首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
In the present experiments the influence on the sympatho-adrenal system of the rate of haemorrhage-induced blood pressure fall in dogs was studied by measuring the plasma catecholamine response. Bleeding to a mean arterial pressure of 5.3 kPa in either 10 or 40 minutes caused an identical increase in the plasma catecholamine level. Similarly, there was no difference in bleeding volumes between the two groups. Within these limits the magnitude of the early catecholamine response was independent of the rate of the haemorrhage-induced decrease of blood pressure. The magnitude of the sympatho-adrenal response depended on the amount of lost blood. Bleeding for 80 minutes to the same pressure resulted in a considerably larger loss of blood and higher plasma catecholamine levels. No relationship was, however, found between the extent of the catecholamine response and the amount of the bleeding volume, probably due to some interaction with other control mechanisms.  相似文献   

2.
Plant defense response is an elaborate biochemical process shown to depend on the plant genetic background and on the biological stressor. This work evaluated the soybean biochemical foliar response to brown stink bug herbivory injury through an analysis of redox metabolism and proteomic 2DE profiles of susceptible (BRS Silvania RR) and resistant (IAC-100) varieties. The activity of lipoxygenase-3, guaiacol peroxidase, catalase and ascorbate peroxidase was monitored every 24 h up to 96 h. In the susceptible variety, injury caused an increase in the activities of lipoxygenase 3 and guaiacol peroxidase, no change in ascorbate peroxidase, and a decrease in catalase. In the resistant variety, injury did not cause an alteration of any of these enzymes. The proteomic profiles were evaluated after 24 h of injury and revealed to have a similar proportion (4–5%) of differential protein expression in both varieties. The differential proteins, identified by mass spectrometry, in the susceptible variety were related to general stress responses, to plant defense, and to fungal infections. However, in the resistant variety, the identified change in protein profile was related to Calvin cycle enzymes. While the susceptible variety showed adaptive changes in redox metabolism and expression of stress-responsive proteins, the resistant showed a defense response to circumvent the biological stressor.  相似文献   

3.
Metabolic scope for activity (MSA) and critical swimming velocity (U(crit)) were measured in green sturgeon exposed to two stressors daily for 28 consecutive days. The results were compared with unstressed fish in an effort to measure the "cost" of chronic stress. Chronic stress was simulated by exposing fish to a randomized order of acute stressors: a 5-min chasing stressor, a 10-min water depth reduction stressor, or a 5-min confinement stressor. The acute cortisol response to each stressor was initially determined, and the maintenance of that response was verified in 7-d intervals during the chronic stress regime. Exposure to the chronic stress regime resulted in a 25% reduction of MSA caused by significantly increased maintenance metabolic rate (0.27+/-0.01 vs. 0.19+/-0.02 mg O(2) h(-1) g(-1), chronic and control fish, respectively) but did not affect the U(crit) of sturgeon. In addition, a 50% reduction in liver glycogen levels and a twofold increase of resting plasma glucose levels were measured in chronically stressed fish. We conclude that our chronic stress regime resulted in a significant maintenance cost to green sturgeon, possibly because of their inability to habituate to the stressors, but did not decrease their swimming performance.  相似文献   

4.
Obesity blunts catecholamine and growth hormone (GH) responses to exercise in adults, but the effect of obesity on these exercise-associated hormonal responses in children is unclear. Therefore, the aim of the present study was to asses the effect of childhood obesity on the counterregulatory hormonal response to acute exercise. Twenty-five obese children (Ob; body mass index > 95%), and 25 age, gender, and maturity-matched normal-weight controls (NW) participated in the study. Exercise consisted of ten 2-min bouts of constant-cycle ergometry above the anaerobic threshold, with 1-min rest intervals between each bout. Pre-, post-, and 120-min postexercise blood samples were collected for circulating components of the GH-IGF-I axis and catecholamines. There were no differences in peak exercise heart rate, serum lactate, and peak O2 uptake normalized to lean body mass between the groups. Obesity attenuated the GH response to exercise (8.9 +/- 1.1 vs. 3.4 +/- 0.7 ng/ml in NW and Ob participants, respectively; P < 0.02). No significant differences in the response to exercise were found for other components of the GH-IGF-I axis. Obesity attenuated the catecholamine response to exercise (epinephrine: 52.5 +/- 12.7 vs. 18.7 +/- 3.7 pg/ml, P < 0.02; norepinephrine: 479.5 +/- 109.9 vs. 218.0 +/- 26.0 pg/ml, P < 0.04; dopamine: 17.2 +/- 2.9 vs. 3.5 +/- 1.9 pg/ml, P < 0.006 in NW and Ob, respectively). Insulin levels were significantly higher in the obese children and dropped significantly after exercise in both groups. Despite the elevated insulin levels and the blunted counterregulatory response, none of the participants developed hypoglycemia. Childhood obesity was associated with attenuated GH and catecholamine response to acute exercise. These abnormalities were compensated for, so that exercise was not associated with hypoglycemia, despite increased insulin levels in obese children.  相似文献   

