首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Removal and degradation of pentachlorophenol (PCP) by Phanerochaete chrysosporium in static flask cultures was studied using ammonium lignosulphonates (LS), a waste product of the papermill industry, as a carbon and nitrogen source. After 3 days, cultures of P. chrysosporium grown in either a 2% LS (nitrogen-sufficient) medium or a 0.23% LS and 2% glucose (nitrogen-deficient) medium removed 72 to 75% of PCP, slightly less than the 95% removal seen using nitrogen-deficient glucose and ammonia medium. PCP dehalogenation occurred despite the fact that extracellular enzyme (LiP) activity, measured by a veratryl alcohol oxidation assay and by PCP disappearance in cell-free extracts, was inhibited by LS. This inactivation of LiP likely contributed to the lower percent of PCP dehalogenation observed using the LS media. In order to better understand the relationship between PCP disappearance and dehalogenation, we measured the fate of the chlorine in PCP. After 13 days, only 1.8% of the initial PCP added was recoverable as PCP. The remainder of the PCP was either mineralized or transformed to breakdown intermediates collectively identified as organic halides. The largest fraction of the original chlorine (58%) was recovered as organic (non-PCP) halide, most of which (73%) was associated with the cell mass. Of the remaining chlorine, 40% was released as chloride ion, indicating a level of dehalogenation in agreement with previously reported values.  相似文献   

2.
Removal and degradation of pentachlorophenol (PCP) by Phanerochaete chrysosporium in static flask cultures was studied using ammonium lignosulphonates (LS), a waste product of the papermill industry, as a carbon and nitrogen source. After 3 days, cultures of P. chrysosporium grown in either a 2% LS (nitrogen-sufficient) medium or a 0.23% LS and 2% glucose (nitrogen-deficient) medium removed 72 to 75% of PCP, slightly less than the 95% removal seen using nitrogen-deficient glucose and ammonia medium. PCP dehalogenation occurred despite the fact that extracellular enzyme (LiP) activity, measured by a veratryl alcohol oxidation assay and by PCP disappearance in cell-free extracts, was inhibited by LS. This inactivation of LiP likely contributed to the lower percent of PCP dehalogenation observed using the LS media. In order to better understand the relationship between PCP disappearance and dehalogenation, we measured the fate of the chlorine in PCP. After 13 days, only 1.8% of the initial PCP added was recoverable as PCP. The remainder of the PCP was either mineralized or transformed to breakdown intermediates collectively identified as organic halides. The largest fraction of the original chlorine (58%) was recovered as organic (non-PCP) halide, most of which (73%) was associated with the cell mass. Of the remaining chlorine, 40% was released as chloride ion, indicating a level of dehalogenation in agreement with previously reported values.  相似文献   

3.
Extensive biodegradation of pentachlorophenol (PCP) by the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance and mineralization of [14C]PCP in nutrient nitrogen-limited culture. Mass balance analyses demonstrated the formation of water-soluble metabolites of [14C]PCP during degradation. Involvement of the lignin-degrading system of this fungus was suggested by the fact the time of onset, time course, and eventual decline in the rate of PCP mineralization were similar to those observed for [14C]lignin degradation. Also, a purified ligninase was shown to be able to catalyze the initial oxidation of PCP. Although biodegradation of PCP was decreased in nutrient nitrogen-sufficient (i.e., nonligninolytic) cultures of P. chrysosporium, substantial biodegradation of PCP did occur, suggesting that in addition to the lignin-degrading system, another degradation system may also be responsible for some of the PCP degradation observed. Toxicity studies showed that PCP concentrations above 4 mg/liter (15 microM) prevented growth when fungal cultures were initiated by inoculation with spores. The lethal effects of PCP could, however, be circumvented by allowing the fungus to establish a mycelial mat before adding PCP. With this procedure, the fungus was able to grow and mineralize [14C]PCP at concentrations as high as 500 mg/liter (1.9 mM).  相似文献   

