首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A protein factor named S-II that stimulates RNA polymerase II was previously purified from Ehrlich ascites tumor cells [1]. In this work using an antibody prepared against purified S-II, the localization of S-II in the cell was investigated by an indirect immunofluorescence technique. In 3T3 cells, specific immunofluorescence was detected only in the nucleoplasm where RNA polymerase II is located, and not in the nucleoli where RNA polymerase I is present. In Ehrlich ascites tumor cells fluorescence was detected mainly in the nucleoplasm, although some fluorescence was also detectable in the cytoplasm, possibly due to leak of S-II from the nuclei during preparation of the immunofluorescent samples. In metaphase cells fluorescent was not found on chromosomes but throughout the cytoplasm. These findings suggest that S-II is a nuclear protein and that it spreads into the cytoplasm without being attached to chromosomes in metaphase, but is reassembled into the nucleoplasm in the interphase. Specific immunofluorescence was also detected in the nuclei of HeLa cells and salivary glands cells of flesh-fly larvae, suggesting that the nucleoplasm of these heterologous cells contains proteins immunologically cross-reactive with the antibody against S-II.  相似文献   

2.
The major processing steps in the maturation of the lysosomal hydrolase, acid beta-glucosidase, were examined in fibroblasts from normal individuals and from patients with types 1 and 2 Gaucher disease. In pulse-chase studies with normal fibroblasts, remodeling of N-linked oligosaccharides resulted in the temporal appearance of three molecular-weight forms of acid beta-glucosidase. An initial 64-kDa form, containing high mannose-type oligosaccharide side chains, was processed quantitatively, within 24 h, to a sialylated 69-kDa form. During the subsequent 96 h, some of the 69-kDa form is processed to 59 kDa. Glycosidase digestion studies revealed that the increase in the apparent molecular weight of the normal enzyme from 64 kDa to 69 kDa resulted primarily from the addition to sialic acid residues in the Golgi apparatus. The polypeptide backbone of both the 64-kDa and 69-kDa forms was 55.3 kDa. Processing of acid beta-glucosidase in fibroblasts from three of four type 1 (nonneuronopathic) Ashkenazi Jewish Gaucher disease patients was nearly normal. With fibroblasts from one Ashkenazi Jewish and three non-Jewish type 1 as well as from two type 2 (acute neuronopathic) Gaucher disease patients, only a 64-kDa form of acid beta-glucosidase was detected. Inefficient and incomplete processing to the 69-kDa form was found in one type 2 cell line (GM2627). These results indicate that no firm correlation exists between the type or degree of abnormal processing of acid beta-glucosidase in fibroblasts and the phenotype of Gaucher disease.  相似文献   

3.
4.
Membrane-bound beta-glucosidase from cultured skin fibroblasts can be solubilized in an active form by treatment of membrane preparations with a mixture of Triton X-100 and sodium taurocholate. Several properties of the solubilized enzyme have been studied in fibroblasts from normal, healthy individuals and from 14 patients with different clinical forms of Gaucher disease. The patients studied were classified as follows: group 1 consisted of 10 chronic patients, all (with one exception) of Ashkenazi Jewish origin; group 2 consisted of three black American patients with severe visceral symptoms, manifest from early childhood, but with no apparent neurological involvement; and group 3 consisted of a single white patient with the classical infantile form of the disease. Specific beta-glucosidase activity ranged from 6.6% to 16.5% mean control value in group 1 patients and from 4.1% to 5.8% in groups 2 and 3. When compared with the enzyme from control fibroblasts, the enzyme from chronic Gaucher patients (group 1) was more rapidly inactivated at 50 degrees C, had an altered pH curve, was less effectively inhibited by deoxycorticosterone-beta-glucoside, and was more effectively inhibited by deoxycorticosterone. The enzyme from patients in groups 2 and 3 was qualitatively indistinguishable from the control enzyme in terms of these parameters. No differences in Km (4-methylumbelliferyl-beta-glucoside) or sedimentation coefficient were found between the beta-glucosidases from control and Gaucher cells. The results demonstrate that cells from Ashkenazi Jewish patients with the chronic form of Gaucher disease contain a structurally altered form of beta-glucosidase. This enzyme differs both from normal beta-glucosidase and from the residual enzyme in patients of different ethnic origin and with clinically more severe forms of the disease.  相似文献   

