首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of temperature on the lateral structure of lipid bilayers composed of porcine brain ceramide and 1-palmitoyl 2-oleoyl-phosphatidylcholine (POPC), with and without addition of cholesterol, were studied using differential scanning calorimetry, Fourier transformed infrared spectroscopy, atomic force microscopy, and confocal/two-photon excitation fluorescence microscopy (which included LAURDAN generalized polarization function images). A broad gel/fluid phase coexistence temperature regime, characterized by the presence of micrometer-sized gel-phase domains with stripe and flowerlike shapes, was observed for different POPC/ceramide mixtures (up to approximately 25 mol % ceramide). This observed phase coexistence scenario is in contrast to that reported previously for this mixture, where absence of gel/fluid phase coexistence was claimed using bulk LAURDAN generalized polarization (GP) measurements. We demonstrate that this apparent discrepancy (based on the direct comparison between the LAURDAN GP data obtained in the microscope and the fluorometer) disappears when the additive property of the LAURDAN GP function is taken into account to examine the data obtained using bulk fluorescence measurements. Addition of cholesterol to the POPC/ceramide mixtures shows a gradual transition from a gel/fluid to gel/liquid-ordered phase coexistence scenario as indicated by the different experimental techniques used in our experiments. This last result suggests the absence of fluid-ordered/fluid-disordered phase coexistence in the ternary mixtures studied in contrast to that observed at similar molar concentrations with other ceramide-base-containing lipid mixtures (such as POPC/sphingomyelin/cholesterol, which is used as a canonical raft model membrane). Additionally, we observe a critical cholesterol concentration in the ternary mixtures that generates a peculiar lateral pattern characterized by the observation of three distinct regions in the membrane.  相似文献   

2.
Lateral organization of biological membranes is frequently studied using fluorescence microscopy. One of the most widely used probes for these studies is 2-dimethylamino-6-lauroylnaphthalene (laurdan). The fluorescence of this probe is sensitive to the environment polarity, and thus laurdan reports the local penetration of water when inserted in membranes. Unfortunately, this probe can only be used under two-photon excitation due to its low photostability. This is a very important limitation, because there are not too many laboratories with capability for two-photon microscopy. In this work, we explored the performance of 6-dodecanoyl-2-[N-methyl-N-(carboxymethyl)amino]naphthalene (C-laurdan), a carboxyl-modified version of laurdan, for imaging biological membranes using a conventional confocal microscopy setup. We acquired generalized polarization (GP) images of C-laurdan inserted in giant unillamelar vesicles composed of binary mixtures of lipids and verified that the probe allows observing the coexistence of different phases. We also tested the performance of the probe for measurement with living cells and registered GP images of melanophore cells labeled with C-laurdan in which we could observe highly ordered regions such as filopodia. These findings show that C-laurdan can be successfully employed for studies of membrane lateral organization using a conventional confocal microscope and can open the possibility of studying a wide variety of membrane-related processes.  相似文献   

3.

Background  

Two-photon dual-color imaging of tissues and cells labeled with fluorescent proteins (FPs) is challenging because most two-photon microscopes only provide one laser excitation wavelength at a time. At present, methods for two-photon dual-color imaging are limited due to the requirement of large differences in Stokes shifts between the FPs used and their low two-photon absorption (2PA) efficiency.  相似文献   

4.
We present a polarimetric two-photon microscopy technique to quantitatively image the local static molecular orientational behavior in lipid and cell membranes. This approach, based on a tunable excitation polarization state complemented by a polarized readout, is easily implementable and does not require hypotheses on the molecular angular distribution such as its mean orientation, which is a main limitation in traditional fluorescence anisotropy measurements. The method is applied to the investigation of the molecular angular distribution in giant unilamellar vesicles formed by liquid-ordered and liquid-disordered micro-domains, and in COS-7 cell membranes. The highest order contrast between ordered and disordered domains is obtained for dyes locating within the membrane acyl chains.  相似文献   

