首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sponges mediate consolidation of Porites furcata rubble on shallow Caribbean reefs by quickly adhering to rubble and stabilizing it until carbonate secreting organisms can grow and consolidate it to the reef. Experimental investigations demonstrate that the entire cycle from (1) temporary binding of rubble by sponges, through (2) rubble consolidation by encrusting coralline algae, to (3) colonization of consolidated rubble by corals, can be completed within 10 months. Bound rubble both adds to vertical reef growth and also provides stable substrata for colonization by corals. Corals that colonize stabilized rubble are damaged less and survive better than on unstable rubble. Rubble that is not temporarily stabilized by sponges does not become bound to the reef, because continuous movement disturbs the consolidation process, and does not provide suitable substrata for settlement and growth of corals. Sponge-mediated consolidation of rubble may increase rates of reef growth and enhance reef recovery after damage. This new role for sponges in reef growth is not obvious from examination of the internal fabric of a reef frame. Spongemediated consolidation may help to explain geographic and temporal differences in growth and morphology among shallow reefs of ramose corals.  相似文献   

2.
An instrument package carrying pH and oxygen electrodes and a thermister was floated across a reef flat. Using equations associated with the alkalinity anomaly technique, and by making certain assumptions, the productivity and calcification rates of the reef flat were calculated. At an average light intensity of 800 μE · m?2 · s?1, the average net oxygen production was 21.5 mmol O2 · m?2 · h?1 and the average rate of calcification was 11.0 mmol CaCO3 · m?2 · h?1. Results showed three metabolic zones within the transect which corresponded to zonation seen in an aerial photograph and confirmed by benthic surveys.  相似文献   

3.
The patch dynamics (colonisation rate, growth rate, and extinction rate) are quantified for two dominant species of macroalgae on a Caribbean forereef in Belize: Lobophora variegata (Lamouroux) and Dictyota pulchella (Hörnig and Schnetter). Measurements were taken on time scales of days, weeks, months, and years during which three hurricanes occurred. All patches were followed on naturally occurring ramets of dead Montastraea annularis. The first hurricane (Mitch) caused massive coral mortality and liberated space for algal colonisation. The cover of Lobophora increased throughout the study and herbivores did not appear to limit its cover within a 4 year time frame. In contrast, the cover of D. pulchella fluctuated greatly and showed no net increase, despite an increase in parrotfish biomass and settlement space. Variation in the overall percent cover of an alga is not indicative of the underlying patch dynamics. The steady rise in the cover of Lobophora took place despite a high turnover of patches (12–60% of patches per year). The patch dynamics of Dictyota were slower (7–20%), but a greater patch density and threefold higher lateral growth rate led to greater fluctuations in total cover. The dynamics of algal patches are size-specific such that larger patches are less likely to become extinct during hurricanes.  相似文献   

4.
Food availability affects growth in a coral reef fish   总被引:1,自引:0,他引:1  
G. P. Jones 《Oecologia》1986,70(1):136-139
Summary Pomacentrus amboinensis is common on small patch reefs within One Tree Lagoon (Great Barrier Reef), where it preferentially settles onto deep reefs. A preliminary experiment, in which juveniles were transplanted to identical reef structures at two sites, within two depth strata, indicated that juvenile growth and survivorship were better in deeper water. The hypothesis that this difference was due to food availability was tested by a supplemental feeding experiment, carried out at another two randomly chosen sites, within the same two depth strata. Fish were fed each day over a one month period, during which no mortality was observed. The growth rates of juveniles were markedly higher on all food-supplemented reefs, when compared to controls. Growth differed between depth strata, but there was no interaction between the food x depth factors, which would have suggested a greater effect of food supplementation in either habitat. Thus, although the difference between depths cannot be attributed to food availability, the results have a more general significance. Food appears to be a limiting resource (in terms of growth) in both the marginal shallow habitat, and the more suitable deeper habitat.  相似文献   

5.
Synopsis An alternative to the reef fish lottery model is proposed for explaining instances of coexistence of reef fishes without apparent spatial resource partitioning. This model is termed money-in-the-bank because of a financial analogy used to explain it. It stresses the importance of habitats that can support only one of two or more closely related species that coexist elsewhere. Populations living in such monospecific habitats could, according to the model, produce enough larvae to repopulate these habitats plus an excess that may settle in the multispecific habitats. Possible examples among cardinalfishes are given.This paper forms part of the proceedings of a mini-symposium convened at Cornell University, Ithaca, N.Y., 18–19 May 1976, entitled Patterns of Community Structure in Fishes (G. S. Helfman, ed.).  相似文献   