4.
Previous studies have shown that a lignin-degrading system appears in cultures of the white rot fungus Phanerochaete chrysosporium in response to nitrogen starvation, apparently as part of secondary metabolism. We examined the influence of limiting carbohydrate, sulfur, or phosphorus and the effect of varying the concentrations of four trace metals, Ca, and Mg. Limitation of carbohydrate or sulfur but not limitation of phosphorus triggered ligninolytic activity. When only carbohydrate was limiting, supplementary carbohydrate caused a transient repression of activity. In carbohydrate-limited cultures, ligninolytic activity appeared when the supplied carbohydrate was depleted, and this activity was associated with a decrease in mycelial dry weight. The amount of lignin degraded depended on the amount of carbohydrate provided, which determined the amount of mycelium produced during primary growth. Carbohydrate-limited cultures synthesized only small amounts of the secondary metabolite veratryl alcohol compared with nitrogen-limited cultures. l-Glutamate sharply repressed ligninolytic activity in carbohydrate-starved cultures, but NH(4) did not. Ligninolytic activity was also triggered in cultures supplied with 37 muM sulfur as the only limiting nutrient. The balance of trace metals, Mg, and Ca was important for lignin degradation.  相似文献   

5.
Phanerochaete chrysosporium degraded purified Kraft lignin, alkali-extracted and dioxane-extracted straw lignin, and lignosulfonates at a similar rate, producing small-molecular-weight (~1,000) soluble products which comprised 25 to 35% of the original lignins. At concentrations of 1 g of lignin liter−1, 90 to 100% of the acid-insoluble Kraft, alkali straw, and dioxane straw lignins were degraded by 1 g of fungal mycelium liter−1 within an active ligninolytic period of 2 to 3 days. Cultures with biomass concentrations as low as 0.16 g liter−1 could also completely degrade 1 g of lignin liter−1 during an active period of 6 to 8 days. The absorbance at 280 nm of 2 g of lignosulfonate liter−1 increased during the first 3 days of incubation and decreased to 35% of the original value during the next 7 days. The capacity of 1 g of cells to degrade alkali-extracted straw lignin under optimized conditions was estimated to be as high as 1.0 g day−1. This degradation occurred with a simultaneous glucose consumption rate of 1.0 g day−1. When glucose or cellular energy resources were depleted, lignin degradation ceased. The ability of P. chrysosporium to degrade the various lignins in a similar manner and at very low biomass concentrations indicates that the enzymes responsible for lignin degradation are nonspecific.  相似文献   

6.
Extensive biodegradation of pentachlorophenol (PCP) by the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance and mineralization of [14C]PCP in nutrient nitrogen-limited culture. Mass balance analyses demonstrated the formation of water-soluble metabolites of [14C]PCP during degradation. Involvement of the lignin-degrading system of this fungus was suggested by the fact the time of onset, time course, and eventual decline in the rate of PCP mineralization were similar to those observed for [14C]lignin degradation. Also, a purified ligninase was shown to be able to catalyze the initial oxidation of PCP. Although biodegradation of PCP was decreased in nutrient nitrogen-sufficient (i.e., nonligninolytic) cultures of P. chrysosporium, substantial biodegradation of PCP did occur, suggesting that in addition to the lignin-degrading system, another degradation system may also be responsible for some of the PCP degradation observed. Toxicity studies showed that PCP concentrations above 4 mg/liter (15 microM) prevented growth when fungal cultures were initiated by inoculation with spores. The lethal effects of PCP could, however, be circumvented by allowing the fungus to establish a mycelial mat before adding PCP. With this procedure, the fungus was able to grow and mineralize [14C]PCP at concentrations as high as 500 mg/liter (1.9 mM).  相似文献   

7.
Degradation of fluorene in soil by fungus Phanerochaete chrysosporium   总被引:1,自引:0,他引:1  
During investigation of biodegradation in soil, we have found that classical or standard techniques for introduction of compounds and the growth of fungus into soil are ill-defined and inadequate. In response to this deficiency, a method for controlled introduction of extractable compounds and for the growth of fungus in soils has been developed. This method was successfully used to study the degradation of fluorene in soil by the fungus Phanerochaete chrysosporium.  相似文献   

8.
通过正交试验优化筛选了适合黄孢原毛皮革菌降解苯胺的适宜培养基和摇瓶培养降解条件。结果表明:其适宜降解的液体培养基组成为:蔗糖20g/L,可溶性淀粉20g/L,(NH4)2SO4l0g/L,Mn^2 lμmol/L,Tween-800.3%,蛋白胨30g/L。适宜降解的摇瓶培养条件为:接种量为20%、pH为7.0、温度为30℃、培养时间为12d.此条件下的苯胺最高降解率可达95.5%。  相似文献   

