首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The aim of this study was to investigate the number of sarcomeres of different regions (proximal, intermediate and distal third) of the M. gastrocnemius of the rat and compare them with in vivo measurements of the length of the most proximal and distal muscle bundles. These lengths were measured with the aid of dividers at the muscle resting length. The number of sarcomeres was calculated from the length of fibres (measured at 20 times enlargement) tested from HNO3-treated muscle and the average sarcomere length (determined from 80 microns samples taken along the fibres every 800 microns). Ten fibres were isolated from each of three regions of six muscles. All muscles showed the smallest number of sarcomeres in the proximal region of the muscle and increasingly higher numbers in the intermediate and distal parts. The number of sarcomeres in the proximal region is significantly (p less than 0.01) smaller than that of the distal region. These results agree with the results of in vivo length measurements of the most proximal and distal bundles (resp. 31 and 36% of the muscle resting length), the former being significantly (p less than .01) smaller. As there is no significant difference (p less than 0.01) in the length of the treated fibres of the three regions it is concluded that HNO3 treatment does affect the fibres of the muscle in the different regions in a non uniform fashion.  相似文献   

2.
Finite element modeling of aponeurotomized rat extensor digitorium longus muscle was performed to investigate the acute effects of proximal aponeurotomy. The specific goal was to assess the changes in lengths of sarcomeres within aponeurotomized muscle and to explain how the intervention leads to alterations in muscle length-force characteristics. Major changes in muscle length-active force characteristics were shown for the aponeurotomized muscle modeled with (1) only a discontinuity in the proximal aponeurosis and (2) with additional discontinuities of the muscles' extracellular matrix (i.e., when both myotendinous and myofascial force transmission mechanisms are interfered with). After muscle lengthening, two cut ends of the aponeurosis were separated by a gap. After intervention (1), only active slack length increased (by approximately 0.9 mm) and limited reductions in muscle active force were found (e.g., muscle optimum force decreased by only 1%) After intervention (2) active slack increased further (by 1.2 mm) and optimum length as well (by 2.0 mm) shifted and the range between these lengths increased. In addition, muscle active force was reduced substantially (e.g., muscle optimum force decreased by 21%). The modeled tearing of the intramuscular connective tissue divides the muscle into a proximal and a distal population of muscle fibers. The altered force transmission was shown to lead to major sarcomere length distributions [not encountered in the intact muscle and after intervention (1)], with contrasting effects for the two muscle fiber populations: (a) Within the distal population (i.e. fibers with no myotendinous connection to the muscles' origin), sarcomeres were much shorter than within the proximal population (fibers with intact myotendinous junction at both ends). (b) Within the distal population, from proximal ends of muscle fibers to distal ends, the serial distribution of sarcomere lengths ranged from the lowest length to high lengths. In contrast within the proximal population, the direction of the distribution was reversed. Such differences in distribution of sarcomere lengths between the proximal and distal fiber populations explain the shifts in muscle active slack and optimal lengths. Muscle force reduction after intervention (2) is explained primarily by the short sarcomeres within the distal population. However, fiber stress distributions showed contribution of the majority of the sarcomeres to muscle force: myofascial force transmission prevents the sarcomeres from shortening to nonphysiological lengths. It is concluded that interfering with the intramuscular myofascial force transmission due to rupturing of the intramuscular connective tissue leads to a complex distribution of sarcomere lengths within the aponeurotomized muscle and this determines the acute effects of the intervention on muscle length-force characteristics rather than the intervention with the myotendinous force transmission after which the intervention was named. These results suggest that during surgery, but also postoperatively, major attention should be focused on the length and activity of aponeurotomized muscle, as changes in connective tissue tear depth will affect the acute effects of the intervention.  相似文献   

