首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activity-dependent protein phosphorylation is a highly dynamic yet tightly regulated process essential for cellular signaling. Although recognized as critical for neuronal functions, the extent and stoichiometry of phosphorylation in brain cells remain undetermined. In this study, we resolved activity-dependent changes in phosphorylation stoichiometry at specific sites in distinct subcellular compartments of brain cells. Following highly sensitive phosphopeptide enrichment using immobilized metal affinity chromatography and mass spectrometry, we isolated and identified 974 unique phosphorylation sites on 499 proteins, many of which are novel. To further explore the significance of specific phosphorylation sites, we used isobaric peptide labels and determined the absolute quantity of both phosphorylated and non-phosphorylated peptides of candidate phosphoproteins and estimated phosphorylation stoichiometry. The analyses of phosphorylation dynamics using differentially stimulated synaptic terminal preparations revealed activity-dependent changes in phosphorylation stoichiometry of target proteins. Using this method, we were able to differentiate between distinct isoforms of Ca2+/calmodulin-dependent protein kinase (CaMKII) and identify a novel activity-regulated phosphorylation site on the glutamate receptor subunit GluR1. Together these data illustrate that mass spectrometry-based methods can be used to determine activity-dependent changes in phosphorylation stoichiometry on candidate phosphopeptides following large scale phosphoproteome analysis of brain tissue.  相似文献   

2.
Several different stoichiometries have been proposed for the Na(+)/monocarboxylate cotransporter SMCT1, including variable Na(+)/substrate stoichiometry. In this work, we have definitively established an invariant 2:1 cotransport stoichiometry for SMCT1. By using two independent means of assay, we first showed that SMCT1 exhibits a 2:1 stoichiometry for Na(+)/lactate cotransport. Radiolabel uptake experiments proved that, unlike lactate, propionic acid diffuses passively through oocyte membranes and, consequently, propionate is a poor candidate for stoichiometric determination by these methods. Although we previously determined SMCT1 stoichiometry by measuring reversal potentials, this technique produced erroneous values, because SMCT1 simultaneously mediates both an inwardly rectifying cotransport current and an outwardly rectifying anionic leak current; the leak current predominates in the range where reversal potentials are observed. We therefore employed a method that compared the effect of halving the external Na(+) concentration to the effect of halving the external substrate concentration on zero-current potentials. Both lactate and propionate were cotransported through SMCT1 using 2:1 stoichiometries. The leak current passing through the protein has a 1 osmolyte/charge stoichiometry. Identification of cotransporter stoichiometry is not always a trivial task and it can lead to a much better understanding of the transport activity mediated by the protein in question.  相似文献   

3.
In eukaryotic cells, protein phosphorylation is an important and widespread mechanism used to regulate protein function. Yet, of the thousands of phosphosites identified to date, only a few hundred at best have a characterized function. It was recently shown that these functional sites are significantly more conserved than phosphosites of unknown function, stressing the importance of considering evolutionary conservation in assessing the global functional landscape of phosphosites. This leads us to review studies that examined the impact of phosphorylation on evolutionary conservation. While all these studies have shown that conservation is greater among phosphorylated sites compared with non-phosphorylated ones, the magnitude of this difference varies greatly. Further, not all studies have considered key factors that may influence the rate of phosphosite evolution. Such key factors are their localization in ordered or disordered regions, their stoichiometry or the abundance of their corresponding protein. Here we take into account all of these factors simultaneously, which reveals remarkable evolutionary patterns. First, while it is well established that protein conservation increases with abundance, we show that phosphosites partly follow an opposite trend. More precisely, Saccharomyces cerevisiae phosphosites present among abundant proteins are 1.5 times more likely to diverge in the closely related species Saccharomyces bayanus when compared with phosphosites present in the 5 per cent least abundant proteins. Second, we show that conservation is coupled to stoichiometry, whereby sites frequently phosphorylated are more conserved than those rarely phosphorylated. Finally, we provide a model of functional and noisy or 'accidental' phosphorylation that explains these observations.  相似文献   