9.
Under ligninolytic conditions, the white rot basidiomycete Phanerochaete chrysosporium mineralizes 2,4-dinitrotoluene (I). The pathway for the degradation of I was elucidated by the characterization of fungal metabolites and oxidation products generated by lignin peroxidase (LiP), manganese peroxidase (MnP), and crude intracellular cell extracts. The multistep pathway involves the initial reduction of I to yield 2-amino-4-nitrotoluene (II). II is oxidized by MnP to yield 4-nitro-1,2-benzoquinone (XII) and methanol. XII is then reduced to 4-nitro-1,2-hydroquinone (V), and the latter is methylated to 1,2-dimethoxy-4-nitrobenzene (X). 4-Nitro-1,2-hydroquinone (V) is also oxidized by MnP to yield nitrite and 2-hydroxybenzoquinone, which is reduced to form 1,2,4-trihydroxybenzene (VII). 1,2-Dimethoxy-4-nitrobenzene (X) is oxidized by LiP to yield nitrite, methanol, and 2-methoxy-1,4-benzoquinone (VI), which is reduced to form 2-methoxy-1,4-hydroquinone (IX). The latter is oxidized by LiP and MnP to 4-hydroxy-1,2-benzoquinone, which is reduced to 1,2,4-trihydroxybenzene (VII). The key intermediate 1,2,4-trihydroxybenzene is ring cleaved by intracellular cell extracts to produce, after reduction, beta-ketoadipic acid. In this pathway, initial reduction of a nitroaromatic group generates the peroxidase substrate II. Oxidation of II releases methanol and generates 4-nitro-1,2-benzoquinone (XII), which is recycled by reduction and methylation reactions to regenerate intermediates which are in turn substrates for peroxidase-catalyzed oxidation leading to removal of the second nitro group. Thus, this unique pathway apparently results in the removal of both aromatic nitro groups before ring cleavage takes place.  相似文献   

10.
Under secondary metabolic conditions the white rot basidiomycete Phanerochaete chrysosporium rapidly mineralizes 2,4,5-trichlorophenol. The pathway for degradation of 2,4,5-trichlorophenol was elucidated by the characterization of fungal metabolites and oxidation products generated by purified lignin peroxidase (LiP) and manganese peroxidase (MnP). The multistep pathway involves cycles of peroxidase-catalyzed oxidative dechlorination reactions followed by quinone reduction reactions to yield the key intermediate 1,2,4,5-tetrahydroxybenzene, which is presumably ring cleaved. In the first step of the pathway, 2,4,5-trichlorophenol is oxidized to 2,5-dichloro-1,4-benzoquinone by either MnP or Lip. 2,5-Dichloro-1,4-benzoquinone is then reduced to 2,5-dichloro-1,4-hydroquinone. The 2,5-dichloro-1,4-hydroquinone is oxidized by MnP to generate 5-chloro-4-hydroxy-1,2-benzoquinone. The orthoquinone is in turn reduced to 5-chloro-1,2,4-trihydroxybenzene. Finally, the 5-chlorotrihydroxybenzene undergoes another cycle of oxidative dechlorination and reduction reactions to generate 1,2,4,5-tetrahydroxybenzene. The latter is presumably ring cleaved, with subsequent degradation to CO2. In this pathway, the substrate is oxidatively dechlorinated by LiP or MnP in a reaction which produces a quinone. The quinone intermediate is recycled by a reduction reaction to regenerate an intermediate which is again a substrate for peroxidase-catalyzed oxidative dechlorination. This pathway apparently results in the removal of all three chlorine atoms before ring cleavage occurs.  相似文献   

11.
Under ligninolytic conditions, the white rot basidiomycete Phanerochaete chrysosporium mineralizes 2,4-dinitrotoluene (I). The pathway for the degradation of I was elucidated by the characterization of fungal metabolites and oxidation products generated by lignin peroxidase (LiP), manganese peroxidase (MnP), and crude intracellular cell extracts. The multistep pathway involves the initial reduction of I to yield 2-amino-4-nitrotoluene (II). II is oxidized by MnP to yield 4-nitro-1,2-benzoquinone (XII) and methanol. XII is then reduced to 4-nitro-1,2-hydroquinone (V), and the latter is methylated to 1,2-dimethoxy-4-nitrobenzene (X). 4-Nitro-1,2-hydroquinone (V) is also oxidized by MnP to yield nitrite and 2-hydroxybenzoquinone, which is reduced to form 1,2,4-trihydroxybenzene (VII). 1,2-Dimethoxy-4-nitrobenzene (X) is oxidized by LiP to yield nitrite, methanol, and 2-methoxy-1,4-benzoquinone (VI), which is reduced to form 2-methoxy-1,4-hydroquinone (IX). The latter is oxidized by LiP and MnP to 4-hydroxy-1,2-benzoquinone, which is reduced to 1,2,4-trihydroxybenzene (VII). The key intermediate 1,2,4-trihydroxybenzene is ring cleaved by intracellular cell extracts to produce, after reduction, beta-ketoadipic acid. In this pathway, initial reduction of a nitroaromatic group generates the peroxidase substrate II. Oxidation of II releases methanol and generates 4-nitro-1,2-benzoquinone (XII), which is recycled by reduction and methylation reactions to regenerate intermediates which are in turn substrates for peroxidase-catalyzed oxidation leading to removal of the second nitro group. Thus, this unique pathway apparently results in the removal of both aromatic nitro groups before ring cleavage takes place.  相似文献   