6.
Encrusting calcareous organisms such as bryozoans, crustose coralline algae (CCA), foraminiferans, and serpulid worms are integral components of tropical framework-building reefs. They can contribute calcium carbonate to the reef framework, stabilise the substrate, and promote larval recruitment of other framework-building species (e.g. coral recruits). The percentage cover of encrusting organisms and their rates of carbonate production (g m−2 year−1) were assessed at four sites within a coastal embayment, along a gradient of riverine influence (high-low). As the orientation and type of substrate is thought to influence recruitment of encrusting organisms, organisms recruiting to both natural (the underside of platy corals) and experimental substrates were assessed. The effect of substrate exposure under different levels of riverine influence was assessed by orientating experimental substrates to mimic cryptic and exposed reef habitats (downwards-facing vs upwards-facing tiles) at each site. Cryptic experimental tiles supported similar encruster assemblages to those recruiting to the underneath (cryptic side) of platy corals, suggesting that tiles can be used as an experimental substrate to assess encruster recruitment in reef systems. Encruster cover, in particular CCA, and carbonate production was significantly higher at low-impact (clear water), high wave energy sites when compared to highly riverine impacted (turbid water), low wave energy sites. Cryptically orientated substrates supported a greater diversity of encrusting organisms, in particular serpulid worms and bryozoans. The inverse relationships observed between riverine inputs and encrusters (total encruster cover and carbonate production) have implications for both the current and future rates and styles of reefal framework production.  相似文献   

7.
The age‐specific density of the red‐lipped stromb Strombus luhuanus (Mollusca: Gastropoda) was monitored over 13 years (1981–1993) at four locations on the intertidal reef flat at Heron Island, Great Barrier Reef. Densities were highly variable, but there were persistent, location‐specific differences in population density, age structure and adult body size, the latter indicating that the populations were not extensively linked by adult movement. There was relatively high recruitment at most locations in 1984, 1989 and 1993, each occurring approximately 2 years after El Niño/Southern Oscillation events, although recruit density during these years varied in both space and time. The studied strombs experienced three disturbance events: (i) experimental harvesting at two locations (1984–1985); (ii) siltation from a harbour dredging operation (1987–1988); and (iii) a severe cyclone (1992). Resilience to harvesting at a local scale (0.5–2 ha) was high: density had recovered within a year, due to immigration of adults and older juveniles. Strombus luhuanus responded much more strongly to broad‐scale changes to its environment than to localized harvesting. After dredging, there was a progressive density decline coupled with low recruitment at two locations, and a later decline at a third location, followed by a recruitment‐driven rebound after the cyclone. Generalized environmental effects of siltation and the cyclone were also reflected in substantial changes in algal cover. Long‐term variations in environmental conditions probably cause high temporal variation over large spatial scales through effects on the survival of larvae or recruits. Localized short‐term field monitoring of such species would give a misleading picture of key factors affecting population dynamics.  相似文献   

8.
Seven coral reef communities were defined on Shiraho fringing reef, Ishigaki Island, Japan. Net photosynthesis and calcification rates were measured by in situ incubations at 10 sites that included six of the defined communities, and which occupied most of the area on the reef flat and slope. Net photosynthesis on the reef flat was positive overall, but the reef flat acts as a source for atmospheric CO2, because the measured calcification/photosynthesis ratio of 2.5 is greater than the critical ratio of 1.67. Net photosynthesis on the reef slope was negative. Almost all excess organic production from the reef flat is expected to be effused to the outer reef and consumed by the communities there. Therefore, the total net organic production of the whole reef system is probably almost zero and the whole reef system also acts as a source for atmospheric CO2. Net calcification rates of the reef slope corals were much lower than those of the branching corals. The accumulation rate of the former was approximately 0.5 m kyr−1 and of the latter was ~0.7–5 m kyr−1. Consequently, reef slope corals could not grow fast enough to keep up with or catch up to rising sea levels during the Holocene. On the other hand, the branching corals grow fast enough to keep up with this rising sea level. Therefore, a transition between early Holocene and present-day reef communities is expected. Branching coral communities would have dominated while reef growth kept pace with sea level rise, and the reef was constructed with a branching coral framework. Then, the outside of this framework was covered and built up by reef slope corals and present-day reefs were constructed.  相似文献   

9.
The conspicuous growth of a reef crest and the resulting differentiation of reef topography into a moat (shallow lagoon), crest and slope have long attracted the interest of scientists studying coral reefs. A geochemical model is here proposed for reef formation, taking into account diffusion-limited and light-enhanced calcification. First, to obtain data on net photosynthesis and calcification rates in the field, a typical coral community was cultured in situ on a reef flat. Using these data, equations including parameters for calcification were then developed and applied in computer simulations to model the development over time of reef profiles and the diffusion of carbon species. The reef topography simulated by the model was in general agreement with reef topography observed in nature. The process of reef growth as shown by the modeling was as follows. Increases in the shore-to-offshore gradients of the concentrations of carbonate species result from calcification by reef biota, giving a lower rate of growth on near-shore parts of the reef than on those further offshore. As a result, original topography is diversified into moat and reef crest for the first time. Reef growth on the reef crest is more rapid than in the inshore moat area, because more light is available at the crest. Reef growth on the near-shore side of the reef is further inhibited by damming of carbon-rich seawater on the seaward side of the reef by the reef crest. Over time, the topographic expression of the reef crest and moat becomes progressively more clearly defined by these geochemical processes.  相似文献   