5.
6.
Ventilatory frequency (VF) was investigated in the fish Nile tilapia, Oreochromis niloticus, subjected to confinement, electroshock or social stressor. Fish were allowed to acclimatize to tank conditions for 10 days (1 fish/aquarium). VF baseline was determined 5 days after adjustment had been started. At the 10th day of isolation, stressor effects on VF were assessed. The stressors were imposed during 60 min: pairing with a larger resident animal (social stressor), or gentle electroshock (AC, 20 V, 15 mA, 100 Hz for 1 min every 4 min), or space restriction (confinement). VF was quantified immediately after the end of the stressor imposition. Baseline of VF was not statistically different among groups. Social stressor clearly induced VF to increase, while an increased or decreased VF can be observed for both confinement and electroshock. However, fish tend to increase their VF in response to confinement and decrease in the case of electroshock. These results suggest that VF is a sensitive behavioural indicator for distinguishing stress responses in the fish Nile tilapia among different stressors.  相似文献   

7.
Abstract: Agonist-induced regulation of adrenergic receptors (ARs) has an important role in controlling physiological functions in response to changes in catecholamine stimulation. We previously generated transgenic mice expressing phenylethanolamine N -methyltransferase (PNMT) under the control of a human dopamine β-hydroxylase gene promoter to switch catecholamine specificity from the norepinephrine phenotype to the epinephrine phenotype. In the present study, we first examined changes in catecholamine metabolism in peripheral tissues innervated by sympathetic neurons of the transgenic mice. In the transgenic target tissues, a high-level expression of PNMT led to a dramatic increase in the epinephrine levels, whereas the norepinephrine levels were decreased to 48.6–87.9% of the nontransgenic control levels. Analysis of plasma catecholamines in adrenalectomized mice showed large amounts of epinephrine derived from sympathetic neurons in the transgenic mice. Subsequently, we performed radioligand binding assays with (−)-[125I]iodocyanopindolol to determine changes in binding sites of β-AR subtypes. In transgenic mice, the number of β2-AR binding sites was 56.4–74.9% of their nontransgenic values in the lung, spleen, submaxillary gland, and kidney, whereas the β1-AR binding sites were regulated in a different fashion among these tissues. Moreover, northern blot analysis of total RNA from the lung tissues showed that down-regulation of β2 binding sites was accompanied by a significant decrease in steady-state levels of the receptor mRNA. These results strongly suggest that alteration of catecholamine specificity in the transgenic sympathetic neurons leads to regulated expression of the β-AR subtypes in their target tissues.  相似文献   