4.
Protein phosphorylation is a ubiquitous protein post-translational modification, which plays an important role in cellular signaling systems underlying various physiological and pathological processes. Current in silico methods mainly focused on the prediction of phosphorylation sites, but rare methods considered whether a phosphorylation site is functional or not. Since functional phosphorylation sites are more valuable for further experimental research and a proportion of phosphorylation sites have no direct functional effects, the prediction of functional phosphorylation sites is quite necessary for this research area. Previous studies have shown that functional phosphorylation sites are more conserved than non-functional phosphorylation sites in evolution. Thus, in our method, we developed a web server by integrating existing phosphorylation site prediction methods, as well as both absolute and relative evolutionary conservation scores to predict the most likely functional phosphorylation sites. Using our method, we predicted the most likely functional sites of the human, rat and mouse proteomes and built a database for the predicted sites. By the analysis of overall prediction results, we demonstrated that protein phosphorylation plays an important role in all the enriched KEGG pathways. By the analysis of protein-specific prediction results, we demonstrated the usefulness of our method for individual protein studies. Our method would help to characterize the most likely functional phosphorylation sites for further studies in this research area.  相似文献   

5.

Background

Protein phosphorylation of G-protein-coupled receptors (GPCR) is central to the myriad of functions that these ubiquitous receptors perform in biology. Although readily addressable with the use of phospho-specific antibodies, analysis phosphorylation at the level of stoichiometry requires receptor isolation and advanced proteomics. We chose two key sites of potential phosphorylation of human beta2-adrenergic receptor (β2AR residues S355 and S356) to ascertain the feasibility of applying targeted mass spectrometry to establishing the stoichiometry of the phosphorylation.

Method

We stimulated HEK293 cells stably expressing Flag-tagged β2AR-eGFP with 10 μM beta-adrenergic agonist (isoproterenol) and made use of proteomics and targeted mass spectrometry (MS) to quantify the molar ration of phosphorylation on S355 and S356 versus non-phosphorylated receptor in agonist-treated cells.

Results

Phosphorylation of either S355 or S356 residue occurred only for agonist-occupied β2AR. The results demonstrated that pS356 is the dominant site of protein phosphorylation. The abundance of the p356 was 8.6-fold more than that of pS355. Calculation of the molar ratio of phosphorylated (pS355 plus pS356) versus non-phosphorylated receptor reveals that at high occupancy of the receptor only 12.4% of the β2AR is phosphorylated at these sites.

Conclusions

Application of advanced proteomics and use of the most sensitive targeted MS strategy makes possible the detection and quantification of phosphorylation of very low abundance peptide digests of β2AR. Establishing the stoichiometry of two key sites of agonist-stimulated phosphorylation with β2AR is an essential first-step to global analysis of the stoichiometry of GPCR phosphorylation.  相似文献   

6.
The abilities of different GTP-binding proteins to serve as phosphosubstrates for the epidermal growth factor (EGF) receptor/tyrosine kinase have been examined in reconstituted phospholipid vesicle systems. During the course of these studies we discovered that a low molecular mass, high affinity GTP-binding protein from bovine brain (designated as the 22-kDa protein) served as an excellent phosphosubstrate for the tyrosine-agarose-purified human placental EGF receptor. The EGF-stimulated phosphorylation of the purified 22-kDa protein occurs on tyrosine residues, with stoichiometries approaching 2 mol of 32Pi incorporated/mol of [35S]guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)-binding sites. The EGF-stimulated phosphorylation of the brain 22-kDa protein requires its reconstitution into phospholipid vesicles. No phosphorylation of this GTP-binding protein is detected if it is simply mixed with the purified EGF receptor in detergent solution or if detergent is added back to lipid vesicles containing the EGF receptor and the 22-kDa protein. The EGF-stimulated phosphorylation of this GTP-binding protein is also markedly attenuated by guanine nucleotides, i.e. GTP, GTP gamma S, or GDP, suggesting that maximal phosphorylation occurs when the GTP-binding protein is in a guanine nucleotide-depleted state. Purified preparations of the 22-kDa phosphosubstrate do not cross-react with antibodies against the ras proteins. However, they do cross-react against two different peptide antibodies generated against specific sequences of the human platelet (and placental) GTP-binding protein originally designated Gp (Evans, T., Brown, M. L., Fraser, E. D., and Northrup, J. K. (1986) J. Biol. Chem. 261, 7052-7059) and more recently named G25K (Polakis, P. G., Synderman, R., and Evans, T. (1989) Biochem. Biophys. Res. Commun. 160, 25-32). When highly purified preparations of the human platelet Gp (G25K) protein are reconstituted with the purified EGF receptor into phospholipid vesicles, an EGF-stimulated phosphorylation of the platelet GTP-binding protein occurs with a stoichiometry approaching 2 mol of 32Pi incorporated/mol of [35S]GTP gamma S-binding sites. As is the case for the brain 22-kDa protein, the EGF-stimulated phosphorylation of the platelet GTP-binding protein is attenuated by guanine nucleotides. Overall, these results suggest that the brain 22-kDa phosphosubstrate for the EGF receptor is very similar, if not identical, to the Gp (G25K) protein. Although guanine nucleotide binding to the brain 22-kDa protein or to the platelet. GTP-binding protein inhibits phosphorylation, the phosphorylated GTP-binding proteins appear to bind [35S]GTP gamma S slightly better than their nonphosphorylated counterparts.  相似文献   