10.
X-radiographs were made of vertical slices through the centers of 47 hermatypic coral colonies collected at Eniwetok Atoll, Marshall Islands. The image thus obtained are useful for the study of colony geometry, development, and response to damage.Comparison of radioactive inclusions of known age with previously reported cyclic skeletal density variations normal to the axis of growth confirms the annual nature of the density banding. Growth rates based on density bands and radioactivity inclusions are calculated for all 47 specimens, and measurements of the individual ‘growth bands’ are presented for 25 of them.Bulk densities measured by X-ray transmission ranged from 1.0 to 2.2 g/cm3, with an average range of 1.3–1.6 g/cm3. Intra-specimen skeletal densities typically vary by 10–30%; the period of high density skeletal deposition appears to coincide with the season of higher rainfall and warmer surface water at Eniwetok. Pigment residues left by boring algae are more commonly found in low density portions of the skeletons, but this distribution is believed to result from rather than cause the variations in the density of the deposited aragonite.Linear growth rates for the same specimen vary by factors of two or more from year to year, but the 25 specimens studied did not show a common pattern in the linear growth rate. Other than showing some general trends in growth as a function of species and depth, linear growth rates do not appear to be a particularly informative parameter.The density and growth rate variations are important factors in the measurement of coral growth and metabolism, and to the study of environmental controls of coral growth.  相似文献   

11.
An instrument package carrying pH and oxygen electrodes and a thermistor was floated across a reef flat at different times of the day and night. The data collected were used to obtain profiles of primary production, respiration, and calcification or solution of reef rock across the transect area. Average rates for these processes across the transect area, and rates at particular points along the transect, were related to light intensity and light response curves were constructed for productivity and calcification. Productivity tended to saturate at high light intensities and the amplitude and shape of the response curve changed with distance from the reef crest. Calcification showed no such saturation. Rates of calcification, and the dependence of calcification on light intensity, increased with distance from the reef crest. Average reef flat gross productivity and net calcification, based on the light response curves were 8.8 g C · m ?2 · day?1 and 9.4 g CaCO3 · m?2 · day?1 (3.5 kg · m?2· yr?1), and the production: consumption ratio was 1.16:1. These results were obtained in late summer, and are for a cloudless day. The results suggest that the degree of stability in the reef surface, and the amount of disturbance experienced by different reef flat communities, probably exert major controls on reef flat community metabolism.  相似文献   

12.
Ocean acidification (OA) is a major threat to marine ecosystems, particularly coral reefs which are heavily reliant on calcareous species. OA decreases seawater pH and calcium carbonate saturation state (Ω), and increases the concentration of dissolved inorganic carbon (DIC). Intense scientific effort has attempted to determine the mechanisms via which ocean acidification (OA) influences calcification, led by early hypotheses that calcium carbonate saturation state (Ω) is the main driver. We grew corals and coralline algae for 8–21 weeks, under treatments where the seawater parameters Ω, pH, and DIC were manipulated to examine their differential effects on calcification rates and calcifying fluid chemistry (Ωcf, pHcf, and DICcf). Here, using long duration experiments, we provide geochemical evidence that differing physiological controls on carbonate chemistry at the site of calcification, rather than seawater Ω, are the main determinants of calcification. We found that changes in seawater pH and DIC rather than Ω had the greatest effects on calcification and calcifying fluid chemistry, though the effects of seawater carbonate chemistry were limited. Our results demonstrate the capacity of organisms from taxa with vastly different calcification mechanisms to regulate their internal chemistry under extreme chemical conditions. These findings provide an explanation for the resistance of some species to OA, while also demonstrating how changes in seawater DIC and pH under OA influence calcification of key coral reef taxa.  相似文献   

13.
14.
Cleaning behaviour is considered to be a classical example of mutualism. However, no studies, to our knowledge, have measured the benefits to clients in terms of growth. In the longest experimental study of its kind, over an 8 year period, cleaner fish Labroides dimidiatus were consistently removed from seven patch reefs (61-285 m(2)) and left undisturbed on nine control reefs, and the growth and parasite load of the damselfish Pomacentrus moluccensis determined. After 8 years, growth was reduced and parasitic copepod abundance was higher on fish from removal reefs compared with controls, but only in larger individuals. Behavioural observations revealed that P. moluccensis cleaned by L. dimidiatus were 27 per cent larger than nearby conspecifics. The selective cleaning by L. dimidiatus probably explains why only larger P. moluccensis individuals benefited from cleaning. This is the first demonstration, to our knowledge, that cleaners affect the growth rate of client individuals; a greater size for a given age should result in increased fecundity at a given time. The effect of the removal of so few small fish on the size of another fish species is unprecedented on coral reefs.  相似文献   