12.
Under nitrogen-limiting, secondary metabolic conditions, the white rot basidiomycete Phanerochaete chrysosporium extensively mineralized the specifically 14C-ring-labeled azo dyes 4-phenylazophenol, 4-phenylazo-2-methoxyphenol, Disperse Yellow 3 [2-(4'-acetamidophenylazo)-4-methylphenol], 4-phenylazoaniline, N,N-dimethyl-4-phenylazoaniline, Disperse Orange 3 [4-(4'-nitrophenylazo)-aniline], and Solvent Yellow 14 (1-phenylazo-2-naphthol). Twelve days after addition to cultures, the dyes had been mineralized 23.1 to 48.1%. Aromatic rings with substituents such as hydroxyl, amino, acetamido, or nitro functions were mineralized to a greater extent than unsubstituted rings. Most of the dyes were degraded extensively only under nitrogen-limiting, ligninolytic conditions. However, 4-phenylazo-[U-14C]phenol and 4-phenylazo-[U-14C]2-methoxyphenol were mineralized to a lesser extent under nitrogen-sufficient, nonligninolytic conditions as well. These results suggest that P. chrysosporium has potential applications for the cleanup of textile mill effluents and for the bioremediation of dye-contaminated soil.  相似文献   

13.
K Valli  H Wariishi    M H Gold 《Journal of bacteriology》1992,174(7):2131-2137
Under secondary metabolic conditions, the white-rot basidiomycete Phanerochaete chrysosporium degraded 2,7-dichlorodibenzo-p-dioxin (I). The pathway for the degradation of I was elucidated by the characterization of fungal metabolites and oxidation products generated by lignin peroxidase (LiP), manganese peroxidase (MnP), and crude intracellular cell-free extracts. The multistep pathway involves the degradation of I and subsequent intermediates by oxidation, reduction, and methylation reactions to yield the key intermediate 1,2,4-trihydroxybenzene (III). In the first step, the oxidative cleavage of the dioxin ring of I, catalyzed by LiP, generates 4-chloro-1,2-benzoquinone (V), 2-hydroxy-1,4-benzoquinone (VIII), and chloride. The intermediate V is then reduced to 1-chloro-3,4-dihydroxybenzene (II), and the latter is methylated to form 1-chloro-3,4-dimethoxybenzene (VI). VI in turn is oxidized by LiP to generate chloride and 2-methoxy-1,4-benzoquinone (VII), which is reduced to 2-methoxy-1,4-dihydroxybenzene (IV). IV is oxidized by either LiP or MnP to generate 4-hydroxy-1,2-benzoquinone, which is reduced to 1,2,4-trihydroxybenzene (III). The other aromatic product generated by the initial LiP-catalyzed cleavage of I is 2-hydroxy-1,4-benzoquinone (VIII). This intermediate is also generated during the LiP- or MnP-catalyzed oxidation of the intermediate chlorocatechol (II). VIII is also reduced to 1,2,4-trihydroxybenzene (III). The key intermediate III is ring cleaved by intracellular cell extracts to produce, after reduction, beta-ketoadipic acid. In this pathway, initial oxidative cleavage of both C-O-C bonds in I by LiP generates two quinone products, 4-chloro-1,2-benzoquinone (V) and 2-hydroxy-1,4-benzoquinone (VIII). The former is recycled by reduction and methylation reactions to generate an intermediate which is also a substrate for peroxidase-catalyzed oxidation, leading to the removal of a second chlorine atom. This unique pathway results in the removal of both aromatic chlorines before aromatic ring cleavage takes place.  相似文献   

