首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium phospholipid dependent protein kinase C (PKC) is activated by diacylglycerol (DG) and by phorbol esters and is recognized to be the phorbol ester receptor of cells; DG displaces phorbol ester competitively from PKC. A phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP2), can also activate PKC in the presence of phosphatidylserine (PS) and Ca2+ with a KPIP2 of 0.04 mol %. Preliminary experiments have suggested a common binding site for PIP2 and DG on PKC. Here, we investigate the effect of PIP2 on phorbol ester binding to PKC in a mixed micellar assay. In the presence of 20 mol % PS, PIP2 inhibited specific binding of [3H]phorbol 12,13-dibutyrate (PDBu) in a dose-dependent fashion up to 85% at 1 mol %. Inhibition of binding was more pronounced with PIP2 than with DG. Scatchard analysis indicated that the decrease in binding of PDBu in the presence of PIP2 is the result of an altered affinity for the phorbol ester rather than of a change in maximal binding. The plot of apparent dissociation constants (Kd') against PIP2 concentration was linear over a range of 0.01-1 mol % with a Ki of 0.043 mol % and confirmed the competitive nature of inhibition between PDBu and PIP2. Competition between PIP2 and phorbol ester could be demonstrated in a liposomal assay system also. These results indicate that PIP2, DG, and phorbol ester all compete for the same activator-receiving region on the regulatory moiety of protein kinase C, and they lend support to the suggestion that PIP2 is a primary activator of the enzyme.  相似文献   

2.
Phorbol esters have been reported to induce opposite responses in fetal myoblasts and in satellite cells isolated from adult skeletal muscles. We examined the possibility that different levels of protein kinase C (PKC) activity and different phorbol ester binding characteristics account for these responses. For this purpose, the subcellular distributions of PKC were compared in primary cultures of myogenic cells from fetal and adult rat muscles and in the L6 cell line. Cells were used at the proliferative stage or after differentiation into myotubes. Binding of phorbol dibutyrate (PDBu) was assayed. In all three cell types, the levels of PKC specific activity were comparable at the proliferating and the differentiated stages, and partial translocation of PKC activity from the membrane to the cytosolic compartment was observed after differentiation into myotubes. PDBu binding, which had a Kd of 6 to 13 nM in proliferative cells, rose to between 30 and 52 nM in myotubes. Simultaneously, a small increase was observed in the total number of PDBu binding sites. These results suggest that the role of PKC might change with the stage of differentiation. They also imply that the difference described by others between the sensitivity to phorbol esters of fetal myoblasts and satellite cells is not connected with the phorbol ester receptor (i.e., PKC), but might be caused by events subsequent to PKC activation.  相似文献   

3.
Protein kinase C (PKC) comprises a family of distinct isoenzymes that are involved in signal transduction pathways linking the cell to triggers perceived via membrane receptors. These isoenzymes differ in their tissue distribution, activation requirements, and substrate specificity. One common denominator among different PKC subspecies is their activation by phorbol esters. We have developed a sensitive method permitting the measurement of phorbol ester binding sites, their quantitation, as well as their dissociation kinetics, by performing cytofluorometric analyses on intact cells or on isolated PKC associated to phosphatidylserine vesicles incubated in the presence of fluorochrome-labeled phorbol ester. Both PKC isozymes beta I/beta II and alpha from brain and spleen after incorporation into phosphatidylserine vesicles, display affinities with apparent Kd of 120 and 50 nM, respectively; although PKC gamma from brain exhibits a Kd of 210 nM. In addition to these receptors, on PKC isozymes from spleen, an intermediate affinity phorbol ester receptor (Kd of 3 nM) and an additional high affinity phorbol ester binding site with a Kd of 0.1 to 0.5 nM were also detected. This latter receptor comigrates with high m.w. PKC isoforms. In different cell lines, the phorbol ester binding patterns, as well as the expression of individual PKC isoenzymes, could be positively correlated.  相似文献   

