首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chelation binding of divalent cations to phospholipid membranes may cause deformation in the headgroup regions of these lipid molecules. This deformation may be responsible for the observed large increase in surface tension of acidic phospholipid membranes induced by divalent cations. On the other hand, simple binding of monovalent cations without being followed by such a deformation of membrane molecules, does not result in a large surface tension increase in the membrane. A theoretical explanation for the above situation is given and the divalent cation-induced acidic phospholipid membrane fusion as well as other lipid membrane fusions are discussed in terms of the increased surface energy of membranes.  相似文献   

2.
K Akashi  H Miyata  H Itoh    K Kinosita  Jr 《Biophysical journal》1998,74(6):2973-2982
Spontaneous formation of giant unilamellar liposomes in a gentle hydration process, as well as the adhesion energy between liposomal membranes, has been found to be dependent on the concentration of divalent alkali cations, Ca2+ or Mg2+, in the medium. With electrically neutral phosphatidylcholine (PC), Ca2+ or Mg2+ at 1-30 mM greatly promoted liposome formation compared to low yields in nonelectrolyte or potassium chloride solutions. When negatively charged phosphatidylglycerol (PG) was mixed at 10%, the yield was high in nonelectrolytes but liposomes did not form at 3-10 mM CaCl2. In the adhesion test with micropipette manipulation, liposomal membranes adhered to each other only in a certain range of CaCl2 concentrations, which agreed with the range where liposome did not form. The adhesion range shifted to higher Ca2+ concentrations as the amount of PG was increased. These results indicate that the divalent cations bind to and add positive charges to the lipids, and that membranes are separated and stabilized in the form of unilamellar liposomes when net charges on the membranes produce large enough electrostatic repulsion. Under the assumption that the maximum of adhesion energy within an adhesive range corresponds to exact charge neutralization by added Ca2+, association constants of PC and PG for Ca2+ were estimated at 7.3 M(-1) and 86 M(-1), respectively, in good agreement with literature values.  相似文献   

3.
The fusogenic activity of plant Golgi membranes was studied in a cell-free system by assaying lipid mixing and content leakages of fluorescence probes. Golgi membranes from mung bean (Vigna radiata L.) hypocotyl cells fused to liposomes in the absence of any cytosolic proteins and nucleotides. It was demonstrated that the fusion was mediated by integral membrane protein(s), and was influenced by divalent cations (mm). Mg(2+), Ca(2+), and Mn(2+) ions enhanced the lipid mixing by reducing repulsive forces between membranes. In the content leakage assay, Mg(2+) ions also showed a stimulative effect. However, other divalent cations were inhibitory. It is suggested that the fusion system of Golgi membranes comprises at least two components: one that mediates the formation of fusion intermediates prior to pore opening, and one that mediates the subsequent processes. The latter must be sensitive to divalent cations at millimolar concentrations. The fusion of Golgi and biological membranes was induced by divalent cations. We speculated about the biological role of the fusion system studied here.  相似文献   

4.
Surface charge in track-etched polyethylene terephthalate (PET) membranes with narrow pores has been probed with a fluorescent cationic dye (3,3'-diethyloxacarbocyanine iodide (diO-C2-(3))) using confocal microscopy. Staining of negatively charged PET membranes with diO-C2-(3) is a useful measure of surface charge for the following reasons: 1) the dye inhibits K(+) currents through the pores and reduces their selectivity for cations; 2) it inhibits [3H]-choline+ transport and promotes 36Cl- transport across the membrane in a pH- and ionic-strength-dependent fashion; and 3) staining of pores by diO-C2-(3) is reduced by low pH and by the presence of divalent cations such as Ca2+ and Zn2+. Measurement of the time dependence of cyanine staining of pores shows fluctuations of fluorescence intensity that occur on the same time scale as do fluctuations of ionic current in such pores. These data support our earlier proposal that fluctuations in ionic current across pores in synthetic and biological membranes reflect fluctuations in the surface charge of the pore walls in addition to molecular changes in pore proteins.  相似文献   