5.
A deficiency in the activity of steroid: β-glucosidase has been observed in the particulate fraction of Gauchers tissues. There was no diminution of the “soluble” form of this enzyme in adult tissue samples. In contrast, there was a marked reduction in the soluble steroid β-glucoside hydrolytic activity in the brain and spleen, and not liver from the infantile form of the disease.  相似文献   

6.
Deficiency of glucosylsphingosine: beta-glucosidase in Gaucher disease   总被引:1,自引:0,他引:1  
A deficiency in the activity of glucosylsphingosine: β-glucosidase has been observed in Gaucher's spleen tissue and skin fibroblasts. Preliminary studies indicated the presence of a material similar to glucosylsphingosine in Gaucher's spleen while such a material was not detectable in normal and other pathological control spleen tissue. This is the first report of the natural occurrence of a psychosine-like material in a mammalian tissue.  相似文献   

7.
Transport of purine bases and nucleosides by a variety of mammalian cell lines is generally accomplished by facilitated diffusion, a non-concentrative, saturable process. However, previous investigators have been unable to detect a saturable component for the transport of hypoxanthine by human fibroblasts deficient in hypoxanthine-guanine phosphoribosyltransferase, implying that in normal cells the enzyme actively participates in transport. In the present study we have used the phenomenon of countertransport to demonstrate the existence of a saturable transport mechanism in hypoxanthine-guanine phosphoribosyltransferase-deficient human diploid skin fibroblasts.  相似文献   

8.
I-cell fibroblasts with a multiple intracellular lysosomal enzyme deficiency were hybridized with cells from patients with different types of single lysosomal enzyme defects. Fusion with GM2 gangliosidosis, type 2, (Sandhoff disease) fibroblasts resulted in a restoration of the hexosaminidase activity, in a normalization of the electrophoretic mobility of the isoenzymes, and in a decreased activity in the medium. Fusion of I-cells with fibroblasts from GM1 gangliosidosis, type 1, led to enhancement of β-galactosidase (β-gal) activity. This complementation must be the result of the presence of normal polypeptide chains in I-cells, whereas the other cell types provide a factor that causes the intracellular retention of the enzymes. Restoration of β-gal was also observed in heterokaryons after fusion of I-cells with β-galactosidase/neuraminidase-deficient (β-gal/neur) variants, indicating that the neuraminidase(s) and the posttranslational modification of β-gal are affected in a different way in I-cell disease and in β-gal/neur variants. Fusion of I-cells with mannosidosis fibroblasts resulted in a restoration of the acidic form of α-mannosidase and in a decrease of the extracellular activity of both this enzyme and the hexosaminidase enzyme, indicating that fusion of I-cells with different types of fibroblasts with a single lysosomal enzyme deficiency not only leads to complementation for one particular enzyme but also to a correction of the basic defect in I-cells.  相似文献   