4.
The effects of short-term phorbol ester treatment of CHO cells that stably express 900 fmol of recombinant human serotonin 5-HT1A receptor/mg of protein on coupling to the inhibition of adenylyl cyclase and on phosphorylation of the receptor were studied. Pretreatment of cell monolayers with phorbol 12-myristate 13-acetate (PMA) caused a dose- and time-dependent shift of the half-maximal dose of serotonin (5-HT) required to inhibit membrane adenylyl cyclase (from IC50 approximately 100 nM to approximately 400 nM). This desensitization (shift in IC50) was rapid, occurring with 5 min of pretreatment and being maximal by 10-15 min; it was also dose-dependent, being half-maximal at approximately 300 nM PMA. Desensitization was also induced by sn-dioctanoylglycerol (DiC8) and blocked by the protein kinase C (PKC) inhibitors sphingosine and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7). In detached permeabilized cells, PMA pretreatment caused a rapid phosphorylation of immunoprecipitated 5-HT1A receptors, with an approximately 3-4-fold increase that was maximal after 15 min and persisted for 90 min. The phosphorylation occurred at a similar dose of PMA as that which induced desensitization (half-maximal at approximately 300 nM, maximal at 500 nM to 1 microM), could be reproduced by pretreatment with the PKC activators DiC8 or phorbol 12,13-dibutyrate (PDBu), and could be blocked by the PKC inhibitors sphingosine or H-7. The stoichiometry of the phosphorylation was approximately 2 mol of [32P]ATP/mol of receptor, suggesting the involvement at least two of three putative PKC sites within the 5-HT1A receptor. The close concordance between the PKC-induced desensitization and phosphorylation suggests a potential causative link between these two effects of PKC on the human 5-HT1A receptor.  相似文献   

5.
A selected clone from an IL-2-dependent human T-cell line was persistently propagated in the presence of phorbol esters with the ability to activate protein kinase C (PKC), such as 12-O-tetradecanoylphorbol-13-acetate (TPA) or phorbol-12,13-dibutylate (PDBu). Thus, a TPA(PDBu)-dependent T-cell line, designated TPA-Mat, was established from IL-2-dependent T cells. The TPA-dependency of TPA-Mat was not lost during cultivation for more than a year in the presence of TPA, and TPA-Mat cells still showed IL-2-dependent growth. However, the TPA (PDBu)-dependent growth of TPA-Mat did not seem to be mediated by an autocrine mechanism of IL-2 or by any other growth factor production, because these factors were not detected in TPA-Mat cell supernatants. Therefore, the phorbol esters substituted for IL-2 and may be directly involved in transduction of growth signals in TPA-Mat cells. Although activity of PKC was down-regulated, messenger ribonucleic acid (mRNA) of the PKC beta-gene was detected in TPA-Mat cells cultured with PDBu. Furthermore, the growth of TPA-Mat cells was stimulated not only by phorbol esters but also by nonphorbol ester tumor promoters with the ability to activate PKC. These observations suggest that the sustained activation of PKC by the phorbol esters could induce continuous growth of the IL-2-dependent TPA-Mat cells.  相似文献   

6.
Five rabbit cDNAs, encoding four conventional protein kinase Cs (PKCs), alpha, beta I, beta II, and gamma, and a novel PKC-related protein (nPKC epsilon) were transfected into COS cells. Antisera raised against a bacterially synthesized fragment of PKC alpha or nPKC epsilon and against a chemically synthesized peptide of PKC beta I or beta II, specifically identified the corresponding species in the transfected cells. All four PKCs and nPKC epsilon expressed by transfection served as phorbol ester receptors. Phorbol 12,13-dibutyrate (PDBu)-binding activities of all PKCs and nPKC epsilon required phospholipid but not magnesium. The phosphatidylserine requirement for the activity of nPKC epsilon is independent of Ca2+ and similar to that for PKC alpha observed at 0.03 mM Ca2+. Calcium dependence of the binding activity was observed only for the four conventional PKCs. Scatchard plot analysis clearly showed that the dissociation constants of PDBu for all four PKCs were nearly the same (approximately 25 nM) in the presence of Ca2+, and that the value for nPKC epsilon was slightly higher (84 nM) and independent of Ca2+. The latter value is comparable to those observed in several cell types under conditions of Ca2+ chelation. Translocation of conventional PKC alpha to the membranes was induced with phorbol ester in a Ca2+-dependent manner, whereas the PDBu-stimulated translocation of nPKC epsilon did not require Ca2+. These results, together with previous studies on the enzymological characteristics of nPKC epsilon (Ohno, S., Akita, Y., Konno, Y., Imajoh, S., and Suzuki, K. (1988) Cell 53, 731-741), suggest that nPKC epsilon plays an important role in a transmembrane signaling pathway distinct from that involving conventional PKCs.  相似文献   