5.
We show that structural protein arrays consisting largely of collagen, myosin, and tubulin, and their associated proteins can be imaged in three dimensions with high contrast and resolution by laser-scanning second harmonic generation (SHG) microscopy. SHG is a nonlinear optical scheme and this form of microscopy shares several common advantages with multiphoton excited fluorescence, namely, intrinsic three-dimensionality and reduced out-of-plane photobleaching and phototoxicity. SHG does not arise from absorption and in-plane photodamage considerations are therefore also greatly reduced. In particular, structural protein arrays that are highly ordered and birefringent produce large SHG signals without the need for any exogenous labels. We demonstrate that thick tissues including muscle and bone can be imaged and sectioned through several hundred micrometers of depth. Combining SHG with two-photon excited green fluorescent protein (GFP) imaging allows inference of the molecular origin of the SHG contrast in Caenorhabditis elegans sarcomeres. Symmetry and organization of microtubule structures in dividing C. elegans embryos are similarly studied by comparing the endogenous tubulin contrast with that of GFP::tubulin fluorescence. It is found that SHG provides molecular level data on radial and lateral symmetries that GFP constructs cannot. The physical basis of SHG is discussed and compared with that of two-photon excitation as well as that of polarization microscopy. Due to the intrinsic sectioning, lack of photobleaching, and availability of molecular level data, SHG is a powerful tool for in vivo imaging.  相似文献   

6.
Cholesterol-rich microdomains (or "lipid rafts") within the plasma membrane have been hypothesized to exist in a liquid-ordered phase and play functionally important roles in cell signaling; however, these microdomains defy detection using conventional imaging. To visualize domains and relate their nanostructure and dynamics to mast cell signaling, we use two-photon (760 nm and 960 nm) fluorescence lifetime imaging microscopy and fluorescence polarization anisotropy imaging, with comparative one-photon anisotropy imaging and single-point lifetime and anisotropy decay measurements. The inherent sensitivity of ultrafast excited-state dynamics and rotational diffusion to the immediate surroundings of a fluorophore allows for real-time monitoring of membrane structure and organization. When the high affinity receptor for IgE (FcepsilonRI) is extensively cross-linked with anti-IgE, molecules associated with cholesterol-rich microdomains (e.g., saturated lipids (the lipid analog diI-C(18) or glycosphingolipids)) and lipid-anchored proteins coredistribute with cross-linked IgE-FcepsilonRI. We find an enhancement in fluorescence lifetime and anisotropy of diI-C(18) and Alexa 488-labeled IgE-FcepsilonRI in the domains where these molecules colocalize. Our results suggest that fluorescence lifetime and, particularly, anisotropy permit us to correlate the recruitment of lipid molecules into more ordered domains that serve as platforms for IgE-mediated signaling.  相似文献   

7.
双色双光子激光扫描显微技术可以用来研究生物组织内两种不同蛋白质的表达、定位和示踪.由于大多数双光子显微镜一次只能提供一种波长的激发光,双色同时成像较难实现.mAmetrine和mKate2作为新发现的荧光蛋白对可以用于双光子双色同时成像,这得益于它们各自的优势:mAmetrine的斯托克斯位移和mKate2的高亮度.在765nm的波长激发时,它们的双光子吸收效率都很高.mAmetrine和mKate2能够很好地用于双色双光子活细胞成像实验.  相似文献   

8.
We introduce a new extension of image correlation spectroscopy (ICS) and image cross-correlation spectroscopy (ICCS) that relies on complete analysis of both the temporal and spatial correlation lags for intensity fluctuations from a laser-scanning microscopy image series. This new approach allows measurement of both diffusion coefficients and velocity vectors (magnitude and direction) for fluorescently labeled membrane proteins in living cells through monitoring of the time evolution of the full space-time correlation function. By using filtering in Fourier space to remove frequencies associated with immobile components, we are able to measure the protein transport even in the presence of a large fraction (>90%) of immobile species. We present the background theory, computer simulations, and analysis of measurements on fluorescent microspheres to demonstrate proof of principle, capabilities, and limitations of the method. We demonstrate mapping of flow vectors for mixed samples containing fluorescent microspheres with different emission wavelengths using space time image cross-correlation. We also present results from two-photon laser-scanning microscopy studies of alpha-actinin/enhanced green fluorescent protein fusion constructs at the basal membrane of living CHO cells. Using space-time image correlation spectroscopy (STICS), we are able to measure protein fluxes with magnitudes of mum/min from retracting lamellar regions and protrusions for adherent cells. We also demonstrate the measurement of correlated directed flows (magnitudes of mum/min) and diffusion of interacting alpha5 integrin/enhanced cyan fluorescent protein and alpha-actinin/enhanced yellow fluorescent protein within living CHO cells. The STICS method permits us to generate complete transport maps of proteins within subregions of the basal membrane even if the protein concentration is too high to perform single particle tracking measurements.  相似文献   