7.
Most phosphoproteomic studies to date have been limited to the identification of phosphoproteins and their phosphorylation sites, and have not assessed the stoichiometry of protein phosphorylation, a critical parameter reflecting the dynamic equilibrium between phosphorylated and non‐phosphorylated pools of proteins. Here, we used a method for measuring phosphorylation stoichiometry through isotope tagging and enzymatic dephosphorylation of tryptic peptides. Using this method, protein digests are divided into two equal aliquots that are modified with either light or heavy isotope tags. One aliquot is dephosphorylated by alkaline phosphatase. Finally, the peptide mixtures are recombined and LC‐MS/MS analysis is performed. With this method, we studied adipocytes of mice stimulated with CL316,243, a β‐3 adrenergic agonist known to induce lipolysis and marked phosphorylation changes in proteins of the lipid droplet surface. In lipid droplet preparations, CL316,243 administration increased phosphorylation of proteins related to regulation of signaling, metabolism and intracellular trafficking in white adipose tissue, including hormone‐sensitive lipase which was 80% phosphorylated at the previously reported site, Ser‐559, and the lipid surface protein perilipin, which was phosphorylated by ~60 and ~40% at previously unreported sites, Ser‐410 and Ser‐460.  相似文献   

8.
9.
The reversible phosphorylation of proteins plays a major role in many vital cellular processes by modulating protein function and transmitting signals within cellular pathways and networks. Because phosphorylation is dynamic and the sites of modification cannot be predicted by an organism's genome, proteomic measurements are required to identify sites of and changes in the phosphorylation state of proteins. The low stoichiometry of phosphorylation sites that accompany the multifarious nature of protein phosphorylation in biological systems continues to challenge the dynamic range of present mass spectrometry (MS) technologies and proteomic measurements, despite the preponderance of research and analytical methods devoted to this area. This review addresses some of the strategies and limitations involving the use of MS to map and quantify changes in protein phosphorylation sites for samples that range from a single protein to an entire proteome, and presents several compelling reasons as to why comprehensive phosphorylation site analysis has proven to be so elusive without a hypothesis-driven experimental approach to elicit more meaningful and confident results.  相似文献   

10.
Uncertainty exists as to the proton stoichiometries of mitochondrial oxidative phosphorylation and consequently as to the ATP stoichiometries. In rat liver mitochondria, ADP/O ratios were determined from the total and extra oxygen consumed during ADP-stimulated respiration under conditions of quantitative conversion of ADP to ATP. For succinate, glutamate plus malate, 3-hydroxybutyrate, and 2-oxoglutarate, respectively, ADP/total O was 1.71, 2.71, 2.61, and 3.45. ADP/extra O was 2.03, 3.04, 3.23, and 4.15. The results were interpreted in terms of linear nonequilibrium thermodynamics. It was shown that ADP/extra O = Z/q where Z is the phenomenological stoichiometry and q is the degree of coupling. q was determined from the dependence of respiratory rate on delta Gp, the phosphorylation potential, and was about 0.98 for all substrates. The results were consistent with ideal ATP/O stoichiometries of 2 for succinate, 3 for glutamate plus malate, 3 or 3 1/4 for 3-hydroxybutyrate, and 4 for 2-oxoglutarate. Taking into account the oxidation-reduction free-energy changes measured across Sites 1 + 2 at static head (J.J. Lemasters, R. Grunwald, and R.K. Emaus J. Biol. Chem. 259, 3058-3063), an ideal ATP/O stoichiometry of 3 1/4 for 3-hydroxybutyrate is proposed. The lower ATP/O for glutamate plus malate is then accounted for by proton translocation linked to glutamate/aspartate exchange. The data suggest a new 13-proton scheme of chemiosmotic coupling in which proton stoichiometries are 3 for the F1Fo-ATPase, 1 for the exchange of ATP for ADP and Pi, and 5, 4, and 4 for Sites 1, 2, and 3.  相似文献   