7.
BACKGROUND: Amyloid beta-protein (A beta), the major constituent of amyloid deposits found in Alzheimer's disease, is derived from the beta-amyloid precursor protein (beta PP). Constitutive proteolysis by alpha-secretase and secretion of soluble beta PP (beta PPs) are stimulated by protein kinase C (PKC) activation, whereas A beta production and release are inhibited. The cellular mechanism that underlies the PKC-mediated down-regulation of A beta generation is unclear. Because endocytic processing of beta PP from the cell surface is a major pathway of A beta production, the effect of PKC activation by phorbol 12,13-dibutyrate (PDBu) on endocytic trafficking of beta PP was examined. MATERIALS AND METHODS: In this study, trafficking of beta PP was assayed in Chinese hamster ovary cells (CHO) cells stably transfected with full-length beta PP751. RESULTS: Treatment with PDBu resulted in a rapid and striking reduction of up to 80% in the amount of beta PP at the cell surface. This loss of cell-surface molecules could not be accounted for by changes in the trafficking of cell-surface beta PP molecules, as determined by a radiolabeled antibody assay. Rather, the decrease in beta PP was due primarily to a reduction in the sorting of beta PP to the cell surface. This alteration was correlated with accelerated intracellular alpha-secretase-mediated beta PP cleavage and accelerated beta PP trafficking in the exocytic pathway. CONCLUSIONS: The data suggest that the displacement of beta PP away from the cell surface after phorbol ester treatment reduces the substrate available for endocytic processing and in turn, results in the inhibition of A beta production.  相似文献   

8.
Phorbol ester TPA has been previously shown to induce a rapid translocation, followed by a progressive decline of protein kinase C activity in MCF-7 cells (J.M. Darbon et al, 1986, Biochem. Biophys. Res. Comm. 137: 1159-1166). We show now a parallel TPA-induced movement of phorbol ester binding sites from the cytosolic to the particulate fraction with no change in the binding affinities for the (3H) PDBu probe (KD congruent to 2 nM). The subcellular redistribution process is followed by a rapid decrease of the phorbol ester binding capacity at the membrane level. The concomitant decline in both phorbol ester binding and protein kinase C activities that we observed during the course of TPA treatment strongly argues for a real down-regulation of the enzyme in phorbol ester-treated MCF-7 cells. The molecular mechanisms of these events and their relations to the inhibition of cell growth remain to be clarified.  相似文献   

9.
The c-raf kinase has been shown to be activated following stimulation of several tyrosine kinase growth factor receptors. We examined changes in c-raf following engagement of the T cell receptor for antigen (TCR), a stimulus which activates both a non-receptor tyrosine kinase and protein kinase C (PKC). We found that activation of the T-cell receptor on the T cell hybridoma 2B4 causes a rapid and stoichiometric hyperphosphorylation of c-raf and an increase in c-raf-associated kinase activity. Phosphoamino acid analysis showed that the phosphorylation was entirely on serine residues. High-resolution phosphopeptide mapping showed the appearance of a single major new phosphopeptide with TCR stimulation. That phosphopeptide was shown to comigrate with the major new phosphopeptide induced in response to phorbol ester. When cells were depleted of PKC by pretreatment with high concentrations of phorbol ester, TCR stimulation was no longer capable of inducing c-raf-associated kinase activity. To determine whether activation of the tyrosine kinase alone would activate c-raf, we examined the 2B4 variant cell line FL.8. In response to Thy-1 stimulation, these cells activate the tyrosine kinase but not protein kinase C due to a deficiency in TCR eta chain expression. We found that in contrast to Thy-1 stimulation of 2B4 cells, stimulation of FL.8 cells does not lead to the induction of c-raf-associated kinase activity, although phorbol ester activates the kinase to an equivalent degree in both cells. We conclude that T cell receptor activation of c-raf occurs via phosphorylation by the serine/threonine kinase PKC. Activation of c-raf through PKC represents a mechanism distinct from that reported for tyrosine kinase growth factor receptors.  相似文献   