8.
Aging process is accompanied by hormonal changes characterized by an imbalance between catabolic hormones, such as cortisol and thyroid hormones which remain stable and hormones with anabolic effects (testosterone, insulin like growth factor-1 (IGF-1) and dehydroepiandrosterone sulphate (DHEAS), that decrease with age. Deficiencies in multiple anabolic hormones have been shown to predict health status and longevity in older persons.Unlike female menopause, which is accompanied by an abrupt and permanent cessation of ovarian function (both folliculogenesis and estradiol production), male aging does not result in either cessation of testosterone production nor infertility. Although the circulating serum testosterone concentration does decline with aging, in most men this decrease is small, resulting in levels that are generally within the normal range. Hormone therapy (HT) trials have caused both apprehension and confusion about the overall risks and benefits associated with HT treatment. Stress-response hormesis from a molecular genetic perspective corresponds to the induction by stressors of an adaptive, defensive response, particularly through alteration of gene expression. Increased longevity can be associated with greater resistance to a range of stressors. During aging, a gradual decline in potency of the heat shock response occur and this may prevent repair of protein damage. Conversely, thermal stress or pharmacological agents capable of inducing stress responses, by promoting increased expression of heat-shock proteins, confer protection against denaturation of proteins and restoration of proteome function. If induction of stress resistance increases life span and hormesis induces stress resistance, hormesis most likely result in increased life span. Hormesis describes an adaptive response to continuous cellular stresses, representing a phenomenon where exposure to a mild stressor confers resistance to subsequent, otherwise harmful, conditions of increased stress. This biphasic dose–response relationship, displaying low-dose stimulation and a high-dose inhibition, as adaptive response to detrimental lifestyle factors determines the extent of protection from progression to metabolic diseases such as diabetes and more in general to hormonal dysregulation and age-related pathologies. Integrated responses exist to detect and control diverse forms of stress. This is accomplished by a complex network of the so-called longevity assurance processes, which are composed of several genes termed vitagenes. Vitagenes encode for heat shock proteins (Hsps), thioredoxin and sirtuin protein systems. Nutritional antioxidants, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways under control of Vitagene protein network. Here we focus on possible signaling mechanisms involved in the activation of vitagenes resulting in enhanced defense against functional defects leading to degeneration and cell death with consequent impact on longevity processes.  相似文献   

9.
Vitamin D plays an increasingly recognized role in the innate and adaptive immune response to infection. Based on demonstrated roles in up-regulating innate immunity, decreasing inflammation, and reducing the severity of disease in illnesses such as tuberculosis and influenza, we hypothesized that poor vitamin D status would be associated with severe malaria. We measured 25-hydroxyvitamin D [25(OH)D] by immunoassay in a sample of Ugandan children aged 18 months –12 years with severe malaria (cerebral malaria or severe malarial anemia, n = 40) and in healthy community children (n = 20). Ninety-five percent of children with severe malaria (n = 38) and 80% of control children (n = 16) were vitamin D-insufficient [plasma 25(OH)D <30 ng/mL]. Mean plasma 25(OH)D levels were significantly lower in children with severe malaria than in community children (21.2 vs. 25.3 ng/mL, p = 0.03). Logistic regression revealed that for every 1 ng/mL increase in plasma 25(OH)D, the odds of having severe malaria declined by 9% [OR = 0.91 (95% CI: 0.84, 1.0)]. These preliminary results suggest that vitamin D insufficiency may play a role in the development of severe malaria. Further prospective studies in larger cohorts are indicated to confirm the relationship of vitamin D levels to severity of malaria infection and to investigate causality.  相似文献   

10.
Tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, is regulated acutely by protein phosphorylation and chronically by protein synthesis. No studies have systematically investigated the phosphorylation of these sites in vivo in response to stressors. We specifically investigated the phosphorylation of TH occurring within the first 24 h in response to the social defeat stress in the rat adrenal, the locus coeruleus, substantia nigra and ventral tegmental area. Five groups were investigated; home cage control (HCC), two groups that underwent social defeat (SD+) which were sacrificed either 10 min or 24 h after the end of the protocol and two groups that were put into the cage without the resident being present (SD−) which were sacrificed at time points identical to the SD+. We found at 10 min there were significant increases in serine 40 and 31 phosphorylation levels in the locus coeruleus in SD+ compared to HCC and increases in serine 40 phosphorylation levels in the substantia nigra in SD+ compared to SD−. We found at 24 h there were significant increases in serine 19 phosphorylation levels in the ventral tegmental area in SD+ compared to HCC and decreases in serine 40 phosphorylation levels in the adrenal in SD+ compared to SD−. These findings suggest that the regulation of TH phosphorylation in different catecholamine-producing cells varies considerably and is dependent on both the nature of the stressor and the time at which the response is analysed.  相似文献   