5.
Liu W  Toney MD 《Biochemistry》2004,43(17):4998-5010
Dialkylglycine decarboxylase (DGD) is a tetrameric pyridoxal phosphate (PLP)-dependent enzyme that catalyzes both decarboxylation and transamination in its normal catalytic cycle. Its activity is dependent on cations. Metal-free DGD and DGD complexes with seven monovalent cations (Li(+), Na(+), K(+), Rb(+), Cs(+), NH(4)(+), and Tl(+)) and three divalent cations (Mg(2+), Ca(2+), and Ba(2+)) have been studied. The catalytic rate constants for cation-bound enzyme (ck(cat) and ck(cat)/bK(AIB)) are cation-size-dependent, K(+) being the monovalent cation with the optimal size for catalytic activity. The divalent alkaline earth cations (Mg(2+), Ca(2+), and Ba(2+)) all give approximately 10-fold lower activity compared to monovalent alkali cations of similar ionic radius. The Michaelis constant for aminoisobutyrate (AIB) binding to DGD-PLP complexes with cations (bK(AIB)) varies with ionic radius. The larger cations (K(+), Rb(+), Cs(+), NH(4)(+), and Tl(+)) give smaller bK(AIB) ( approximately 4 mM), while smaller cations (Li(+), Na(+)) give larger values (approximately 10 mM). Cation size and charge dependence is also found with the dissociation constant for PLP binding to DGD-cation complexes (aK(PLP)). K(+) and Rb(+) possess the optimal ionic radius, giving the lowest values of aK(PLP). The divalent alkaline earth cations give aK(PLP) values approximately 10-fold higher than alkali cations of similar ionic radius. The cation dissociation constant for DGD-PLP-AIB-cation complexes (betaK(M)z+) was determined and also shown to be cation-size-dependent, K(+) and Rb(+) yielding the lowest values. The kinetics of PLP association and dissociation from metal-free DGD and its complexes with cations (Na(+), K(+), and Ba(2+)) were analyzed. All three cations tested increase PLP association and decrease PLP dissociation rate constants. Kinetic studies of cation binding show saturation kinetics for the association reaction. The half-life for association with saturating Rb(+) is approximately 24 s, while the half-life for dissociation of Rb(+) from the DGD-PLP-AIB-Rb(+) complex is approximately 12 min.  相似文献   

6.
Monolayers of the negatively charged phospholipid phosphatidylserine (PS) and of the amphoteric phospholipid dioleoylphosphatidylethanolamine (DOPE) were used to assemble bilayers at the tip of patch-recording pipettes. PS bilayers, with seal resistances in the range of gigaohmns (gigaseals), could only be generated when millimolar concentration of divalent cations, Ca++, Mg++, or Ba++ were present in the pipette and bath solutions. In contrast, gigaseals of DOPE were independent of divalent ion concentration in the pH range where DOPE is predominantly neutral (pH 6.5) or positively charged (pH 1.5). At pH 10.0, when most DOPE molecules bear a net negative charge, gigaseals became divalent cation dependent, in a manner quantitatively similar to that of PS at neutral pH. The results indicate that divalent cations play an important role in stabilizing gigaseals of negatively charged lipid but are of no consequence in neutral or positively charged seals.  相似文献   

7.
The perturbational effects of monovalent and divalent cations on human erythrocyte membranes were analyzed by examining their influence on kinetic and structural characteristics of trinitrobenzenesulfonic acid (TNBS) incorporation into the amino groups of protein and phospholipid structural components. The stimulatory effects of monovalent cations on TNBS incorporation, which were size-independent and attributed to nonspecific membrane alterations resulting from ionic strength factors, contrasted with the more pronounced stimulatory properties of divalent cations which were markedly size-dependent. These stimulatory effects of cations on TNBS incorporation were associated with alterations not only in rate but also in activation energy in incorporation. Changes in activation energy produced by divalent cations paralleled their ability to perturb membrane protein components and probably reflected changes in probe permeation. The rate of TNBS incorporation exhibited a dependence on divalent cation ionic radius which paralleled ion-induced perturbations in the labelling of the membrane amino phospholipid phosphatidylethanolamine. Divalent cations differed both in the relative extent and in the characteristics of protein and phospholipid perturbation. Alkaline earth cations behaved as a rather homogeneous group while Ni++, Co++ and Mn++ constituted a second heterogeneous group. The influence of monovalent and divalent cations on the hemolytic behavior of intact erythrocytes paralleled their effects on TNBS incorporation into isolated membranes rather closely. It is suggested that TNBS incorporation may provide a valuable means of analyzing functionally relevant cation-induced alterations in biological membranes in general.  相似文献   