10.
Application of acetylcholine (ACh) to C62B glioma cells results in a rapid release of inositol phosphates. Since this response is transient, we evaluated the possible role of protein kinase C (PKC) in its desensitization. Pretreatment with 100 nM phorbol 12,13-dibutyrate (PDBu) significantly inhibited ACh-induced accumulation of [3H]inositol mono-, bis-, and trisphosphates. However, interpretation of this result as proof of PKC involvement was complicated by the failure of 1,2-dioctanoylglycerol, 1,2-didecanoylglycerol, or 1-oleoyl-2-acetylglycerol pretreatments to mimic the phorbol ester effect. Further evidence against PKC involvement was obtained using the PKC inhibitor sphingosine; PDBu inhibition of inositol phosphate formation was not reversed by sphingosine pretreatments at concentrations which blocked ACh-stimulated PKC activation of inositol trisphosphate phosphatase activity. These results suggest that there may be phorbol effects not mediated by PKC.  相似文献   

11.
Properties of membrane-inserted protein kinase C   总被引:7,自引:0,他引:7  
M D Bazzi  G L Nelsestuen 《Biochemistry》1988,27(20):7589-7593
Protein kinase C (PKC) interacted with phospholipid vesicles in a calcium-dependent manner and produced two forms of membrane-associated PKC: a reversibly bound form and a membrane-inserted form. The two forms of PKC were isolated and compared with respect to enzyme stability, cofactor requirements, and phorbol ester binding ability. Membrane-inserted PKC was stable for several weeks in the presence of calcium chelators and could be rechromatographed on gel filtration columns in the presence of EGTA without dissociation of the enzyme from the membrane. The activity of membrane-inserted PKC was not significantly influenced by Ca2+, phospholipids, and/or PDBu. Partial dissociation of this PKC from phospholipid was achieved with Triton X-100, followed by dialysis to remove the detergent. The resulting free PKC appeared indistinguishable from original free PKC with respect to its cofactor requirements for activation (Ca2+, phospholipid, and phorbol esters), molecular weight, and phorbol 12,13-dibutyrate (PDBu) binding. The binding of PDBu to free and membrane-inserted PKC was measured under equilibrium conditions using gel filtration techniques. At 2.0 nM PDBu, free PKC bound PDBu with nearly 1:1 stoichiometry in the presence of Ca2+ and phospholipid. No PDBu binding to the free enzyme was observed in the absence of Ca2+. In contrast, membrane-inserted PKC bound PDBu in the presence or the absence of Ca2+; calcium did enhance the affinity of this interaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
We examined the dependence of rat renal Na+, K+-ATPase activity on protein kinase C (PKC) stimulation. Infusion of either phorbol 12, 13-dibutyrate (PDBu) or phorbol 12-myristate 13-acetate (PMA) into rat abdominal aorta resulted in dose-dependent changes of renal cortical Na+, K+-ATPase activity. Low doses of these esters (3 x 10(-11) mol/kg/min) increased activity of Na+, K+-ATPase whereas high doses (3 x 10(-9) mol/kg/min) decreased it. The changes in Na+, K+-ATPase activity induced by PDBu and PMA were prevented by staurosporine, a PKC inhibitor. 4Alpha phorbol didecanoate (4alpha PDD), phorbol ester which does not activate PKC had no effect on cortical Na+, K+-ATPase. PDBu and PMA did not change Na+, K+-ATPase activity in the renal medulla. The stimulatory effect of PDBu (3 x 10(-11) mol/kg/min) was neither mimicked by amphotericin B, a sodium ionophore nor blocked by amiloride, an inhibitor of Na+/H+-exchanger. The inhibitory effect of 3 x 10(-9) mol/kg/min PDBu was not mimicked by amiloride indicating that the observed effects of PKC stimulation are not secondary to alterations in intracellular sodium concentration. The inhibitory effect of PDBu was prevented by infusion of ethoxyresorufin, an inhibitor of cytochrome P450-dependent arachidonate metabolism. These results suggest that the inhibitory effect of PKC on renal cortical Na+, K+-ATPase is mediated by cytochrome P450-dependent arachidonate metabolites.  相似文献   