11.
The effects of ryanodine, a selective inhibitor of the Ca(2+)-induced Ca2+ release mechanism, on caffeine-evoked changes in cytosolic Ca2+ concentration ([Ca2+]i) and catecholamine secretion were investigated using cultured bovine adrenal chromaffin cells. Caffeine (5-40 mM) caused a concentration-dependent transient rise in [Ca2+]i and catecholamine secretion in Ca2+/Mg(2+)-free medium containing 0.2 mM EGTA. Ryanodine (5 x 10(-5) M) alone had no effect on either [Ca2+]i or catecholamine secretion. Although the application of ryanodine plus caffeine caused the same increase in both [Ca2+]i and catecholamine secretion as those induced by caffeine alone, ryanodine (4 x 10(-7) - 5 x 10(-5) M) irreversibly prevented the increase in both [Ca2+]i and catecholamine secretion resulting from subsequent caffeine application over a range of concentrations. The secretory response to caffeine was markedly enhanced by replacement of Na+ with sucrose in Ca2+/Mg(2+)-free medium, and this enhanced response was also blocked by ryanodine. Caffeine was found to decrease the susceptibility of the secretory apparatus to Ca2+ in digitonin-permeabilized cells. These results indicate that caffeine mobilizes Ca2+ from intracellular stores, the function of which is irreversibly blocked by ryanodine, resulting in the increase in catecholamine secretion in the bovine adrenal chromaffin cell.  相似文献   

12.
In healthy men, a decrease in plasma testosterone levels was observed in the context of metabolic stress. While physiological mechanisms underlying this response are unclear, there are several lines of evidence suggesting circulating epinephrine's influence on plasma testosterone levels. The purpose of this study was to directly relate stress-induced changes in plasma testosterone and epinephrine. The stressor used was blockade of glucose metabolism with pharmacological doses (40 mg/kg) of 2 deoxyglucose (2DG). Arterial plasma samples from 10 healthy males were assayed at 20 minutes intervals for 60 minutes for the concentrations of testosterone, epinephrine and related biochemicals. Bolus administration of 2DG resulted in progressive decline in testosterone and increases in epinephrine and norepinephrine plasma levels (mean change from baseline: 29, 2530 and 186%, respectively). Inverse correlation was detected between both absolute (r(s)=-0.72; df=8; p=0.017) and baseline-corrected testosterone concentrations at the 60 minute time point and epinephrine area under the curve values. Our results suggest that adrenomedullary activation may be involved in stress-induced testosterone effects. The implications of these data for the understanding of the role of catecholamines in glucoprivic stress response are discussed.  相似文献   

13.
This work shows that the convulsant methionine sulfoximine induces an increase in glucose and glycogen levels and a parallel decrease in norepinephrine and dopamine levels in rat brain. Among the epileptogenic agents, methionine sulfoximine is known to have a glycogenic property in the central nervous system. The aim of this work is to look for the neurochemical mechanism underlying this property. For this, catecholamines, glucose, and glycogen were measured at the same time in different areas of the brain in rats submitted to methionine sulfoximine. The convulsant induced an increase in glucose and glycogen levels as previously described and a decrease in dopamine and norepinephrine levels in all the areas of the rat brain. These changes were roughly dose dependent. WhenL-dihydroxyphenylalanine and benserazide (a decarboxylase inhibitor) were administered with methionine sulfoximine, the latter failed to induce seizures in rat up to 8 h after dosing. Moreover, the glucose and glycogen amounts did not increase. In all these experiments, there was an obvious evidence of parallelism between seizures, increase in carbohydrate levels, and decrease in catecholamine levels. These results allow to conclude that the glycogenic property of methionine sulfoximine in the central nervous system probably results from its ability to decrease norepinephrine and dopamine levels. Because the effect of the convulsant on the catecholamine levels persisted for long, it is normal that glucose and glycogen levels increased during preconvulsive, convulsive and postconvulsive period. Methionine sulfoximine is probably glycogenic in rat brain because it decreases catecholamine levels for a long time.  相似文献   