14.
Under secondary metabolic conditions the white rot basidiomycete Phanerochaete chrysosporium mineralizes 2,4-dichlorophenol (I). The pathway for the degradation of 2,4-dichlorophenol (I) was elucidated by the characterization of fungal metabolites and of oxidation products generated by purified lignin peroxidase and manganese peroxidase. The multistep pathway involves the oxidative dechlorination of 2,4-dichlorophenol (I) to yield 1,2,4,5-tetrahydroxybenzene (VIII). The intermediate 1,2,4,5-tetrahydroxybenzene (VIII) is ring cleaved to produce, after subsequent oxidation, malonic acid. In the first step of the pathway, 2,4-dichlorophenol (I) is oxidized to 2-chloro-1,4-benzoquinone (II) by either manganese peroxidase or lignin peroxidase. 2-Chloro-1,4-benzoquinone (II) is then reduced to 2-chloro-1,4-hydroquinone (III), and the latter is methylated to form the lignin peroxidase substrate 2-chloro-1,4-dimethoxybenzene (IV). 2-Chloro-1,4-dimethoxybenzene (IV) is oxidized by lignin peroxidase to generate 2,5-dimethoxy-1,4-benzoquinone (V), which is reduced to 2,5-dimethoxy-1,4-hydroquinone (VI). 2,5-Dimethoxy-1,4-hydroquinone (VI) is oxidized by either peroxidase to generate 2,5-dihydroxy-1,4-benzoquinone (VII) which is reduced to form the tetrahydroxy intermediate 1,2,4,5-tetrahydroxybenzene (VIII). In this pathway, the substrate is oxidatively dechlorinated by lignin peroxidase or manganese peroxidase in a reaction which produces a p-quinone. The p-quinone intermediate is then recycled by reduction and methylation reactions to regenerate an intermediate which is again a substrate for peroxidase-catalyzed oxidative dechlorination. This unique pathway apparently results in the removal of both chlorine atoms before ring cleavage occurs.  相似文献   

15.
Under nitrogen-limiting, secondary metabolic conditions, the white rot basidiomycete Phanerochaete chrysosporium extensively mineralized the specifically 14C-ring-labeled azo dyes 4-phenylazophenol, 4-phenylazo-2-methoxyphenol, Disperse Yellow 3 [2-(4'-acetamidophenylazo)-4-methylphenol], 4-phenylazoaniline, N,N-dimethyl-4-phenylazoaniline, Disperse Orange 3 [4-(4'-nitrophenylazo)-aniline], and Solvent Yellow 14 (1-phenylazo-2-naphthol). Twelve days after addition to cultures, the dyes had been mineralized 23.1 to 48.1%. Aromatic rings with substituents such as hydroxyl, amino, acetamido, or nitro functions were mineralized to a greater extent than unsubstituted rings. Most of the dyes were degraded extensively only under nitrogen-limiting, ligninolytic conditions. However, 4-phenylazo-[U-14C]phenol and 4-phenylazo-[U-14C]2-methoxyphenol were mineralized to a lesser extent under nitrogen-sufficient, nonligninolytic conditions as well. These results suggest that P. chrysosporium has potential applications for the cleanup of textile mill effluents and for the bioremediation of dye-contaminated soil.  相似文献   

16.
POL-88, a mutant of the white-rot fungus Phanerochaete chrysosporium, was selected for diminished phenol-oxidizing enzyme activity. A wide variety of phenolic compounds were degraded by ligninolytic cultures of this mutant. With several o-diphenolic substrates, degradation intermediates were produced that had UV spectra consistent with muconic acids. Extensive spectrophotometric and polarographic assays failed to detect classical ring-cleaving dioxygenases in cell homogenates or in extracts from ligninolytic cultures. Even so, a sensitive carrier-trapping assay showed that intact cultures degraded [U-C]catechol to [C]muconic acid, establishing the presence of a system capable of 1,2-intradiol fission. Significant accumulation of [C]muconic acid into carrier occurred only when evolution of CO(2) from [C]catechol was inhibited by treating cultures with excess nutrient nitrogen (e.g., l-glutamic acid) or with cycloheximide. l-Glutamic acid is known from past work to repress the ligninolytic system in P. chrysosporium and to mimic the effect of cycloheximide. The results here indicate, therefore, that the enzyme system responsible for degrading ring-cleavage products to CO(2) turns over faster than does the system responsible for ring cleavage.  相似文献   