14.
Protein kinase C contains two phorbol ester binding domains   总被引:10,自引:0,他引:10  
A series of deletion and truncation mutants of protein kinase C (PKC) were expressed in the baculovirus-insect cell expression system in order to elucidate the ability of various domains of the enzyme to bind phorbol dibutyrate (PDBu). A PKC truncation mutant consisting of only the catalytic domain of the enzyme did not bind [3H]PDBu, whereas a PKC truncation mutant consisting of the regulatory domain (containing the tandem cysteine-rich putative zinc finger regions) bound [3H]PDBu. Deletion of the second conserved region (C2) of PKC did not abolish [3H]PDBu binding, whereas a deletion of the first conserved region (C1) of PKC, containing the two cysteine-rich sequences, completely abolished [3H]PDBu binding. Additional truncation and deletion mutants helped to localize the region necessary for [3H]PDBu binding; all PKC mutants that contained either one of the cysteine-rich zinc finger-like regions possessed phorbol ester binding activity. Scatchard analyses of these mutants indicated that each bound [3H]PDBu with equivalent affinity (21-41 nM); approximately 10-20-fold less than the native enzyme. In addition, a peptide of 146 amino acid residues from the first cysteine-rich region, as well as a peptide of only 86 amino acids residues from the second cysteine-rich region, both bound [3H]PDBu with high affinity (31 +/- 4 and 59 +/- 13 nM, respectively). These data establish that PKC contains two phorbol ester binding domains which may function in its regulation.  相似文献   

15.
The lipophilic immunomodulator MTP-PE is able to activate purified protein kinase C (PKC) by substituting phosphatidyl-serine (PS) or the synthetic diacylglycerol, DiC8, in the assay system. In addition, MTP-PE inhibited [3H]-phorbol-12, 13-dibutyrate ([3H]-PDBu) binding to PKC in a reconstituted receptor system as well as on intact cells (MCF-7). Furthermore, MTP-PE was also able to reduced the epidermal growth factor binding of MCF-7 cells to an extent similar to that found with DiC8 or PDBu. These data indicate that MTP-PE is able to compete for the phorbol ester binding site on PKC both in vivo and in vitro. The components of the MTP-PE molecule, MTP (muramyl-tripeptide) and PE (phosphatidylethanolamine) exerted only marginal effects on PKC activity, did not affect the phorbol ester binding of PKC and the EGF binding of intact MCF-7 cells. Our results suggest that only the complete molecule of the immunomodulator MTP-PE is able to interact with PKC.  相似文献   

16.
Previous studies have shown that auranofin (AF), a lipophilic gold I complex, modulates metabolic events in leukocytes stimulated by phorbol esters, whose major cellular binding site is now known to be the Ca++/phospholipid-dependent protein kinase (protein kinase C). In these experiments we have investigated the effect of AF on the binding of phorbol dibutyrate (PDBu) to human chronic lymphocytic leukemia (CLL) B cells. AF enhanced binding of PDBu to its receptor in CLL cells by a) causing an increase in the affinity of PDBu receptors from Kd 20.3 nM to 7.3 nM, and b) enhancing translocation of PDBu receptors to the cell membrane. The increase in PDBu binding induced by AF in whole cells was only partially reversible by EGTA or the intracellular Ca++ antagonist TMB-8. Studies performed with quin-2-labeled cells showed that 100 microM AF caused a mean (+/- SD) rise in cytosolic Ca++ levels from 0.41 (0.12) to 0.85 (0.33) (n = 5). Thus the mechanism by which AF increases binding of PDBu to its receptor appears to be partially dependent on Ca++. These effects of AF occurred at cellular levels achieved in mononuclear cells during chrysotherapy of patients with rheumatoid arthritis.  相似文献   

17.
Protein kinase C (PKC) is involved in several cell events including proliferation, survival and differentiation. The aim of this work was to investigate the role of PKC activation on retinal cells proliferation. We demonstrated that PKC activation by phorbol 12-myristate 13-acetate (PMA), a tumor promoter phorbol ester, is able to decrease retinal cells proliferation. This effect was mediated by M1 receptors and dependent on intracellular Ca(2+) increase, tyrosine kinase activity, phosphatidylinositol 3-kinase activity, polypeptide secretion and activation of TrkB receptors. The effect of PMA was not via activation of mitogen-activated protein (MAP) kinase. Carbamylcholine and brain derived neurotrophic factor were both able to decrease retinal cells proliferation to the same level as PMA did. Our results suggest that PKC activation leads to a decrease in retinal cells proliferation through the release of acetylcholine and brain derived neurotrophic factor in the culture, and activation of M1 and TrkB receptors, respectively.  相似文献   