11.
Protein complexes have largely been studied by immunoaffinity purification and (mass spectrometric) analysis. Although this approach has been widely and successfully used it is limited because it has difficulties reliably discriminating true from false protein complex components, identifying post-translational modifications, and detecting quantitative changes in complex composition or state of modification of complex components. We have developed a protocol that enables us to determine, in a single LC-MALDI-TOF/TOF analysis, the true protein constituents of a complex, to detect changes in the complex composition, and to localize phosphorylation sites and estimate their respective stoichiometry. The method is based on the combination of fourplex iTRAQ (isobaric tags for relative and absolute quantification) isobaric labeling and protein phosphatase treatment of substrates. It was evaluated on model peptides and proteins and on the complex Ccl1-Kin28-Tfb3 isolated by tandem affinity purification from yeast cells. The two known phosphosites in Kin28 and Tfb3 could be reproducibly shown to be fully modified. The protocol was then applied to the analysis of samples immunopurified from Drosophila melanogaster cells expressing an epitope-tagged form of the insulin receptor substrate homologue Chico. These experiments allowed us to identify 14-3-3epsilon, 14-3-3zeta, and the insulin receptor as specific Chico interactors. In a further experiment, we compared the immunopurified materials obtained from tagged Chico-expressing cells that were either treated with insulin or left unstimulated. This analysis showed that hormone stimulation increases the association of 14-3-3 proteins with Chico and modulates several phosphorylation sites of the bait, some of which are located within predicted recognition motives of 14-3-3 proteins.  相似文献   

12.
The turnover measurement of proteins and proteoforms has been largely facilitated by workflows coupling metabolic labeling with mass spectrometry (MS), including dynamic stable isotope labeling by amino acids in cell culture (dynamic SILAC) or pulsed SILAC (pSILAC). Very recent studies including ours have integrated themeasurement of post-translational modifications (PTMs) at the proteome level (i.e., phosphoproteomics) with pSILAC experiments in steady state systems, exploring the link between PTMs and turnover at the proteome-scale. An open question in the field is how to exactly interpret these complex datasets in a biological perspective. Here, we present a novel pSILAC phosphoproteomic dataset which was obtained during a dynamic process of cell starvation using data-independent acquisition MS (DIA-MS). To provide an unbiased “hypothesis-free” analysis framework, we developed a strategy to interrogate how phosphorylation dynamically impacts protein turnover across the time series data. With this strategy, we discovered a complex relationship between phosphorylation and protein turnover that was previously underexplored. Our results further revealed a link between phosphorylation stoichiometry with the turnover of phosphorylated peptidoforms. Moreover, our results suggested that phosphoproteomic turnover diversity cannot directly explain the abundance regulation of phosphorylation during cell starvation, underscoring the importance of future studies addressing PTM site-resolved protein turnover.  相似文献   

13.
Phosphorylation of proteins is a predominant, reversible post-translational modification. It is central to a wide variety of physiological responses and signaling mechanisms. Recent advances have allowed the global scope of phosphorylation to be addressed by mass spectrometry using phosphoproteomic approaches. In this perspective, we discuss four aspects of phosphoproteomics: the insights and implications from recently published phosphoproteomic studies and the applications and limitations of current phosphoproteomic strategies. Since approximately 50,000 known phosphorylation sites do not yet have any ascribed function, we present our perspectives on a major function of protein phosphorylation that may be of predictive value in hypothesis-based investigations. Finally, we discuss strategies to measure the stoichiometry of phosphorylation in a proteome-wide manner that is not provided by current phosphoproteomic approaches.  相似文献   

14.
Reversible protein phosphorylation is an important post-translational modification that controls a wide range of protein functions including enzyme activity, subcellular localisation, protein degradation, intra- and inter-molecular protein interactions. Significant advances in both phosphopeptide enrichment methods and sensitive mass spectrometry instrumentation have been achieved over the past decade to facilitate the large-scale identification of protein phosphorylation in humans and different animal and microbial model systems. While mass spectrometry provides the ability to identify thousands of phosphorylation sites in a single experiment, the further understanding of the functional significance of this modification on protein substrates requires detailed information on the changes in phosphorylation stoichiometry and protein abundance across experimental paradigms. This review presents different sample preparation methods and analytical strategies used in mass spectrometry-based phosphoproteomics to profile protein phosphorylation and unravel the regulation of this modification on protein function.  相似文献   