9.
The cytotoxic and mutagenic effect of aflatoxin B1-dichloride (AFB1-Cl2), a direct-acting carcinogen which is a model for the proposed ultimate reactive metabolite of AFB1 (the 2,3-epoxide), was compared in normal, repair-proficient, diploid human fibroblasts and in complementation Group A xeroderma pigmentosum cells (XP12BE) which are virtually incapable of excision repair of DNA damage induced by ultraviolet radiation, the 7,8-diol-9,10-epoxide of benzo[alpha]pyrene, and several reactive aromatic amide derivatives. The XP cells were significantly more sensitive than normal to the cytotoxic and mutagenic effects of AFB1-Cl2, not only as a function of concentration administered but also of the number of AFB1-Cl2 residues initially bound to DNA. Cytotoxicity was determined from survival of colony-forming ability; resistance to 6-thioguanine was the genetic marker used for mutagenicity. We compared the rate of loss of AFB1-Cl2-DNA adducts from cells treated and held in the non-dividing state (confluent) over several days, as well as their ability to recover from the potentially mutagenic and/or cytotoxic effects of the agent. AFB1-Cl2 residues were lost from both strains of cells and both exhibited a gradual increase in survival. However, the rate of loss of adducts from the DNA in the normal cells was more rapid than in XP cells and they exhibited recovery from higher doses of AFB1-Cl2 than XP cells. The major primary DNA adduct formed in the human cells and in isolated DNA was a chemically unstable guanine derivative which could undergo a change in structure with time posttreatment to form a more stable secondary adduct. The cytotoxic effect of AFB1-Cl2 was highly correlated with the presence of either of these guanine adducts. Evidence suggests that the primary adduct is an N7-guanine adduct. The kinetics of the loss of this guanine and its transformation into the more stable secondary adduct resembled that reported recently for the major primary DNA adduct formed by the reaction of AFB1 at the N-7 position of guanine in the DNA of normal and XP cells and its transformation into the putative AFB1-ring opened triamino pyrimidyl structure.  相似文献   

10.
11.
Complex alleles of the acid beta-glucosidase gene in Gaucher disease.   总被引:12,自引:5,他引:7       下载免费PDF全文
Gaucher disease is inherited in an autosomal recessive manner and is the most prevalent lysosomal storage disease. Gaucher disease has marked phenotypic variation and molecular heterogeneity, and seven point mutations in the acid beta-glucosidase (beta-Glc) gene have been identified. By means of sequence-specific oligonucleotides (SSO), mutation 6433C has been detected homozygously in neuronopathic type 2 (acute) and type 3 (subacute) patients, as well as in children with severe visceral involvement who are apparently free of neuronopathic disease. To investigate the molecular basis for this puzzling finding, amplified beta-Glc cDNAs from 6433C homozygous type 2 and type 3 Gaucher disease patients were cloned and sequenced. The Swedish type 3 Gaucher disease patient was truly homozygous for alleles only containing the 6433C mutation. In comparison, the type 2 patient contained a singly mutated 6433C allele and a "complex" allele with multiple discrete point mutations (6433C, 6468C, and 6482C). Each of the mutations in the complex allele also was present in the beta-Glc pseudogene. SSO hybridization of 6433C homozygotes revealed that both type 2 patients contained additional mutations in one allele, whereas the 6433C alone was detected in both type 3 and in young severe type 1 Gaucher disease patients. These results suggest that the presence of the complex allele influences the severity of neuronopathic disease in 6433C homozygotes and reveal the central role played by the pseudogene in the formation of mutant alleles of the beta-Glc gene. Analysis of additional cDNA clones also identified two new alleles in a type 3 patient, emphasizing the molecular heterogeneity of neuronopathic Gaucher disease.  相似文献   