18.
Properties of the protein kinase C-phorbol ester interaction   总被引:5,自引:0,他引:5  
The properties of the protein kinase C (PKC)-phorbol ester interaction were highly dependent on assay methods and conditions. Binding to cation-exchange materials or adsorption to gel matrices resulted in PKC that was capable of binding phorbol 12,13-dibutyrate (PDBu). The extraneous interactions were eliminated by measuring phorbol ester binding with a gel filtration chromatography assay in the presence of bovine serum albumin (BSA). In the absence of calcium, free PKC did not bind PDBu or phospholipids. Calcium caused structural changes in PKC which enhanced its interaction with surfaces such as the gel chromatography matrix. While BSA prevented this interaction, it did not interfere with PKC association with acidic phospholipids. Interaction of PKC with phospholipid resulted in two forms of membrane-associated PKC. The initial calcium-dependent and reversible form of membrane-associated PKC was capable of binding PDBu. Both PKC and PDBu were released from this complex by calcium chelation. Sustained interaction with phospholipid vesicles resulted in a PKC-membrane complex that could not be dissociated by calcium chelation and appeared to result from insertion of PKC into the hydrocarbon portion of the phospholipid bilayer. Membrane insertion was observed at calcium concentrations of 2-500 microM and with membrane compositions of 10-50% acidic phospholipid. However, the extent of insertion was dependent on the binding conditions and was promoted by high phospholipid to PKC ratios, high calcium, the presence of phorbol esters, high membrane charge, and long incubations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The short (5-60 min) and long (24 hrs) term effects of norepinephrine (10 uM) and the phorbol ester, 12-0-tetradecanoyl phorbol-13-acetate (10 nM), on total cellular and surface-accessible alpha-1 adrenergic receptor number were determined in DDT1 MF-2 smooth muscle cells. The density of alpha-1 adrenergic receptors was determined with [3H]-prazosin in a crude cellular homogenate (total cellular receptors) and in intact cells at 4 degrees C (surface-accessible receptors). Under basal conditions, all receptors were accessible to the cell surface at 4 degrees C. Short term norepinephrine exposure caused an approximately 40% decrease in surface-accessible binding without a change in total receptor number. Long term norepinephrine exposure caused a further decrease in surface-accessible binding, and an approximately 30% decrease in total receptor number. In contrast, phorbol ester had no effect on surface-accessible or total receptor number with either short or long term exposure. These data suggest that sequestration of cell surface alpha-1 adrenergic receptors is an early step in the process of agonist-mediated down-regulation. In DDT1 MF-2 cells, phorbol ester, alone, does not mimmick the effect of agonist on receptor sequestration or number.  相似文献   

20.
The possibility that Sertoli cell responses to testosterone are modulated by the calcium/phospholipid-dependent protein kinase (protein kinase C; PKC) was examined in rat Sertoli cells in culture. Both soluble and particulate cell fractions showed low constitutive phosphotransferase activity. Incubation with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA; 10(-7) M) was associated with a transient induction in both cell fractions of calcium/phosphatidylserine-dependent PKC activity, which was elevated from 15 min to 1 h. Consistent with this, mRNAs for the calcium/phospholipid-dependent isomeric forms of PKC (alpha, beta, and gamma) were detected. The expression levels of mRNAs for PKCalpha and PKCbeta were also up-regulated (2.5- to 3-fold) by TPA (10(-7) M), but these effects were much slower (peaking after 12 h) than those on phosphotransferase activity. In the presence of TPA (10(-7) M), expression of androgen receptor (AR) mRNA showed a transient time-dependent down-regulation ( approximately 70%), in which the nadir was reached after 6 h and baseline expression was again obtained after 12 h. The regulatory effect of PKC activation on AR mRNA was confirmed by the absence of response to a biologically inactive phorbol ester. A concentration-dependent decrease (half-maximal effect at approximately 10(-8) M TPA) of AR mRNA was also observed. These data suggest that Sertoli cell responses to testosterone may be inhibited by a transiently active PKC with a wide intracellular distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号