3.
Changes of architecture of adult rat gastrocnemius medialis muscle (GM) due to growth were studied in relation to length-force characteristics. Myofilament lengths were unchanged, indicating constant sarcomere length-force characteristics. Number of sarcomeres within fibers was unchanged as a consequence of growth, allowing persistence of differences between proximal and distal fibers in all age groups. Distal fiber length at muscle optimum length was shorter for the 14- than for the 10- and 16-week age groups despite a lack of difference of number of sarcomeres. This is indicative of a shift of optimum length. Some evidence for the occurrence of distribution of fiber optimum lengths with respect to muscle optimum length was found in other age groups as well, albeit of a smaller magnitude. Muscle and aponeurosis length increased substantially with growth. Functional effects of increased aponeurosis lengths were increased contributions to muscle length changes by the aponeurosis, allowing smaller fiber contributions in older animals. Fiber angle increased approximately 5 degrees with growth. Despite the differences of architecture indicated above, muscle length range between optimum length and active slack length was constant. This was probably caused by widening of this length range in the youngest age group by variations of architecture within the muscle. It is concluded that adaptation of aspects of muscle architecture is an important mechanism for adult muscle growth in rat GM. Of these aspects regulation of muscle length seems a dominant factor.  相似文献   

4.
Effects of four and six weeks of immobilization at short length of gastrocnemius muscle on its architecture at optimum muscle length and length-force characteristics were studied. In general, immobilization effects were similar after 4 and 6 weeks. Smaller physiological cross-sectional area and lower muscle force were found as a consequence of immobilization. Muscle and aponeurosis were shorter. This was shown to be quantitatively related to atrophy i.e. smaller fibre diameter. Despite this atrophy no effects of immobilization on fibre and aponeurosis angles could be shown. Adaptation of the number of sarcomeres in series was found exclusively in distal fibres after 4 weeks of immobilization. No significant effects were found for proximal fibres of muscles at this time nor for any fibres after 6 weeks of immobilization. The effects of immobilization on muscle architecture did not affect the length range of active force exertion. It is concluded that muscle length adaptation as a consequence of short length immobilization is not related to adaptation of number of sarcomeres in series but to the occurrence of atrophy. It is also concluded that atrophy of pennate muscles does not have to be accompanied by a lower fibre and aponeurosis angle. Comparison of immobilized and control group rats indicates that the effects of immobilization can be characterized as a combination of retarded development of several variables and the influence of atrophy and its consequences.  相似文献   

5.
Effects of extramuscular myofascial force transmission on the acute effects of aponeurotomy were studied using finite element modeling and implications of such effects on surgery were discussed. Aponeurotomized EDL muscle of the rat was modeled in two conditions: (1) fully isolated (2) with intact extramuscular connections. The specific goal was to assess the alterations in muscle length-force characteristics in relation to sarcomere length distributions and to investigate how the mechanical mechanism of the intervention is affected if the muscle is not isolated. Major effects of extramuscular myofascial force transmission were shown on muscle length-force characteristics. In contrast to the identical proximal and distal forces of the aponeurotomized isolated muscle, substantial proximo-distal force differences were shown for aponeurotomized muscle with extramuscular connections (for all muscle lengths F (dist) > F (prox) after distal muscle lengthening). Proximal optimal length did not change whereas distal optimal length was lower (by 0.5 mm). The optimal forces of the aponeurotomized muscle with extramuscular connections exerted at both proximal and distal tendons were lower than that of isolated muscle (by 15 and 7%, respectively). The length of the gap separating the two cut ends of the intervened aponeurosis decreases substantially due to extramuscular myofascial force transmission. The amplitude of the difference in gap length was muscle length dependent (maximally 11.6% of the gap length of the extramuscularly connected muscle). Extramuscular myofascial force transmission has substantial effects on distributions of lengths of sarcomeres within the muscle fiber populations distal and proximal to the location of intervention: (a) Within the distal population, the substantial sarcomere shortening at the proximal ends of muscle fibers due to the intervention remained unaffected however, extramuscular myofascial force transmission caused a more pronounced serial distribution towards the distal ends of muscle fibers. (b) In contrast, extramuscular myofascial force transmission limits the serial distribution of sarcomere lengths shown for the aponeurotomized isolated muscle in the proximal population. Fiber stress distributions showed that extramuscular myofascial force transmission causes most sarcomeres within the aponeurotomized muscle to attain lengths favorable for higher force exertion. It is concluded that acute effects of aponeurotomy on muscular mechanics are affected greatly by extramuscular myofascial force transmission. Such effects have important implications for the outcome of surgery performed to improve impeded function since muscle in vivo is not isolated both anatomically and mechanically.  相似文献   