17.
 The influences of temperature, soil moisture potential and initial pH on the biotransformation of pentachlorophenol (PCP) by the lignicolous fungi Lentinula edodes and Phanerochaete chrysosporium were examined. At 10°C, L. edodes was more effective in degrading PCP (P<0.05) than P. chrysosporium. At 15°C similar results were obtained for the two fungi. The highest levels of degradation occurred for both fungi at 25°C. With P. chrysosporium, the extent of PCP elimination was directly related to soil moisture content and optimal at approximately 47%. With L. edodes, in contrast, the process was inversely related to moisture content and maximal at 26%. The initial soil pH also had a marked influence, and pH 4.0 was optimal for both fungi. Received: 7 August 1995/Accepted: 22 August 1995  相似文献   

18.
Under secondary metabolic conditions, the lignin-degrading basidiomycete Phanerochaete chrysosporium mineralizes 2,4,6-trichlorophenol. The pathway for the degradation of 2,4,6-trichlorophenol has been elucidated by the characterization of fungal metabolites and oxidation products generated by purified lignin peroxidase (LiP) and manganese peroxidase (MnP). The multistep pathway is initiated by a LiP- or MnP-catalyzed oxidative dechlorination reaction to produce 2,6-dichloro-1,4-benzoquinone. The quinone is reduced to 2,6-dichloro-1,4-dihydroxybenzene, which is reductively dechlorinated to yield 2-chloro-1,4-dihydroxybenzene. The latter is degraded further by one of two parallel pathways: it either undergoes further reductive dechlorination to yield 1,4-hydroquinone, which is ortho-hydroxylated to produce 1,2,4-trihydroxybenzene, or is hydroxylated to yield 5-chloro-1,2,4-trihydroxybenzene, which is reductively dechlorinated to produce the common key metabolite 1,2,4-trihydroxybenzene. Presumably, the latter is ring cleaved with subsequent degradation to CO2. In this pathway, the chlorine at C-4 is oxidatively dechlorinated, whereas the other chlorines are removed by a reductive process in which chlorine is replaced by hydrogen. Apparently, all three chlorine atoms are removed prior to ring cleavage. To our knowledge, this is the first reported example of aromatic reductive dechlorination by a eukaryote.  相似文献   

19.
Metabolism of cyanide by Phanerochaete chrysosporium   总被引:1,自引:0,他引:1  
The oxidation of veratryl alcohol (3,4-dimethoxybenzyl alcohol) by lignin peroxidase H2 (LiP H2) from the white rot fungus Phanerochaete chrysosporium was strongly inhibited by sodium cyanide. The I50 was estimated to be about 2-3 microM. In contrast, sodium cyanide binds to the native enzyme with an apparent sodium cyanide dissociation constant Kd of about 10 microM. Inhibition of the veratryl alcohol oxidase activity of LiP H2 by cyanide was reversible. Ligninolytic cultures of P. chrysosporium mineralized cyanide at a rate that was proportional to the concentration of cyanide to 2 mM. The N-tert-butyl-alpha-phenylnitrone-cyanyl radical adduct was observed by ESR spin trapping upon incubation of LiP H2 with H2O2 and sodium cyanide. The identity of the spin adduct was confirmed using 13C-labeled cyanide. Six-day-old cultures of the fungus were more tolerant to sodium cyanide toxicity than spores. Toxicity measurements were based on the effect of sodium cyanide on respiration of the fungus as determined by the metabolism of [14C]glucose to [14C]CO2. We propose that this tolerance of the mature fungus was due to its ability to mineralize cyanide and that this fungus might be effective in treating environmental pollution sites contaminated with cyanide.  相似文献   

20.
黄孢原毛平革茵对黄瓜连作土壤酚酸物质的降解   总被引:2,自引:1,他引:2  
研究了黄孢原毛平革菌对黄瓜连作土壤中对羟基苯甲酸、香草酸及阿魏酸的降解及连作障碍修复作用.结果表明,在摇瓶条件下,黄孢原毛平革菌在8 d内.对3种酚酸的降解率都达99%以上.在连续种植7年黄瓜的大棚土壤中,施入黄孢原毛平革菌菌剂后,土壤中3种酚酸的含量都有所降低,降解率为54.46%.与对照相比,修复土壤真菌数量变化无明显规律.修复处理后黄瓜株高、茎粗、鲜质量及干质量无明显变化,黄瓜根部病害明显减轻,枯萎病及根结线虫病相对病情指数分别降低10.2%和14.6%.表明施入黄孢原毛平革茵剂对黄瓜连作障碍的解除具有一定的效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号