9.
W Yu  P T So  T French    E Gratton 《Biophysical journal》1996,70(2):626-636
We use the lipophilic fluorescence probe Laurdan to study cell membranes. The generalized polarization (GP) of Laurdan-labeled cells contains useful information about membrane fluidity and polarity. A high GP is usually associated with low fluidity, low polarity, or high cholesterol content of the membranes, and a low GP is the opposite. We have combined the GP method and two-photon fluorescence microscopy to provide an alternative approach to study cell membranes. Using two-photon excitation in a conventional microscope offers great advantages for studying biological samples. These advantages include efficient background rejection, low photodamage, and improved depth discrimination. We performed GP measurements on mouse fibroblast cells and observed that both intensity and GP images are not spatially uniform. We tested for possible GP artifacts arising from cellular autofluorescence and lifetime quenching, using a procedure for background fluorescence subtraction and by direct lifetime measurements in the microscope. GP measured in a single cell displays a broad distribution, and the GP of 40 different cells grown on the same cover glass is also statistically distributed. The correlations between intensity and GP images were analyzed, and no monotonic dependence between the two was found. By digitally separating high and low GP values, we found that high GP values often associate with the regions of the plasma membrane and low GP values link with the nuclear membranes. Our results also show local GP variations within the plasma and nuclear membranes.  相似文献   

10.
Macrophage activation is essential for a correct and efficient response of innate immunity. During oxidative stress membrane receptors and/or membrane lipid dynamics can be altered, leading to dysfunctional cell responses. Our aim is to analyze membrane fluidity modifications and cell function under oxidative stress in LPS-activated macrophages. Membrane fluidity of individual living THP-1 macrophages was evaluated by the technique two-photon microscopy. LPS-activated macrophage function was determined by TNFα secretion. It was shown that LPS activation causes fluidification of macrophage plasma membrane and production of TNFα. However, oxidative stress induces rigidification of macrophage plasma membrane and inhibition of cell activation, which is evidenced by a decrease of TNFα secretion. Thus, under oxidative conditions macrophage proinflammatory response might develop in an inefficient manner.  相似文献   

11.
During vertebrate development, oligodendrocytes wrap their plasma membrane around axons to produce myelin, a specialized membrane highly enriched in galactosylceramide (GalC) and cholesterol. Here, we studied the formation of myelin membrane sheets in a neuron-glia co-culture system. We applied different microscopy techniques to visualize lipid packing and dynamics in the oligodendroglial plasma membrane. We used the fluorescent dye Laurdan to examine the lipid order with two-photon microscopy and observed that neurons induce a dramatic lipid condensation of the oligodendroglial membrane. On a nanoscale resolution, using stimulated emission depletion and fluorescence resonance energy transfer microscopy, we demonstrated a neuronal-dependent clustering of GalC in oligodendrocytes. Most importantly these changes in lipid organization of the oligodendroglial plasma membrane were not observed in shiverer mice that do not express the myelin basic protein. Our data demonstrate that neurons induce the condensation of the myelin-forming bilayer in oligodendrocytes and that MBP is involved in this process of plasma membrane rearrangement. We propose that this mechanism is essential for myelin to perform its insulating function during nerve conduction.  相似文献   