15.
B. Rinkevich  Y. Loya 《Oecologia》1985,66(1):100-105
Summary Growth rates and reproduction of a branching coral (Stylophora pistillata) were compared in the presence and in the absence of intraspecific competition. Field experiments demonstrated a significant decline in the growth rate of competing colonies compared to noncompeting control colonies; the growth rate slowed in all of the interacting individuals, irrespective of their place in the hierarchy of the intraspecific dominance or of their color morph. In case of immediate killing of the subordinate, the dominant colony grew at a normal rate. In addition to the marked decrease in the growth rate of interacting colonies, the typical symmetry shape of these colonies was changed to an abnormal growth form. The number of female gonads per polyp was significantly reduced in colonies competing intraspecifically, and the typical synchrony in reproduction among different branches of a given colony was changed and desynchronized. Again, these results did not correlate with the hierarchy of dominance. We conclude that intraspecific competition in reef corals involves great investment of energy. The ecological significance and the different pathways of this competition are discussed.  相似文献   

16.
Model of a coral reef ecosystem   总被引:2,自引:0,他引:2  
The results of modelling of a coral reef ecosystem at French Frigate Shoals and independent field measures of benthic primary productivity indicate relatively good agreement between food required by consumer trophic levels and organic carbon produced by primary producers. Based upon the high internal predation necessary for the model to match primary production estimates, we reason that the ecosystem is primarily regulated from the top down by forces of predation and that primary production appears to be controlled by nutrients, rate limits, and the distribution of space and habitat. In spite of relatively high primary productivity, potential yield at the top of the food chain is low because of high internal predation and high trophic complexity (6 trophic levels). Fishery yield might be maximized by harvesting low on the food chain particularly if top carnivores can be cropped to release predator pressure on selected prey. Agreement between field measures of metabolism and model (ECOPATH) results provides reasonable confidence that the model can be used as one tool for resource management.  相似文献   

17.
Coral Reefs - Coral calcification is affected by the decrease in aragonite saturation state (Ωarag) caused by ocean acidification (OA). However, OA effects are modulated by other environmental...  相似文献   

18.
Samples of solitary cryptofauna were collected from reef habitats before and after Hurricanes David and Frederic struck St. Croix, U.S.V.I. The intertidal beachrock zone suffered severe and sustained damage from waves, sand scouring and moving debris. Most bioeroded cavities in the substrate and several previously abundant cryptic taxa were completely obliterated from this environment for more than 6 months; numbers remained low or the pre-hurricane body size distribution had not been regained by the end of the 2 year study in a number of taxa. In 3 habitats at 2–3 m depths (fringing reef, patch reef, back of the bank barrier reef), some taxa underwent temporary decreases or dislocations, particularly on the fringing reef. Overall, however, this cryptofauna exhibited strong succession, with burrowers and then nestlers increasing above pre-hurricane densities. Many populations of nestlers were still increasing at the end of the 2 year study. Thus, the hurricanes enhanced densities of benthic invertebrates per piece of rubble (probably by providing fresh unburrowed substrate) in these moderately shallow subtidal habitats. On a deeper fore reef (12 m), we detected very few changes in cryptofaunal populations. The enhancement of invertebrate populations in reef habitats with intermediate levels of hurricane diturbance parallels recent findings that some species of corals have evolved colonizing life history tactics which allow them to prosper in moderately disturbed environments. Because the cryptofauna represent an important route of trophic flow (via predatory fishes) through the reef ecosystem, these relatively long term (2 y) changes in abundance of invertebrates have important implications for the structure and function of coral reef communities.  相似文献   

19.
Six coral species of the genus Acropora and two species of the genus Porites were studied during experiments on cultivation of reef-building scleractinian corals. The research has established species-specific factors and others affecting regeneration of fragments and growth of new colonies in these coral species. The accretion of donor fragments and new branches averaged from 40 to 160 mm per year, depending on the coral species, colony size, and season of transplantation. An average monthly accretion of medium and larger transplants and growth of new branches were 1.2–1.3 times higher at spring cultivation than at autumn transplanting. When transplanted, coral fragments of medium and larger sizes survived well and showed higher growth rates in all species studied. These transplants developed the highest number of new branches, and their buds and formed the largest colonies. Prolongation of the cultivation time from 1 to 1.5 years caused a 1.2–1.4 fold accretion of transplants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号