosaic virus (BMV) 1a protein can repress viral RNA replication in a dosage-dependent manner. Using RNA replication-incompetent reporter constructs, repression of translation from BMV RNA1 and RNA2 was observed, suggesting that the effect on translation of the BMV RNA replication proteins is responsible for the decrease in RNA levels. Furthermore, repression of translation by 1a required the B box in the 5'-untranslated region (5' UTR); BMV RNA3 that lacks a B box in its 5' UTR is not subject to 1a-mediated translational inhibition. Mutations in either the methyltransferase or the helicase-like domains of 1a reduced the repression of replication and translation. These results suggest that in addition to its known functions in BMV RNA synthesis, 1a also regulates viral gene expression.  相似文献   

10.
11.
The translation enhancing ability of cis-acting 3′-terminal untranslated region (3′-UTR) of brome mosaic virus (BMV) was examined. Two chimeric mRNA constructs translated in rabbit reticulocyte lysates contained the BMV coat protein (CP) gene and NPTI gene, respectively. It was shown that the 3′-UTR of BMV RNA enhanced the translational efficiency of uncapped but not capped messages.  相似文献   

12.
13.
The coat protein gene in RNA 3 of alfalfa mosaic virus (AMV; genus Alfamovirus, family Bromoviridae) is translated from the subgenomic RNA 4. Analysis of the subgenomic promoter (sgp) in minus-strand RNA 3 showed that a sequence of 37 nt upstream of the RNA 4 start site (nt +1) was sufficient for full sgp activity in an in vitro assay with the purified viral RNA-dependent RNA-polymerase (RdRp). The sequence of nt -6 to -29 could be folded into a potential hairpin structure with a loop represented by nt -16, -17, and -18, and a bulge involving nt -23. By introducing mutations that disrupted base pairing and compensatory mutations that restored base pairing, it was shown that base pairing in the top half of the putative stem (between the loop and bulge) was essential for sgp activity, whereas base pairing in the bottom half of the stem was less stringently required. Deletion of the bulged residue A-23 or mutation of this residue into a C strongly reduced sgp activity, but mutation of A-23 into U or G had little effect on sgp activity. Mutation of loop residues A-16 and A-17 affected sgp activity, whereas mutation of U-18 did not. Using RNA templates corresponding to the sgp of brome mosaic virus (BMV; genus Bromovirus, family Bromoviridae) and purified BMV RdRp, evidence was obtained indicating that also in BMV RNA a triloop hairpin structure is required for sgp activity.  相似文献   

14.
15.
16.
17.
Brome mosaic virus (BMV) is a positive-sense RNA plant virus, the tripartite genomic RNAs of which are separately packaged into virions. RNA3 is copackaged with subgenomic RNA4. In barley protoplasts coinoculated with RNA1 and RNA2, an RNA3 mutant with a 69-nucleotide (nt) deletion in the 3'-proximal region of the 3a open reading frame (ORF) was very poorly packaged compared with other RNA3 mutants and wild-type RNA3, despite their comparable accumulation in the absence of coat protein. Computer analysis of RNA secondary structure predicted two stem-loop (SL) structures (i.e., SL-I and SL-II) in the 69-nt region. Disruption of SL-II, but not of SL-I, significantly reduced RNA3 packaging. A chimeric BMV RNA3 (B3Cmp), with the BMV 3a ORF replacing that of cucumber mosaic virus (CMV), was packaged negligibly, whereas RNA4 was packaged efficiently. Replacement of the 3'-proximal region of the CMV 3a ORF in B3Cmp with the 3'-proximal region of the BMV 3a ORF significantly improved packaging efficiency, and the disruption of SL-II in the substituted BMV 3a ORF region greatly reduced packaging efficiency. These results suggest that the 3'-proximal region of the BMV 3a ORF, especially SL-II predicted between nt 904 and 933, plays an important role in the packaging of BMV RNA3 in vivo. Furthermore, the efficient packaging of RNA4 without RNA3 in B3Cmp-infected cells implies the presence of an element in the 3a ORF of BMV RNA3 that regulates the copackaging of RNA3 and RNA4.  相似文献   

18.
Kwon CS  Chung W 《FEBS letters》1999,462(1-2):161-166
The 5' untranslated region (UTR) of cucumber mosaic virus (CMV) RNA 4 confers a highly competitive translational advantage on a heterologous luciferase open reading frame. Here we investigated whether secondary structure in the 5' UTR contributes to this translational advantage. Stabilization of the 5' UTR RNA secondary structure inhibited competitive translational activity. Alteration of a potential single-stranded loop to a stem by substitution mutations greatly inhibited the competitive translational activity. Tobacco plants infected with wild type virus showed a 2.5-fold higher accumulation of maximal coat protein than did plants infected with a loop-mutant virus. Amplification of viral RNA in these plants could not explain the difference in accumulation of coat protein. Phylogenetic comparison showed that potential single-stranded loops of 12-23 nucleotides in length exist widely in subgroups of CMV.  相似文献   

19.
The genome of brome mosaic virus (BMV) is divided among messenger polarity RNA1, RNA2, and RNA3 (3.2, 2.9, and 2.1 kilobases, respectively). cis-Acting sequences required for BMV RNA amplification were investigated with RNA3. By using expressible cDNA clones, deletions were constructed throughout RNA3 and tested in barley protoplasts coinoculated with RNA1 and RNA2. In contrast to requirements for 5'- and 3'-terminal noncoding sequences, either of the two RNA3 coding regions can be deleted individually and both can be simultaneously inactivated by N-terminal frameshift mutations without significantly interfering with amplification of RNA3 or production of its subgenomic mRNA. However, simultaneous major deletions in both coding regions greatly attenuate RNA3 accumulation. RNA3 levels can be largely restored by insertion of a heterologous, nonviral sequence in such mutants, suggesting that RNA3 requires physical separation of its terminal domains or a minimum overall size for normal replication or stability. Unexpectedly, deletions in a 150-base segment of the intercistronic noncoding region drastically reduce RNA3 accumulation. This segment contains a sequence element homologous to sequences found near the 5' ends of BMV RNA1 and RNA2 and in analogous positions in the three genomic RNAs of the related cucumber mosaic virus, suggesting a possible role in plus-strand synthesis.  相似文献   

20.
RNA synthesis during viral replication requires specific recognition of RNA promoters by the viral RNA-dependent RNA polymerase (RdRp). Four nucleotides (−17, −14, −13, and −11) within the brome mosaic virus (BMV) subgenomic core promoter are required for RNA synthesis by the BMV RdRp (R. W. Siegel et al., Proc. Natl. Acad. Sci. USA 94:11238–11243, 1997). The spatial requirements for these four nucleotides and the initiation (+1) cytidylate were examined in RNAs containing nucleotide insertions and deletions within the BMV subgenomic core promoter. Spatial perturbations between nucleotides −17 and −11 resulted in decreased RNA synthesis in vitro. However, synthesis was still dependent on the key nucleotides identified in the wild-type core promoter and the initiation cytidylate. In contrast, changes between nucleotides −11 and +1 had a less severe effect on RNA synthesis but resulted in RNA products initiated at alternative locations in addition to the +1 cytidylate. The results suggest a degree of flexibility in the recognition of the subgenomic promoter by the BMV RdRp and are compared with functional regions in other DNA and RNA promoters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号