6.
The muscular system of the tarsier was first described by Burmeister (1846), who noted that brachial extensors (triceps complex) have six heads. The first three heads, respectively, correspond to the long, lateral and medial heads of the triceps brachii muscle in man. The fourth head is the anconaeus and the fifth is the dorsoepitrochlearis. Schultz (1984) divided the sixth head into two different parts (preaxial and postaxial) from the viewpoint of nerve supply. The present study found that the whole sixth head is innervated by the ulnar nerve, and we propose that it is recognized as the proximal and distal heads of the (preaxial) epitrochleoanconaeus muscle. The proximal head may have developed specially in the tarsier in addition to the distal head observed in other prosimians. It is thought to support the extension of the elbow joint and contribute to the tarsier's effective locomotion.  相似文献   

7.
The specific purpose of the present study was to show that extramuscular myofascial force transmission exclusively has substantial effects on muscular mechanics. Muscle forces exerted at proximal and distal tendons of the rat extensor digitorium longus (EDL) were measured simultaneously, in two conditions (1) with intact extramuscular connections (2) after dissecting the muscles' extramuscular connections to a maximum extent without endangering circulation and innervation (as in most in situ muscle experiments). A finite element model of EDL including the muscles' extramuscular connections was used to assess the effects of extramuscular myofascial force transmission on muscular mechanics, primarily to test if such effects lead to distribution of length of sarcomeres within muscle fibers. In condition (1), EDL isometric forces measured at the distal and proximal tendons were significantly different (F(dist) > F(prox), DeltaF approximates maximally 40% of the proximal force). The model results show that extramuscular myofascial force transmission causes distributions of strain in the fiber direction (shortening in the proximal, lengthening in the distal ends of fibers) at higher lengths. This indicates significant length distributions of sarcomeres arranged in series within muscle fibers. Stress distributions found are in agreement with the higher distal force measured, meaning that the muscle fiber is no longer the unit exerting equal forces at both ends. Experimental results obtained in condition (2) showed no significant changes in the length-force characteristics (i.e., proximo-distal force differences were maintained). This shows that a muscle in situ has to be distinguished from a muscle that is truly isolated in which case the force difference has to be zero. We conclude that extramuscular myofascial force transmission has major effects on muscle functioning.  相似文献   

8.
BACKGROUND: Effects of extramuscular connective tissues on muscle force (experimentally measured) and lengths of sarcomeres (modeled) were investigated in rat. It was hypothesized that changes of muscle-relative position affect the distribution of lengths of sarcomeres within muscle fibers. METHOD OF APPROACH: The position of extensor digitorum longus muscle (EDL) relative to intact extramuscular connective tissues of the anterior crural compartment was manipulated without changing its muscle-tendon complex length. RESULTS: Significant effects of EDL muscle relative position on proximal and distal EDL forces were found, indicating changes of extramuscular myofascial force transmission. EDL isometric force exerted at its proximal and distal tendons differed significantly. Finite-element modeling showed that the distribution of lengths of sarcomeres is altered by changes of muscle-relative position. CONCLUSIONS: It is concluded that forces exerted on a muscle via extramuscular myofascial pathways augment distributions of lengths of sarcomeres within that muscle.  相似文献   