14.
We studied the plasma catecholamine response to standing and bicycle ergometric tests in 16 normal male subjects. During the standing test (performed in 10 subjects), we observed an early increase in plasma dopamine together with the fast increase in norepinephrine values; in the second half of this test (i.e. from 5 to 10 min of standing), we observed an increase in plasma dopamine levels. During the ergometric test (performed in 6 subjects), we observed a plasma dopamine increase at the maximal exercise; this persisted during the early recumbent recovery phase (6 min), despite the clear-cut decrease of both norepinephrine and epinephrine plasma levels. Our data are not in agreement with previous papers describing a simple increase in plasma dopamine after stimulation. This paper provides no informations regarding the mechanisms of this response of plasma dopamine. Other approaches must be used to study this aspect more directly.  相似文献   

15.
Post-traumatic Stress Disorder (PTSD) is an anxiety syndrome that develops after exposure to traumatic life events. Symptoms include re-experience of the initial trauma, avoidance of stimuli associated with the trauma and symptoms of excessive arousal. Neuroendocrine studies in adults with PTSD have demonstrated that basal cerebrospinal fluid (CSF) CRH levels are elevated and urinary cortisol levels are variable--low in the majority of cases--whereas other studies demonstrate no differences in urinary and plasma cortisol concentrations. Urinary catecholamine excretion is higher in PTSD patients than those of control subjects and other psychiatric disorders. Children may differ from adults in their psychologic and physiologic responses to severe stressors. Also, exposure to stress during critical periods of development may have irreversible effects on behavioral maturation and may affect specific vulnerable brain areas, altering CNS development. Similar to findings in adult studies, PTSD in children is characterized by increased sympathetic nervous system (SNS) activity, as indicated by elevated norepinephrine levels in the periphery. High cortisol levels in urine or saliva have been reported in most studies of childhood PTSD, while prospective longitudinal studies concerning the natural history of neuroendocrine changes in pediatric PTSD after an acute stressor are limited. The identification of neurobiologic changes in response to early adverse experiences is of major importance for the prognosis, prevention, management, and treatment of children and adolescents at risk for or suffering from PTSD.  相似文献   

16.
During long-term fasting at rest, protein utilization is maintained at low levels until it increases at a threshold adiposity. This study examines 1) whether such a shift in energy substrate use also occurs during endurance exercise while fasting, 2) the role of corticosterone, and 3) the adrenocortical response to an acute stressor. Ten species of migrating birds caught after an endurance flight over at least 500 km were examined. Plasma uric acid and corticosterone levels were low in birds with fat stores >5% of body mass and high in birds with smaller fat stores. Corticosterone levels were very high in birds with no visible fat stores and emaciated breast muscles. Corticosterone levels increased with handling time only in birds with large fat stores. These findings suggest that 1) migrating birds with appreciable fat stores are not stressed by endurance flight, 2) a metabolic shift (increased protein breakdown), regulated by an endocrine shift (medium corticosterone levels), occurs at a threshold adiposity, as observed in birds at rest, 3) adrenocortical response to an acute stressor is inhibited after this shift, and 4) an adrenocortical response typical for an emergency situation (high corticosterone levels) is only reached when muscle protein is dangerously low.  相似文献   

17.
Using the alkaline single cell gel electrophoresis (Comet) assay, the extent of DNA damage was evaluated in leukocytes of 43 Belarussian children (16 healthy and 27 affected by thyroid cancer). Thirty-nine healthy children from Pisa (Italy) were enrolled in the study as controls. In addition to basal levels of DNA damage, leukocytes were treated in vitro with bleomycin (BLM), a radiomimetic drug, to evaluate a possible adaptive response in different groups of children. Results with the Comet assay indicated an increased level of DNA damage (P=0.037) in leukocytes of Belarussian children compared to the Italian control group. In addition, within the Belarus group, lower basal levels of DNA damage (P<0.001) were found in children with cancer compared to healthy children. Tumor affected children were living in less radiocontaminated areas (P<0.04) than the healthy children and there was a significant relationship (P=0.03) between the amount of environmental radiocontamination and DNA damage in leukocytes. There were no differences in the sensitivity of leukocytes from different groups of children to BLM, indicating the absence of an adaptive response. The lack of an adaptive response may have been due to the use of noncycling cells and/or the bleomycin dose chosen. Tests for the presence of clastogenic factors (CF) in the blood serum of children showed that 39% of the tumor affected children and 19% of the healthy children in the exposed group were positive as compared to the Italian control group (0%) (Chi-square test, P<0.04). The higher levels of genomic damage in children evaluated 10 years after the Chernobyl disaster could be related to the increased incidence of individuals with CF.  相似文献   