8.
The release of divalent cations (Ca2+ and Sr2+) from rat liver mitochondria after membrane depolarization with protonophore (carbonyl cyanide m-chlorophenyl hydrazone, CCCP), sodium azide and K(+)-ionophore (valinomycin) was studied. It is stated that membrane depolarization itself is not sufficient for cations release from mitochondrial matrix (provided that mitochondrial permeability transition pore is blocked by cyclosporin A). Complete delivering of divalent cations is observed only after protonophore (CCCP) addition to suspension of deenergized mitochondria. The data show that membrane permeabilisation to hydrogen ions (H+) is necessary for complete cation release from the mitochondrial matrix. The enhancement in K(+)-conductivity of mitochondrial membrane (by valinomycin), on the contrary, is not able to provide complete delivering of cations from mitochondria. It is shown that quantity of divalent metal cation released from mitochondria (depolarized and permeabilized for K+ as well) is proportional to the concentration of protonophore (but not K(+)-ionophore) introduced in the incubation medium. The data obtained lead to the conclusion that H(+)-permeabilization of the mitochondrial membrane is necessary for the complete release of Ca2+ and Sr2+ from mitochondria after membrane depolarization. The possible mechanism of divalent metal cations release from deenergized mitochondria is discussed.  相似文献   

9.
In this study, we performed all-atom long-timescale molecular dynamics simulations of phospholipid bilayers incorporating three different proportions of negatively charged lipids in the presence of K(+), Mg(2+), and Ca(2+) ions to systemically determine how membrane properties are affected by cations and lipid compositions. Our simulations revealed that the binding affinity of Ca(2+) ions with lipids is significantly stronger than that of K(+) and Mg(2+) ions, regardless of the composition of the lipid bilayer. The binding of Ca(2+) ions to the lipids resulted in bilayers having smaller lateral areas, greater thicknesses, greater order, and slower rotation of their lipid head groups, relative to those of corresponding K(+)- and Mg(2+)-containing systems. The Ca(2+) ions bind preferentially to the phosphate groups of the lipids. The complexes formed between the cations and the lipids further assembled to form various multiple-cation-centered clusters in the presence of anionic lipids and at higher ionic strength-most notably for Ca(2+). The formation of cation-lipid complexes and clusters dehydrated and neutralized the anionic lipids, creating a more-hydrophobic environment suitable for membrane aggregation. We propose that the formation of Ca(2+)-phospholipid clusters across apposed lipid bilayers can work as a "cation glue" to adhere apposed membranes together, providing an adequate configuration for stalk formation during membrane fusion.  相似文献   

10.
Summary The perturbational effects of monovalent and divalent cations on human erythrocyte membranes were analyzed by examining their influence on kinetic and structural characteristics of trinitrobenzenesulfonic acid (TNBS) incorporation into the amino groups of protein and phospholipid structural components. The stimulatory effects of monovalent cations on TNBS incorporation, which were size-independent and attributed to nonspecific membrane alterations resulting from ionic strength factors, contrasted with the more pronounced stimulatory properties of divalent cations which were markedly size-dependent. These stimulatory effects of cations on TNBS incorporation were associated with alterations not only in rate but also in activation energy of incorporation. Changes in activation energy produced by divalent cations paralleled their ability to perturb membrane protein components and probably reflected changes in probe permeation. The rate of TNBS incorporation exhibited a dependence on divalent cation ionic radius which paralleled ion-induced perturbations in the labelling of the membrane amino phospholipid phosphatidylethanolamine. Divalent cations differed both in the relative extent and in the characteristics of protein and phospholipid perturbation. Alkaline earth cations behaved as a rather homogeneous group while Ni++, Co++ and Mn++ constituted a second heterogeneous group. The influence of monovalent and divalent cations on the hemolytic behavior of intact erythrocytes paralleled their effects on TNBS incorporation into isolated membranes rather closely. It is suggested that TNBS incorporation may provide a valuable means of analyzing functionally relevant cation-induced alterations in biological membranes in general.  相似文献   