15.
Tubulin polymerization-promoting protein (TPPP), an unfolded brain-specific protein interacts with the tubulin/microtubule system in vitro and in vivo, and is enriched in human pathological brain inclusions. Here we show that TPPP induces tubulin self-assembly into intact frequently bundled microtubules, and that the phosphorylation of specific sites distinctly affects the function of TPPP. In vitro phosphorylation of wild type and the truncated form (Delta3-43TPPP) of human recombinant TPPP was performed by kinases involved in brain-specific processes. A stoichiometry of 2.9 +/- 0.3, 2.2 +/- 0.3, and 0.9 +/- 0.1 mol P/mol protein with ERK2, cyclin-dependent kinase 5 (Cdk5), and cAMP-dependent protein kinase (PKA), respectively, was revealed for the full-length protein, and 0.4-0.5 mol P/mol protein was detected with all three kinases when the N-terminal tail was deleted. The phosphorylation sites Thr(14), Ser(18), Ser(160) for Cdk5; Ser(18), Ser(160) for ERK2, and Ser(32) for PKA were identified by mass spectrometry. These sites were consistent with the bioinformatic predictions. The three N-terminal sites were also found to be phosphorylated in vivo in TPPP isolated from bovine brain. Affinity binding experiments provided evidence for the direct interaction between TPPP and ERK2. The phosphorylation of TPPP by ERK2 or Cdk5, but not by PKA, perturbed the structural alterations induced by the interaction between TPPP and tubulin without affecting the binding affinity (K(d) = 2.5-2.7 microM) or the stoichiometry (1 mol TPPP/mol tubulin) of the complex. The phosphorylation by ERK2 or Cdk5 resulted in the loss of microtubule-assembling activity of TPPP. The combination of our in vitro and in vivo data suggests that ERK2 can regulate TPPP activity via the phosphorylation of Thr(14) and/or Ser(18) in its unfolded N-terminal tail.  相似文献   

16.
This review describes the current status of proteomic approaches to identify kinase substrates, which may lead to valuable medical applications. It guides the reader towards various methods using 2DE and liquid chromatography-tandem mass spectrometry. Dynamic changes of phosphorylation during extracellular stimuli can be quantitatively monitored by both technologies. Among appropriate prefractionation procedures, the purification of phosphoproteins and phosphopeptides is an absolute step for success. The temporal change and stoichiometry of phosphorylation are the important criteria to evaluate the physiological meaning of the reaction. Kinase substrates can also be identified by in vitro phosphorylation systems employing protein arrays, fractionated lysates, genetically engineered kinases and phage libraries. The final section contains an expert opinion on the current strategies and the issues we are going to challenge in the next 5 years.  相似文献   

17.
Tyrosine hydroxylase was maximally phosphorylated by protein kinase C, with a stoichiometry of 0.43 mol of phosphate/mol of tyrosine hydroxylase subunit at Ser40, and by calmodulin-dependent protein kinase II, with stoichiometries of 0.43 mol/mol at Ser40 and 0.76 mol/mol at Ser19, respectively, without undergoing any significant direct activation. In contrast, the enzyme was maximally phosphorylated with a stoichiometry of 0.78 mol of phosphate/mol of subunit at Ser40 by cAMP-dependent protein kinase, which resulted in a large activation of the enzyme (about 3-fold activation under the assay conditions). Incubation of the enzyme, which had previously been maximally phosphorylated by calmodulin-dependent protein kinase II, with protein kinase C under phosphorylating conditions resulted in no additional incorporation of phosphate into the enzyme, suggesting that both protein kinases phosphorylated Ser40 of the same subunits of the enzyme. Since tyrosine hydroxylase is thought to be composed of four identical subunits, the results may indicate that calmodulin-dependent protein kinase II or protein kinase C phosphorylates only two of the four subunits of the enzyme at Ser40 without affecting the enzyme activity and that cAMP-dependent protein kinase phosphorylates Ser40 of all four subunits of the enzyme molecule, causing a marked activation. Based on a linear relationship between phosphorylation and the resulting activation of the enzyme by cAMP-dependent protein kinase, possible mechanisms for the activation of the enzyme by the protein kinase are discussed.  相似文献   