9.
The aim of the present study was to quantify to what extent the scar tissue formation following the transfer of flexor carpi ulnaris (FCU) to the distal tendon of extensor carpi radialis (ECR) affects the force transmission from transferred FCU in the rat. Five weeks after recovery from surgery (tendon transfer group) and in a control group, isometric length-force characteristics of FCU were assessed for progressive stages of dissection: (i) with minimally disrupted connective tissues, (ii) after full dissection of FCU distal tendon exclusively, and (iii) after additional partial dissection of FCU muscle belly. Total and passive length-force characteristics of transferred and control FCU changed significantly by progressive stages of dissection. In both groups, tendon dissection decreased passive FCU force exerted at the distal tendon, as well as the slope of the length-force curve. However, force and slope changes were more pronounced for transferred FCU compared to controls. No additional changes occurred after muscle belly dissection. In contrast, total force increased in transferred FCU following both tendon and muscle belly dissection at all lengths studied, while dissection decreased total force of control FCU. In addition, after tendon and muscle belly dissection, we found decreased muscle belly lengths at equal muscle-tendon complex lengths of transferred FCU. We conclude that scar tissue limits the force transmission from transferred FCU muscle via the tendon of insertion to the skeleton, but that some myofascial connectivity of the muscle should be classified as physiological.  相似文献   

10.
Acute effects of intramuscular aponeurotomy on muscle force and geometry as a function to muscle length were studied in rat m. gastrocnemius medialis (GM). Acutely after aponeurotomy, activation of the muscle at increasing lengths (acute trajectory) showed a spontaneous and progressive but patial tearing of the connective tissue interface between the fibres inserting directly proximally and distally to the location of the section. After this the muscle consisted morphologically of a stable proximal and a distal part (post-aponeurotomy). Post-aponeurotomy mean active sarcomere length within fibres of the proximal part was shown to be unaffected. In contrast, mean sarcomere length within the distal part was reduced substantially after aponeurotomy. However active sarcomeres in the distal part were still attaining higher lengths with increasing muscle lengths (p<0.005), indicating myofascial force transmission through the intact part of the connective tissue interface of the muscle parts. Post-aponeurotomy optimum muscle force was reduced substantially to less than 45% of pre-aponeurotomy values. During the acute trajectory the muscle yielded approximately 20% higher forces than post-aponeurotomy, indicating that myofascial force transmission was related to the area of connective tissue interface. It is concluded that after aponeurotomy of the proximal aponeurosis of rat GM, fibres without direct myotendinous connection to the origin of the muscle are still able to contribute to muscle force. As the magnitude of reduction in muscle force can only be explained partially by the spontaneous rupture of the connective tissue interface between proximal and distal muscle part, other factors causing a decrease of muscle force are present. Clinical implication of acute effects of intramuscular aponeurotomy are discussed.  相似文献   

11.
Based on histochemical and immunohistochemical evidence, horse elbow extensor muscles are composed of two morphologically distinct muscle groups. The long and lateral heads of the triceps brachii are large, predominantly type II (presumed fast) muscles. The long and lateral heads of the triceps together account for 96% of the weight of the elbow extensors (long head of triceps is 81%). The long and lateral heads contain three histochemical fiber types: types I, IIa and IIb. Type I muscle fibers account for approximately 18 and 27% of the fibers in the long and lateral heads of the triceps, respectively. In the lateral head, type IIa and IIb fibers account equally for the remaining 70%, while in the long head of the triceps type IIb fibers predominate (50%) over type IIa fibers (32%). In contrast, the much smaller medial head of the triceps (2% of triceps mass) and the anconeus (2% of mass) contain almost exclusively type I muscle fibers. It is hypothesized that the medial head and anconeus, with their slow fibers, contribute to the postural maintenance of the forelimb by preventing flexion at the elbow joint during passive stance. The larger long and lateral heads, with their generally fast fiber populations, are most likely important during dynamic activity.  相似文献   