18.
《Mutation Research Letters》1993,301(3):171-176
In a previous study we found that a cytogenetic adaptive response could lead to increases in survival if there was a sufficient increase in nonaberrant cells (Shadley and Dai, 1992). Since the high challenge doses used produced mainly multiply aberrant cells, we suggested using challenge doses that gave mainly singly aberrant cells in order to improve detection of a survival adaptive response. To test this, human lymphocytes from 6 donors were exposed in the first G1 phase to 5 cGy of X-rays, followed by 100 cGy 6 h later. Nearly all of the aberrant cells bore only one chromosome aberration with this challenge dose, and in agreement with our proposal, survival adaptive responses were seen in 4 of 6 donors. A near 1:1 relationship between the % nonaberrant cells and % survival was found with 100 cGy, suggesting that the lymphocyte populations scored in the survival and aberration assays were representative of each other. However, the increase in nonaberrant cells was not sufficient to account for the increase in survival. Thus, a large fraction of the increase in survival was due to a decrease in lethal damage in cytologically nonaberrant cells. Such damage could range sub-microscopic lesions, to larger alterations not visible in Giemsa-stained cells. In conjunction with adaptive response studies of others, these results intimate that the adaptive response affects damage at different levels of chromosomal hierarchy (i.e. from the chromosome to DNA). The process(es) responsible for the effects observed in this study may act on lethal, rather than mutagenic lesions.  相似文献   

19.
When electrical stimulation is applied to the ventromedial hypothalamic zone one observes an increase in systemic blood pressure. There also occur blood pressure variations in the isolated femoral circuit: two distinct phenomena were observed. The early event, being either an increase or a decrease in peripheral resistance, is directly related to the amount of noradrenaline produced locally. The late event is due to catecholamines arriving from the general circulation. Inhibition of local catecholamine release through the baroreceptor reflex and inhibition of ganglionic transmission by a large and sudden increase in adrenaline blood levels do influence the response in the isolated femoral circuit. Moreover the peripheral vasomotor tonus seems to be influenced by yet another mechanism, independent of local catecholamine release. This delicate mechanism depends on the balance between the degree of excitation of hypothalamic pressor (medial) and depressor (lateral) zones.  相似文献   

20.
Women who have experienced interpersonal violence (IPV) are at a higher risk to develop posttraumatic stress disorder (PTSD), with dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and impaired social behavior. Previously, we had reported impaired maternal sensitivity and increased difficulty in identifying emotions (i.e. alexithymia) among IPV-PTSD mothers. One of the aims of the present study was to examine maternal IPV-PTSD salivary cortisol levels diurnally and reactive to their child's distress in relation to maternal alexithymia. Given that mother-child interaction during infancy and early childhood has important long-term consequences on the stress response system, toddlers' cortisol levels were assessed during the day and in response to a laboratory stressor. Mothers collected their own and their 12–48 month-old toddlers' salivary samples at home three times: 30 min after waking up, between 2–3 pm and at bedtime. Moreover, mother-child dyads participated in a 120-min laboratory session, consisting of 3 phases: baseline, stress situation (involving mother-child separation and exposure to novelty) and a 60-min regulation phase. Compared to non-PTSD controls, IPV-PTSD mothers — but not their toddlers, had lower morning cortisol and higher bedtime cortisol levels. As expected, IPV-PTSD mothers and their children showed blunted cortisol reactivity to the laboratory stressor. Maternal cortisol levels were negatively correlated to difficulty in identifying emotions. Our data highlights PTSD-IPV-related alterations in the HPA system and its relevance to maternal behavior. Toddlers of IPV-PTSD mothers also showed an altered pattern of cortisol reactivity to stress that potentially may predispose them to later psychological disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号