18.
Arora A  Williamson IM  Lee AG  Marsh D 《Biochemistry》2003,42(17):5151-5158
Phospholamban is a cardiac regulatory protein that, in its monomeric form, inhibits the Ca(2+)-ATPase. Lipid-protein interactions with a synthetic variant of phospholamban, in which all cysteine residues are replaced with alanine, have been studied by spin-label electron spin resonance (ESR) in different lipid host membranes. Both the stoichiometry and selectivity of lipid interactions were determined from the two-component ESR spectra of phospholipid species spin-labeled on the 14 C atom of the sn-2 chain. The lipid stoichiometry is determined by the oligomeric state of the protein and the selectivity by the membrane disposition of the positively charged residues in the N-terminal section of the protein. In dimyristoylphosphatidylcholine (DMPC) membranes, the stoichiometry (N(b)) is 7 lipids/monomer for the full-length protein and 4 for the transmembrane section (residues 26-52). These stoichiometries correspond to the dimeric and pentameric forms, respectively. In palmitoyloleoylphosphatidylcholine, N(b) = 4 for both the whole protein and the transmembrane peptide. In negatively charged membranes of dimyristoylphosphatidylglycerol (DMPG), the lipid stoichiometry is N(b) = 10-11 per monomer for both the full-length protein and the transmembrane peptide. This stoichiometry corresponds to monomeric dispersion of the protein in the negatively charged lipid. The sequence of lipid selectivity is as follows: stearic acid > phosphatidic acid > phosphatidylserine = phosphatidylglycerol = phosphatidylcholine > phosphatidylethanolamine for both the full-length protein and the transmembrane peptide in DMPC. Absolute selectivities are, however, lower for the transmembrane peptide. A similar pattern of lipid selectivity is obtained in DMPG, but the absolute selectivities are reduced considerably. The results are discussed in terms of the integration of the regulatory species in the lipid membrane.  相似文献   

19.
This review describes the current status of proteomic approaches to identify kinase substrates, which may lead to valuable medical applications. It guides the reader towards various methods using 2DE and liquid chromatography-tandem mass spectrometry. Dynamic changes of phosphorylation during extracellular stimuli can be quantitatively monitored by both technologies. Among appropriate prefractionation procedures, the purification of phosphoproteins and phosphopeptides is an absolute step for success. The temporal change and stoichiometry of phosphorylation are the important criteria to evaluate the physiological meaning of the reaction. Kinase substrates can also be identified by in vitro phosphorylation systems employing protein arrays, fractionated lysates, genetically engineered kinases and phage libraries. The final section contains an expert opinion on the current strategies and the issues we are going to challenge in the next 5 years.  相似文献   

20.
We have examined cyclic nucleotide-regulated phosphorylation of the neuronal type I inositol 1,4,5-trisphosphate (IP3) receptor immunopurified from rat cerebellar membranes in vitro and in rat cerebellar slices in situ. The isolated IP3 receptor protein was phosphorylated by both cAMP- and cGMP-dependent protein kinases on two distinct sites as determined by thermolytic phosphopeptide mapping, phosphopeptide 1, representing Ser-1589, and phosphopeptide 2, representing Ser-1756 in the rat protein (Ferris, C. D., Cameron, A. M., Bredt, D. S., Huganir, R. L., and Snyder, S. H. (1991) Biochem. Biophys. Res. Commun. 175, 192-198). Phosphopeptide maps show that cAMP-dependent protein kinase (PKA) labeled both sites with the same time course and same stoichiometry, whereas cGMP-dependent protein kinase (PKG) phosphorylated Ser-1756 with a higher velocity and a higher stoichiometry than Ser-1589. Synthetic decapeptides corresponding to the two phosphorylation sites (peptide 1, AARRDSVLAA (Ser-1589), and peptide 2, SGRRESLTSF (Ser-1756)) were used to determine kinetic constants for the phosphorylation by PKG and PKA, and the catalytic efficiencies were in agreement with the results obtained by in vitro phosphorylation of the intact protein. In cerebellar slices prelabeled with [32P]orthophosphate, activation of endogenous kinases by incubation in the presence of cAMP/cGMP analogues and specific inhibitors of PKG and PKA induced in both cases a 3-fold increase in phosphorylation of the IP3 receptor. Thermolytic phosphopeptide mapping of in situ labeled IP3 receptor by PKA showed labeling on the same sites (Ser-1589 and Ser-1756) as in vitro. In contrast to the findings in vitro, PKG preferentially phosphorylated Ser-1589 in situ. Because both PKG and the IP3 receptor are specifically enriched in cerebellar Purkinje cells, PKG may be an important IP3 receptor regulator in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号