11.
Fast-scan cyclic voltammetry (FSCV) is a powerful technique for measuring sub-second changes in neurotransmitter levels. A great time-limiting factor in the use of FSCV is the production of high-quality recording electrodes; common recording electrodes consist of cylindrical carbon fiber encased in borosilicate glass. When the borosilicate is heated and pulled, the molten glass ideally forms a tight seal around the carbon fiber cylinder. It is often difficult, however, to guarantee a perfect seal between the glass and carbon. Indeed, much of the time spent creating electrodes is in an effort to find a good seal. Even though epoxy resins can be useful in this regard, they are irreversible (seals are permanent), wasteful (epoxy cannot be reused once hardener is added), hazardous (hardeners are often caustic), and require curing. Herein we characterize paraffin as an electrode sealant for FSCV microelectrodes. Paraffin boasts the advantages of near-immediate curing times, simplicity in use, long shelf-life and stable waterproof seals capable of withstanding extended cycling. Borosilicate electrode tips were left intact or broken and dipped in paraffin embedding wax. Excess wax was removed from the carbon surface with xyelenes or by repeated cycling at an extended waveform (-0.4 to 1.4V, 400 V/s, 60 Hz). Then, the waveform was switched to a standard waveform (-0.4 to 1.3V, 400 V/s, 10 Hz) and cycled until stable. Wax-sealing does not inhibit electrode sensitivity, as electrodes detected linear changes in dopamine before and after wax (then xylenes) exposure. Paraffin seals are intact after 11 days of implantation in the mouse, and still capable of measuring transient changes in in vivo dopamine. From this it is clear that paraffin wax is an effective sealant for FSCV electrodes that provides a convenient substitute to epoxy sealants.  相似文献   

12.
Electrochemical properties of cation-selective glass microelectrodes made from NAS27-04 were studied. There was a marked fall in electrical resistance of the microelectrodes stored in 3 M KCl solution (aging). The resistance was in the range of 2 × 107 to 109 Ω, which were much lower than those estimated from the electrical resistivity of dry glass for the equivalent dimensions of microelectrode working tips. This fall in resistance was accompanied by an increase in microelectrode selectivity for K+. The low resistance and increased K+ selectivity are desirable features that make the microelectrode more suitable for application to biologic studies. The changes in microelectrode resistance and selectivity were interpreted to be due to hydration of the entire thickness of the glass membrane, resulting in a change in the field strength of anionic sites and formation of ionic channels in the glass membrane. Thus, the fall in resistance is explained by decrease in energy barrier, which is equivalent to the activation energy of interaction between the cations and anionic sites in the glass membrane. Some of the microelectrodes showed a transient depolarization that resembled the action potential of a biological membrane. This transient depolarization was associated with the changes in microelectrode resistance and selectivity. The transient depolarizations suggest the temporary development of wide channels in the membrane permitting free movement of hydrated cations according to the bulk electrochemical gradient.  相似文献   