12.
Modulation of membrane function by cholesterol.   总被引:6,自引:0,他引:6  
P L Yeagle 《Biochimie》1991,73(10):1303-1310
The molecular basis for the essential role of cholesterol in mammalian (and other cholesterol-requiring) cells has long been the object of intense interest. Cholesterol has been found to modulate the function of membrane proteins critical to cellular function. Current literature supports two mechanisms for this modulation. In one mechanism, the requirement of 'free volume' by integral membrane proteins for conformational changes as part of their functional cycle is antagonized by the presence of high levels of cholesterol in the membrane. In the other mechanism, the sterol modulates membrane protein function through direct sterol-protein interactions. This mechanism provides an explanation for the stimulation of the activity of important membrane proteins and for the essential requirement of a structurally-specific sterol for cell viability. In some cases, these latter membrane proteins exhibit little or no activity in the absence of the specific sterol required for growth of that cell type. The specific sterol required varies from one cell type to another and is unrelated to the ability of that sterol to affect the bulk properties of the membrane.  相似文献   

13.
Crystals of transmembrane proteins may be grown from detergent solutions or in a matrix of membranous lipid bilayers existing in a liquid crystalline state and forming a cubic phase (in cubo). While crystallization in micellar solutions appears analogous to that for soluble proteins, crystallization in lipidic matrices is poorly understood. As this method was shown to be applicable to several membrane proteins, understanding its mechanism will facilitate a rational design of crystallization, minimizing the laborious screening of a large number of parameters. Using polarization microscopy and low-angle X-ray diffraction, experimental evidence is provided to support a mechanistic model for the in cubo crystallization of bacteriorhodopsin in a lipid matrix. Membrane proteins are thought to reside in curved lipid bilayers, to diffuse into patches of lower curvature and to incorporate into lattices which associate to form highly ordered three-dimensional crystals. Critical testing of this model is necessary to generalize it to other membrane proteins.  相似文献   

14.
Endogenous membrane proteins, labeled by incubating human reticulocytes with l-[14C]leucine, are degraded at pH 7.3 by membrane-bound acid proteinases. Solubilized membrane proteins are also degraded at neutral pH by the purified membrane acid proteinases. Exogenous proteins are not degraded by intact membranes and therefore association with the membrane seems to be an essential requirement for protein degradation in the physiological pH range. These findings provide evidence for a physiological function of the enzymes previously characterized as acid proteinases.  相似文献   

15.
A variety of intracellular membrane trafficking pathways are involved in establishing the polarization of resorbing osteoclasts and regulating bone resorption activities. Small GTP-binding proteins of rab family have been implicated as key regulators of membrane trafficking in mammalian cells. Here we used a RT-PCR-based cloning method and confocal laser scanning microscopy to explore the expression array and subcellular localization of rab proteins in osteoclasts. Rab1B, rab4B, rab5C, rab7, rab9, rab11B, and rab35 were identified from rat osteoclasts in this study. Rab5C may be associated with early endosomes, while rab11B is localized at perinuclear recycling compartments and may function in the ruffled border membrane turnover and osteoclast motility. Interestingly, late endosomal rabs, rab7, and rab9, were found to localize at the ruffled border membrane indicating a late endosomal nature of this specialized plasma membrane domain in resorbing osteoclasts. This also suggests that late endocytotic pathways may play an important role in the secretion of lysosomal enzymes, such as cathepsin K, during bone resorption.  相似文献   

16.
The role of FAS to ezrin association in FAS-mediated apoptosis   总被引:9,自引:3,他引:6  
The acquisition of a cell polarity is a crucial requirement for a number of cellular functions, including apoptosis. Cell polarization is an actin cytoskeleton-driven process, through a connection between actin and an increasing number of membrane proteins. The major actors in this connection are ezrin, radixin and moesin, a family of proteins with a high level of homology. Their structure includes an epitope that links to membrane proteins and the other that binds to the actin molecule. In this review we discuss recent data showing that the Fas linkage to the actin cytoskeleton is ezrin mediated and it is an essential requirement for susceptibility to the Fas-mediated apoptosis. The ezrin region responsible of Fas binding consists of 18 aminoacids mapped on the median lobe of the ezrin FERM domain. This binding is specific and of key importance in the control of cell homeostasis. Moreover, Fas-ezrin co-localization, ezrin phosphorylation and early acquisition of susceptibility to Fas-mediated apoptosis, may have a role in some human diseases in which programmed cell death seems to be a central pathogenetic mechanism, such as AIDS.Angelo De Milito was supported by a grant from the Swedish Research Council.  相似文献   