12.
Lysosomal beta-glucosidase ('glucocerebrosidase') in peripheral blood lymphocyte and spleen extracts from normal individuals and Ashkenazi-Jewish Gaucher disease type-1 patients were investigated using several modifiers of glucosyl ceramide hydrolysis. The negatively charged lipids, phosphatidylserine and taurocholate, had differential effects on the hydrolytic rates of the normal and Gaucher disease enzymes from either source. With the normal enzyme, either negatively charged lipid (up to 1 mmol/l) increased the reaction rates, while decreasing hydrolytic rates were obtained at greater concentrations. In comparison, the peak activities of the Gaucher enzymes were observed at about 2-3 mmol/l or 5-8 mmol/l of phosphatidylserine or taurocholate, respectively. These negatively charged lipids altered only the velocity of the reactions; the apparent Km values were not affected. Taurocholate or phosphatidylserine also facilitated the interaction of the normal enzyme with conduritol B epoxide, a covalent inhibitor of the catalytic site. Compared to the normal enzyme, the Ashkenazi-Jewish Gaucher type-1 enzyme required about 5-fold greater concentrations of conduritol B epoxide for 50% inhibition. Neutral or cationic acyl-beta-glucosides were found to be competitive or noncompetitive inhibitors of the enzymes, respectively. Alkyl beta-glucosides were competitive (or linear-mixed type) inhibitors of the normal splenic or lymphocyte enzyme with competitive inhibition constants (Ki) inversely related to the chain length. With octyl and dodecyl beta-glucoside nearly normal competitive Ki values were obtained with the splenic enzymes from Gaucher patients. These Ki values were not influenced by increasing phosphatidylserine or taurocholate concentrations. In contrast, the cationic lipids, sphingosyl-1-O-beta-D-glucoside (glucosyl sphingosine) and its N-hexyl derivative, were noncompetitive inhibitors whose apparent Ki values for the normal enzyme were 30 and 0.25 mumol/l, respectively. The Ki values for these sphingosyl glucosides were about increased 5 times for the Gaucher type-1 enzymes from Ashkenazi-Jewish Gaucher disease type-1 patients. The Ki values of glucosyl sphingosine for the normal or mutant enzymes were directly related to increasing concentrations of phosphatidylserine or taurocholate. This latter site appears to be specifically altered by a mutation in the structural gene for lysosomal beta-glucosidase in the Ashkenazi-Jewish form of type-1 Gaucher disease.  相似文献   

13.
14.
Gaucher disease is inherited in an autosomal recessive manner and is the most prevalent lysosomal storage disease. Gaucher disease has marked phenotypic variation and molecular heterogeneity, and several simple and complex alleles of the acid beta-glucosidase gene have been identified as causal to this disease. Certain combinations of alleles have been shown to correlate well with the severity of the disease, but many Gaucher disease patients exist whose disease is not explained by any of the published mutations. This study was undertaken to identify mutant alleles in such incompletely characterized Gaucher disease, in an attempt to find further correlations between clinical phenotype and the presence of acid beta-glucosidase alleles. RNA was isolated from Gaucher cell lines and converted to cDNA, the cDNA was amplified by PCR and cloned, and several clones for each allele were sequenced. Several new singly mutated and multiply mutated alleles were identified, and sequence-specific oligonucleotide hybridization was used to verify the presence of these mutations in the genome of these patients. All newly identified mutations occurred only rarely in the Gaucher disease population, making it difficult to determine whether inheritance of a particular combination of alleles always correlates with the clinical manifestations seen in the test patients. Three of the newly described alleles were single missense mutations in exon 8, one was a single missense mutation in exon 5, and the fifth was a complex allele, comprising a series of different point mutations scattered throughout exons 5 and 6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Summary The range of incidences of azaguanine-resistant colonies in cultures of fibroblasts from 16 unrelated humans was 0.4×10-6 to 19×10-6 and the mean value was 4.1×10-6. A fluctuation test showed that most or all of the mutant colonies derived from mutations that occurred during in vitro proliferation of the fibroblasts and before exposure to azaguanine. The estimated rate of spontaneous mutation was 0.45×10-6 to 1.8×10-6 per cell generation. At least ten independent mutants, comprising two general classes, were studied. Class I mutants were a minority and resembled cells from boys having the Lesch-Nyhan syndrome: they had very little HG-PRT activity, showed maximum resistance to azaguanine and could not utilize hypoxanthine for growth. At least 90% of the mutants were in Class II: their apparent HG-PRT activities ranged between normal and Lesch-Nyhan amounts, they were partially sensitive to azaguanine and they could utilize hypoxanthine. Some Class II mutants resembled cells cultured from a family having an X-chromosomal mutant gene that does not cause the Lesch-Nyhan syndrome but does confer resistance to azaguanine, although the quantity of HG-PRT activity is apparently normal and hypoxanthine can be utilized. Electrophoretic differences between the HG-PRT activities of normal and mutant strains were not detected but other qualitative alterations were observed in some mutants.Paper No. 1558 from the Laboratory of Genetics.Supported by N.I.H. Grants GM-06983 and GM-15422 and by a grant from the Food Research Institute of The University of Wisconsin, Madison, Wisconsin.Supported by Grant He 753-1 from Die Deutsche Forschungsgemeinschaft.  相似文献   