12.
Muscles within the anterior crural compartment (extensor digitorum longus, EDL; tibialis anterior, TA; and extensor hallucis longus, EHL) and within the peroneal compartment were excited simultaneously and maximally. All muscles were kept at constant length with the exception of EDL, for which muscle length was changed by moving its proximal tendon. Active and passive force was measured at proximal as well as distal EDL tendons and at the combined distal tendons of TA and EHL (TA+EHL). In the initial experimental condition, a difference (F(proximal) > F(distal)) in EDL force, amounting to 0-14% of proximal force, was confirmed for most EDL lengths. This is interpreted as a clear proof of extramuscular myofascial force transmission, as no significant EDL length effects could be shown on TA+EHL force. Repeated measurements were confirmed to cause marked changes of both proximal and distal length-force characteristics, such as a shift of the whole ascending limb of the active curve, including optimum length, to higher lengths without decreasing optimum force, and decreasing active force at low lengths (by approximately 57%). Repeated measurements also lowered proximal and distal EDL passive force (by up to 35%). The proximo-distal difference in passive as well as active EDL force was decreased, but persisted. At most lengths, this difference for active force amounted to a constant fraction (14%) of proximal force. TA+EHL force was not affected significantly. Subsequently, acute effects of experimental surgical alterations were studied: The first manipulation was full lateral fasciotomy of the anterior crural compartment that caused a further decrease in active force at the proximal EDL but not at the distal EDL tendon. Passive forces showed no further significant changes. The proximo-distal EDL active force difference decreased to 0-5% of proximal force. After fasciotomy, TA+EHL force increased by 30%. This was interpreted as evidence of increased intramuscular and decreased extramuscular myofascial force transmission. The second manipulation was full isolation of EDL from TA+EHL, but not from extramuscular connective tissues, which caused a further decrease of the EDL proximo-distal force differences, indicating a stiffening effect of the presence of TA+EHL on the extramuscular matrix. For EDL active force the difference was no longer significantly different from zero. In contrast, for EDL passive force the proximo-distal force difference persisted. It is concluded that extramuscular myofascial force transmission is an important feature of the anterior crural compartment. The magnitude of this force transmission requires that it be considered in analysis of muscular function.  相似文献   

13.
The innervation of the distal and proximal heads of the accessory flexor muscle in three portunid crabs and two non-portunid decapods was studied electrophysiologically. In all species studied, the proximal head received only the two previously reported accessory flexor axons, an excitor and an inhibitor. The same two axons also innervated the distal head in all species, but in the portunids the distal head also received excitation from at least three, and probably sometimes four, of the main flexor excitor efferents. The accessory inhibitor exerted very strong effects in the tonic muscle fibers found in the proximal head and in the most proximal bundle of the distal head. The newly described inhibitory and excitatory distributions may have important implications for locomotory behavior.  相似文献   

14.
Leverage and muscle type in crab chelae (Crustacea: Brachyura)   总被引:2,自引:0,他引:2  
The chelae of Cancer pagurus and Macropipus depurator were examined with respect to mechanical advantage. The closer muscles were investigated with respect to sarcomere length in the constituent fibres and to the force developed by the whole muscle during isometric contraction. Cancer chelae have a relatively high mechanical advantage, 0.329 ± 001. Cancer closer muscles contain a high proportion of fibres with long sarcomeres, mean lengths mostly falling between 12 and 15 μm, and develop a maximum stress of about 496 kN.m−2 during contraction. These figures are typical for "slow" crustacean muscle. The chelae of M. depurator are dimorphic. In one, the strong chela, the mechanical advantage is 0.248 ± 0.066 while in the other, the fast chela, the mechanical advantage is 0.177 ± 0.006. M. depurator closer muscles contain fibres with mean sarcomere lengths mostly falling between 6 and 10 μm. The muscle develops a maximum stress of about 145 kN.m2 during contraction. These figures are typical of "intermediate" crustacean muscles. "Fast" muscle fibres with short sarcomeres (about 30 um) were found in the chelae of both Cancer and M. depurator but were much commoner in the latter. Thus in Cancer a high mechanical advantage is correlated with slow muscle while in M. depurator lower mechanical advantages are broadly correlated with faster muscle. Consistent correlation between mechanical advantage and muscle type in the dimorphic chelae of M. depurator , however, is lacking. No consistent regionation of fibres with similar properties was found in the muscles.  相似文献   