17.
The acquisition of spatial and functional asymmetry between the rear and the front of the cell is a necessary step for cell chemotaxis. Insulin-like growth factor-I (IGF-I) stimulation of the human adenocarcinoma MCF-7 induces a polarized phenotype characterized by asymmetrical CCR5 chemokine receptor redistribution to the leading cell edge. CCR5 associates with membrane raft microdomains, and its polarization parallels redistribution of raft molecules, including the raft-associated ganglioside GM1, glycosylphosphatidylinositol-anchored green fluorescent protein and ephrinB1, to the leading edge. The non-raft proteins transferrin receptor and a mutant ephrinB1 are distributed homogeneously in migrating MCF-7 cells, supporting the raft localization requirement for polarization. IGF-I stimulation of cholesterol-depleted cells induces projection of multiple pseudopodia over the entire cell periphery, indicating that raft disruption specifically affects the acquisition of cell polarity, but not IGF-I-induced protrusion activity. Cholesterol depletion inhibits MCF-7 chemotaxis, which is restored by replenishing cholesterol. Our results indicate that initial segregation between raft and non-raft membrane proteins mediates the necessary redistribution of specialized molecules for cell migration.  相似文献   

18.
Optical microscopy, when applied to livinganimals, provides a powerful means of studying cell biology in the mostphysiologically relevant setting. The ability of two-photon microscopyto collect optical sections deep into biological tissues has opened upthe field of intravital microscopy to high-resolution studies of the brain, lens, skin, and tumors. Here we present examples of the way inwhich two-photon microscopy can be applied to intravital studies ofkidney physiology. Because the kidney is easily externalized withoutcompromising its function, microscopy can be used to evaluate variousaspects of renal function in vivo. These include cell vitality andapoptosis, fluid transport, receptor-mediated endocytosis, blood flow, and leukocyte trafficking. Efficient two-photon excitation of multiple fluorophores permits comparison of multiple probes andsimultaneous characterization of multiple parameters and yields spectral information that is crucial to the interpretation of imagescontaining uncharacterized autofluorescence. The studies described heredemonstrate the way in which two-photon microscopy can provide a levelof resolution previously unattainable in intravital microscopy,enabling kinetic analyses and physiological studies of the organs ofliving animals with subcellular resolution.

  相似文献   

19.
We report on the investigation of the structure of DNA liquid crystal (LC) phases by means of polarization sensitive two-photon microscopy (PSTPM). DNA was stained with fluorescent dyes, an intercalator propidium iodide, or a groove binder Hoechst 3342, and the angular dependence of the intensity of two-photon excited fluorescence emitted by the dye was collected. The local orientation of DNA molecules in cholesteric and columnar LC phases was established on the basis of the relative angle between the transition dipole of the dye and the long axis of DNA helix. Three-dimensional images of the cholesteric phase were obtained making use of the intrinsic 3D resolving ability of two-photon microscopy. We also discuss the influence of dyes on the parameters of DNA LC phases and comment on advantages and limitations of the PSTPM technique in comparison with other LC characterization techniques.  相似文献   

20.
Photoactivatable fluorescent proteins represent an innovative tool for the direct observation of time dependent macromolecular events in living systems. The possibility of switching on a selected and confined subset of the expressed target proteins allows to follow biological processes reaching high signal to noise ratios. In particular, use of non-linear interactions to bring the molecules in the activated fluorescent form make it possible to extend the advantages of photoactivation to events that requires 3D spatial localization. In this work, we show the possibility to realize confined activated volumes in living cells, by employing photoactivatable green fluorescent protein (paGFP) in two-photon microscopy. The analysis of the kinetics of two-photon paGFP activation in dependence of the wavelength, the laser intensity and the exposure time is provided. This study allowed to assess the optimal conditions to induce photoactivation in living samples and to track the behaviour of tagged histone H2B during cellular division. Furthermore we investigate paGFP photoactivation under evanescent wave illumination. Total internal reflection set-up has been used to selectively activate subresolved distribution of proteins localized in the basal membrane surroundings. These two photoactivation methods provide a suitable tool for many biological applications, combining subresolved surface and in-depth three-dimensionally confined investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号