16.
The spontaneous azaguanine-resistant mutants of diploid human fibroblasts   总被引:12,自引:0,他引:12  
R DeMars  K R Held 《Humangenetik》1972,16(1):87-110
  相似文献   

17.
Summary Glucocerebroside -glucosidase (glucocerebrosidase) activity was assayed from cultured fibroblasts of normal individuals, and patients with type 1 (non-neuropathic), type 2 (acute neuropathic), and type 3 (subacute neuropathic) form of Gaucher disease. Residual glucocerebrosidase activity of patients was 8.9 to 17.4% of normal controls, and there was no clear correlation between the level of residual enzyme activity and the different clinical subtypes of the disease. When membrane-bound glucocerebrosidase activity was assayed in the presence of crude brain lipid extracts or purified phosphatidylserine, enzyme from both the normal and type 1 Gaucher fibroblasts was stimulated dramatically (35–60% by crude extracts, 85–90% by phosphatidylserine). This stimulation was not observed with fibroblast glucocerebrosidase of an infantile type 2 and two juvenile type 3 Gaucher patients. The presence of inhibitors of glucocerebrosidase in these type 2 and type 3 Gaucher cells was not detected. Contrary to the mutant enzyme from these Gaucher fibroblasts, glucocerebrosidase from fibroblasts of two adult type 3 Gaucher patients with cerebral involvement was stimulated substantially (72–85%) by phosphatidylserine. When membrane-bound glucocerebrosidase from fibroblasts of the infantile type 2 and juvenile type 3 patients was solubilized with sodium cholate (1% w/v) and delipidated, the phospholipid stimulation of enzyme activity was restored. These findings suggest that considerable clinical and biochemical heterogeneity exists among patients with neuropathic Gaucher disease and that phosphatidylserine activation cannot be used as a reliable indicator in predicting future onset of neurodegeneration in Gaucher patients. The possibility of an aberrant binding of mutant glucocerebrosidase to the lysosomal membrane in juvenile type 3 form of Gaucher disease is discussed.  相似文献   

18.
19.
We have examined the possible relation between hypoxanthine guanine phosphoribosyltransferase (EC 2.4.2.7., HGPRT) activity and hypoxanthine transport in the normal human lymphoblast line MGL8 and two HGPRT- mutant lines derived from it. The mutant line MGL8A29 (L8A29) had considerable amounts of material cross-reacting immunologically to HGPRT, while mutant MGL8A18 (L8A18) had none. In the normal cells, hypoxanthine is taken up by both a saturable and non-saturable process. Kinetic studies show that the velocity of transport is much lower than HGPRT activity, while both have similar values of Km. In the two mutant lines, we failed to demonstrate saturable transport, and the rates of hypoxanthine uptake by these cells were directly proportional to its concentration in the medium. Active HGPRT molecules appear to be related to the saturable transport process.  相似文献   

20.
Poly(ADP-ribose) polymerase activity was determined at various times during the in vitro life span of two human diploid fibroblast-like cell lines of different donor ages. The cell lines differed in their ability to transfer ADP-ribose, with cells from an embryonic donor exhibiting 2 to 3 times the activity found in cells obtained from a newborn donor. The activity in both cell lines decreased by 30-60% as the cells moved through their in vitro life spans. The decline could not be attributed to increases in glycohydrolase or the leakage of polymerase from older cell preparations. Enzyme activation with DNase I indicated that similar levels of enzyme were present in both cell lines at all in vitro ages. These results indicate that although poly(ADP-ribosyl)ation is inversely related to donor age as well as in vitro age the decrease is in response to other factors which change with increasing age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号