15.
The first branch of the lateral plantar nerve and heel pain   总被引:2,自引:0,他引:2  
The course and ramification pattern of the lateral plantar nerve was studied in serial sections from 4 fetal feet and in dissections from 34 adult feet with special reference to the so called first branch. This branch was found in all of the observed fetal and adult specimen. From its originating point the nerve runs immediately distally to the medial process of the calcaneal tuberosity in a lateral direction to the proximal part of the abductor digiti minimi muscle. During its course the FB gives two branches. One of them penetrates sometimes the insertion of the quadratus plantae muscle, whereas in adult feet it always sends fibres to the periosteum around the medial process of the calcaneal tuberosity and the long plantar ligament. The other innervates the flexor digitorum brevis muscle. The site of a possible entrapment is located between the abductor hallucis muscle and the medial head of the quadratus plantae muscle. There is strong indirect evidence that the nerve is of a mixed type consisting of sensory fibres for the calcaneal periosteum and the medial head of the quadratus plantae muscle. There is strong indirect evidence that the nerve is of a mixed type consisting of sensory fibres for the calcaneal periosteum and the long plantar ligament as well as motor fibres for the quadratus plantae, flexor digitorum brevis and abductor digiti minimi muscles, which may explain the characteristic pain complaints of the heel pain syndrome. The occurrence of a stiff fascia perforated by the nerve branch or a bursa around the insertion of the plantar aponeurosis as has been described by several authors and which was put forward as a possible aetiological factor could not be confirmed in our material.  相似文献   

16.
The in situ distribution of the alpha and beta myosin light chains was investigated at the subsarcomeric and subfilament levels in individual fibers of the superficial flexor muscle (SFM) of the lobster, Homarus americanus. Polyclonal antibodies were produced against the two classes of myosin light chains and used for subsequent immunolocalization on thin sections of sarcomeres and on isolated filaments from both the medial and lateral fiber bundles of the SFM. The beta myosin light chains were uniformly distributed within the crossbridge region of sarcomeres of both medial and lateral bundles. The alpha myosin light chains were uniformly distributed within the crossbridge region of sarcomeres from the medial bundle, but were nonuniformly distributed over the crossbridge region of lateral bundle sarcomeres. In the latter, the number of alpha myosin light chains was highest toward the center of the thick filaments, diminishing towards the ends. Similar distributions of alpha light chains were found in isolated myosin filaments. These data demonstrate that heterogeneity in protein composition extends to the level of the myosin filament and suggest that the myosin filament substructure in lobster may be different than that found in vertebrate skeletal muscle.  相似文献   

17.
The rat medial gastrocnemius (MG) muscle is composed of the proximal and distal compartments. In this study, morphometric properties of the compartments and their muscle fibres at five levels of the muscle length and the innervation pattern of these compartments from lumbar segments were investigated. The size and number of muscle fibres in the compartments were different. The proximal compartment at the largest cross section (25% of the muscle length) had 34% smaller cross-sectional area but contained a slightly higher number of muscle fibres (max. 5521 vs. 5360) in comparison to data for the distal compartment which had the largest cross-sectional area at 40% of the muscle length. The muscle fibre diameters revealed a clear tendency within both compartments to increase along the muscle (from the knee to the Achilles tendon) up to 46.9?μm in the proximal compartment and 58.4?μm in the distal one. The maximal tetanic and single twitch force evoked by stimulation of L4, L5, and L6 ventral roots in whole muscle and compartments were measured. The MG was innervated from L4 and L5, only L5, or L5 and L6 segments. The proximal compartment was innervated by axons from L5 or L5 and L4, and the distal one from L5, L5 and L6, or L5 and L4 segments. The forces produced by the compartments summed non-linearly. The tetanic forces of the proximal and distal compartments amounted to 2.24 and 4.86?N, respectively, and their algebraic sums were 11% higher than the whole muscle force (6.37?N).  相似文献   