13.
Leakage of ions and low-molecular-weight metabolites from Lettre cells is induced by synthetic melittin, as effectively as by melittin isolated from bee venom; in each case leakage is inhibited by Ca2+, Zn2+ or H+. Inhibition of leakage by divalent cations is reversible in that Lettre cells incubated with melittin (or with Triton X-100) in the presence of inhibitory amounts of Zn2+, when freed of Zn2+ by EGTA or by centrifugation, begin to leak (in Zn2(+)-sensitive manner). Electrorotation of Lettre cells is altered by melittin, compatible with membrane permeabilization; melittin plus Zn2+ does not alter electrorotation until Zn2+ (and unbound melittin) are removed. Melittin or Triton X-100 added to calcein-loaded liposomes induces leakage of calcein; divalent cations inhibit. Energy transfer between liposome-associated melittin and 2-, 7- or 12-(9-anthroyloxy)stearate (AS) is maximal with 12-AS; addition of Zn2+ has little effect. Circular dichroism spectra of melittin plus liposomes are unaffected by Zn2+. These results show that the formation of divalent cation-sensitive pores is not dependent on the presence of endogenous membrane proteins and that the action of divalent cations is not by displacement of melittin (or Triton) from the lipid bilayer.  相似文献   

14.
Sponges are the most ancient known metazoans. Their cells are specialised but not organised into tissues or organs. Recordings of action potential-like propagating electrical impulses suggested that electrical signalling may occur between sponge cells, but the characterization of ionic channels in these cells is still at the beginning. Actually, sponge cell surfaces are covered by a complex glycocalyx and long-chain fatty acids are present in the lipid core of their membranes. In these experimental conditions, a low percentage of tight seals (3%) was obtained applying the patch-clamp technique to cells isolated from the Mediterranean Demospongia Axinella polypoides. This paper shows in detail how difficulties can be overcome making use of trivalent cations in the extracellular solution and how electrophysiological measurements can be performed on sponge cell membranes. A potassium selective conductance is shown as an example. We suggest that the presented methodology could also be applied to other cell types.  相似文献   

15.
Characterization of a chloroplast inner envelope K+ channel.   总被引:2,自引:2,他引:0       下载免费PDF全文
F Mi  J S Peters    G A Berkowitz 《Plant physiology》1994,105(3):955-964
A K(+)-conducting protein of the chloroplast inner envelope was characterized as a K+ channel. Studies of this transport protein in the native membrane documented its sensitivity to K+ channel blockers. Further studies of native membranes demonstrated a sensitivity of K+ conductance to divalent cations such as Mg2+, which modulate ion conduction through interaction with negative surface charges on the inner-envelope membrane. Purified chloroplast inner-envelope vesicles were fused into an artificial planar lipid bilayer to facilitate recording of single-channel K+ currents. These single-channel K+ currents had a slope conductance of 160 picosiemens. Antibodies generated against the conserved amino acid sequence that serves as a selectivity filter in the pore of K+ channels immunoreacted with a 62-kD polypeptide derived from the chloroplast inner envelope. This polypeptide was fractionated using density gradient centrifugation. Comigration of this immunoreactive polypeptide and K+ channel activity in sucrose density gradients further suggested that this polypeptide is the protein facilitating K+ conductance across the chloroplast inner envelope.  相似文献   

16.
Slr0006 is one of the Synechocystis sp. PCC 6803 proteins strongly induced under carbon limiting conditions. Slr0006 has no predicted transmembrane helices or signal peptide sequence, yet it was exclusively recovered in the membrane fraction of Synechocystis, when the cells were broken in isolation buffers which contain divalent cations and are generally used for photosynthesis studies. Even subsequent washing of the membranes with high salt or various detergents did not release Slr0006, indicating strong binding of the Slr0006 protein to the membranes. Further, DNAse or RNAse treatment did not disturb the tight binding of Slr0006 protein to the membranes. Nevertheless, when the cells were broken in the absence of divalent cations, Slr0006 remained completely soluble. Binding of the Slr0006 to the membrane could not be properly reconstituted if the cations were added after breaking the cells in the absence of divalent ions. This unusual phenomenon has to be considered in identification and localization of other yet uncharacterized cyanobacterial proteins.  相似文献   

17.
Incorporation of Megatura crenulata hemocyanin into phosphatidylcholine black lipid membranes results in the formation of ion channels. Channel properties depend on many factors, three of which are examined in this work: type and concentration of electrolyte and applied voltage. Eight cations at different concentrations have been used. Instantaneous conductance of the channel is a saturating function of both applied voltage and ionic strength of the bathing solution with monovalent cations, but only of ionic strength with divalent cations. Steady-state voltage-conductance relations are nonlinear for both signs but show slight saturation with ionic strength. Relaxation towards the steady state can be fitted by two exponentials with different time constants. All experimental data are fitted postulating the existence of a mechanism of voltage gating of the channel, and of discrete negative charge near its mouth. Specific and nonspecific binding of cations is required.  相似文献   

18.
The role of the divalent cations in the purple membrane is generally understood as the release mechanism of the blue form appearance. The reconstitution by cation addition leads to the recovery of the initial spectral properties. Numerous data are available in the literature on this matter but they are scattered, so that synthetic understanding is not easy. The role of divalent cations was studied through spectrophotometric titrations and electrophoretic mobility measurements, i.e., zeta potential valuations. Thus, correlations between the bacteriorhodopsin (bR) state and the whole membrane in equilibrium with a definite medium could be made. Deionization was not a fully reversible process. The absence of cations affect neither the rate of the M412 formation nor its lifetime but the yield of M412/bR was 50% lower. The number of protons involved in the blue to purple transition of both membranes was different and the reconstitution did not erase this difference. It was observed that the number of protons dissociated upon cation addition corresponded approximately to the number of positive charges removed by deionization. Electrophoretic mobility titrations showed large differences between the membranes, illustrating the influence of the surface charge density on the pK of the transition. Taking advantage of the reversible light adaptation process, the reciprocal influence of the charge density of the membrane surface and the retinal state in bR was shown. Specificity of the divalent cations was questioned by a direct substitution of them by imidazol, which left the membrane intact. The partial reversibility of the deionization, the decrease of the M412 yield, the differences in the titratable protons, and the nonstrict specificity toward divalent cations suggested that another unknown factor could be removed from the membrane.  相似文献   

19.
Phosphatidylglycerol (PG) is an anionic lipid commonly found in large proportions in the cell membranes of bacteria and plants and, to a lesser extent, in animal cells. PG plays an important role in the regulation and determination of the elastic properties of the membrane. Using small angle X-ray scattering experiments, we obtain that the monolayer spontaneous curvature of dioleoylphosphatidylglycerol (DOPG) is -1/150+/-0.021 nm(-1) when measured in 150 mM NaCl. When the experiments are carried out in 150 mM NaCl and 20mM MgCl(2), the value obtained for the monolayer spontaneous curvature is -1/8.7+/-0.037 nm(-1). These values are of importance in modelling the effects of curvature elastic stress in membrane lipid homeostasis in the bacterium Acholeplasma laidlawii [Alley, S.H., Barahona, M., Ces, O., Templer, R.H., in press. Biophysical regulation of lipid biosynthesis in the plasma membrane. Biophys. J.] and indicate that divalent cations can play a significant role in altering curvature elastic stress.  相似文献   

20.
Fusion of cellular membranes is a ubiquitous biological process requiring remodeling of two phospholipid bilayers. We believe it is very likely that merging of membranes proceeds via similar sequential intermediates. Contacting membranes form a stalk between the proximal leaflets that expands radially into an hemifusion diaphragm (HD) and subsequently open to a fusion pore. Although considered to be a key intermediate in fusion, direct experimental verification of this structure is difficult due to its transient nature. Using confocal fluorescence microscopy we have investigated the fusion of giant unilamellar vesicles (GUVs) containing phosphatidylserine and fluorescent virus derived transmembrane peptides or membrane proteins in the presence of divalent cations. Time-resolved imaging revealed that fusion was preceded by displacement of peptides and fluorescent lipid analogs from the GUV-GUV adhesion region. A detailed analysis of this area being several μm in size revealed that peptides were completely sequestered as expected for an HD. Lateral distribution of lipid analogs was consistent with formation of an HD but not with the presence of two adherent bilayers. Formation and size of the HD were dependent on lipid composition and peptide concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号