18.
At muscle-tendon junctions of red and of white axial muscle fibres of carp, new sarcomeres are found adjacent to existing sarcomeres along the bundles of actin filaments that connect the myofibrils with the junctional sarcolemma. As the filament bundles that transmit force to the junction originate proximal to new sarcomeres, they probably relieve these new sarcomeres from premature loading. In red fibres, these filament bundles are long (up to 20 m) and dense, permitting light-microscopical immunohistochemistry (double reactions: anti-titin or anti--actinin and phalloidin). New sarcomeres have clear I bands; their A band lengths are similar to those of older sarcomeres and the thick filaments lie in register. T tubules are found at the distal side of new sarcomeres but terminal Z lines are absent. The late addition of -actinin suggests that -actinin mainly has a stabilizing role in sarcomere formation. The presence of titin in the terminal fibre protrusions is in agreement with its supposed role in sarcomere formation, viz. the integration of thin and thick filaments. The absence of a terminal Z line from sarcomeres with well-registered A bands suggests that this structure is not essential for the anchorage of connective (titin) filaments.  相似文献   

19.
The effects of inter- and extramuscular myofascial force transmission on muscle length force characteristics were studied in rat. Connective tissues at the bellies of the experimental synergistic muscles of the anterior crural compartment were left intact. Extensor digitorium longus (EDL) muscle was lengthened distally whereas tibialis anterior (TA) and extensor hallucis longus (EHL) were kept at constant muscle–tendon complex length. Substantial differences were found in EDL force measured at the proximal and distal tendons (maximally 46% of the proximal force). EDL with intact inter- as well as extramuscular connections had an increased length range between active slack and optimum length compared to EDL with extramuscular connections exclusively: optimum muscle length was shifted by more than 2 mm. Distal EDL lengthening caused the distal force exerted by TA+EHL complex to decrease (approximately 17% of the initial force). This indicates increased intermuscular myofascial force transmission from TA+EHL muscle complex to EDL muscle.

Finite-element modeling showed that: (1) Inter- and extramuscular myofascial force transmission leads to a substantial distribution of the lengths of the sarcomeres arranged in series within muscle fibers. Distribution of stress within the muscle fibers showed that the muscle fiber cannot be considered as a unit exerting equal forces at both ends. (2) Increased heterogeneity of mean fiber sarcomere lengths (i.e., a “parallel” distribution of length of sarcomeres among different muscle fibers) is found, particularly at high muscle lengths. This also explains the shift in muscle optimum length to higher lengths.

It is concluded that inter- and extramuscular myofascial force transmission has substantial effects on muscle length–force characteristics.  相似文献   


20.
The biceps brachii of horses is subdivided into a lateral and medial head. Electrophoresis of samples from the lateral head revealed three slow-migrating native myosin isoforms, including one that does not correspond to slow myosin isoforms described for other mammalian muscles. In contrast, the medial head contained a single slow isoform. Both the lateral and medial heads contained three fast-migrating isoforms corresponding with the FM-2, FM-3 and FM-4 isoforms reported for other mammalian fast-twitch muscle fibers. Electrophoresis of myosin heavy chains (MHCs) revealed only two MHC bands, one fast-migrating band that comigrates with rat type I MHC and a second slower-migrating band that comigrates with rat type IIa MHC. Quantitation of the histochemical data is correlated with densitometric analysis of MHCs in the medial and lateral heads of biceps brachii and is consistent with previously hypothesized functional specializations of this muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号