首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Urchins are the last abundant grazers of macroalgae on most Caribbean reefs following the historical overexploitation of herbivorous fishes. The long‐spined urchin Diadema antillarum was particularly effective at controlling macroalgae and facilitating coral dominance on Caribbean reefs until its ecological extinction from a catastrophic disease epidemic in the early 1980s. Despite their important role in the structure and functioning of Caribbean reef ecosystems, the natural dynamics of Caribbean reef urchin communities are poorly known due to the paucity of ecological survey data prior to large‐scale human disturbances and the Diadema dieoff. To help resolve the baseline abundances and ecological roles of common urchin taxa, we track changes in urchin abundance and composition over the past 3000 yr from analysis of subfossil urchin spines preserved in reef matrix cores collected in Caribbean Panama. Echinometra consistently dominated the subfossil spine assemblage, while Diadema was consistently rare in the subfossil record in this region. Rather than increasing during a period of heightened human exploitation of their fish competitors and predators, Diadema began declining over a millennium ago. Convergent cross mapping (CCM) causality analyses reveal that Diadema abundance is causally related to coral community composition. Diadema is negatively affected by Acropora cervicornis dominance, likely due to the tight association between this coral and the threespot damselfish, an effective Diadema competitor. Conversely, Diadema positively affects the abundance of the coral Madracis mirabilis, possibly via its control of macroalgae. Causal relationships were not detected among abundances of individual urchin taxa, indicating that inter‐specific echinoid competition is not a factor limiting Diadema recovery. Our detailed record of prehistorical and historical urchin community dynamics suggests that the failure of Diadema to recover over 30 yr after its mass mortality event may be due in part to the prey release of damselfish following the long‐term overfishing of piscivorous fishes.  相似文献   

2.
Few works have examined the relative contributions of habitat variables to the distribution of coral reef urchins. In the present study, the spatial distribution of two common urchin species (Diadema setosum and Echinometra mathaei) was studied in the fringing reefs of two urban bays in New Caledonia (South Pacific). Urchins were surveyed at 105 stations with contrasted habitat structure/anthropic disturbance levels; 32 environmental variables (water/sediment characteristics, reef structuring species) were considered. Moderate densities were generally observed at station scale (mean 0.5 individuals m− 2). The combination of univariate and multivariate techniques highlighted patchy distributions for Diadema as well as Echinometra, with distinct species/habitat associations; environmental gradients occurring within the bays did not seem to influence the species patterns. For Diadema, the spatial variability was better explained by sediment type than by biotic cover; increasing densities occurred across habitats with larger sediment sizes and decreasing coral complexity/macrophytes cover. In contrast, the distribution of E. mathaei exhibited weak relationships with habitat variables. In coral reefs, small-scale heterogeneity may thus be responsible for most of urchins spatial variability.  相似文献   

3.
Sixteen months after Hurricane Allen, an assessment of the condition (living vs. dead and encrusted) and volume of staghorn coral, Acropora cervicomis Lamarck, patches within the East Back Reef of Discovery Bay, Jamaica was made. Data generated by this assessment were compared with similar data collected in 1975–1976 prior to the storm. Densities of two urchins, Diadema antillarum Philippi and Echinometra viridis A. Agassiz, and the threespot damselfish, Eupomacentrus planifrons Cuvier, within the coral patches were also measured.Although staghorn coral patches were significantly smaller (? 65%) in mean volume in 1981 compared to 1975–1976, 22% of the patches were unchanged since 1976 or had increased in volume and only 9% were reduced to piles of rubble. Diadema and threespot densities were significantly higher than in 1976. Mortality of damselfish and larger Diadema appeared to have been reduced. Coral patches with both damselfish and Diadema present exhibited a high proportion of living coral tissue, while those patches dominated by either damselfish or Diadema were overgrazed with < 5% of the substrata covered by living coral. Similarly, the fore reef exhibited high urchin and low damselfish densities, possibly contributing to its low proportion of living coral.  相似文献   

4.
Susan A. Foster 《Oecologia》1985,67(4):499-505
Summary Three adult size classes of the territorial Caribbean dusky damselfish,Stegastes dorsopunicans, are differently distributed with respect to habitat, and with respect to the biomass of filamentous algal turfs in the areas they defend. The density of large individuals is positively correlated with the decalcified dry biomass of these turfs, whereas the densities of medium and small individuals are inversely related to algal biomass. Density of the urchin,Diadema, is also inversely correlated with algal biomass. The high density of large dusky damselfish in sites with algal turfs of relatively high biomass probably results from preferences of dusky damselfish for sites in which algal turfs are thick, and superior abilities of large individuals to defend these sites.Because both rate of attacks and the effectiveness of attacks on territory invaders by dusky damselfish increases with increasing size, sites with relatively high biomass algal turfs are typically better defended than those with lower biomass turfs. Apparently as a result of this, small foraging groups of the blue tang surgeonfish,Acanthurus coeruleus, feed less on high biomass algal turfs than do larger foraging groups, the members of which experience attacks by defending damselfishes less frequently. The relatively low proportionate use of high biomass feeding sites by solitary blue tangs and members of small foraging groups is caused by dusky damselfish. When the density of this damselfish was reduced artificially, use of high biomass algal turfs by solitary blue tangs increased to a level indistinguishable from that of participants in large foraging groups.  相似文献   

5.
Summary Coexistence between the coral reef inhabiting sea urchins Echinometra mathaei, Diadema savignyi and D. setosum was studied by comparing differences in body morphology, distribution, diet, susceptibility to predators, intra- and interspecific competition and settlement. The three species share similar diets and broad within-habitat distributions but differ in their microspatial preferences. E. mathaei is the smallest species, has the highest settlement rates and lives territorially within small burrows or crevices. D. savignyi is intermediate in size and lives frequently in intermediate size crevices or occassionally in social groups. D. setosum is the largest species and occassionally lives in large crevices or more frequently in social groups. Both Diadema have similarily low settlement rates. Competition experiments showed that E. mathaei was consistently the top competitor for crevice space. Diadema species shared larger crevices but competition occured within smaller crevices and was frequently won by the largest individual, regardless of species. D. savignyi may be the top competitor for crevice space between the Diadema species due to a reduced spine length/test size ratio which gives it a larger test for the same crevice size requirement. Predation rates were high for E. mathaei and low for both Diadema species. Coexistence is mediated by predation on the competitive-dominant while predation coupled with different body morphologies and behavior allows spatial resource partitioning of the reef's variable topography. Consequently, the three variables of predation, topographic complexity and differing body shapes create the observed species diversity. A reduction in predators due to stochastic fluctuations or from fishing pressure can lead to E. mathaei population increases and competitive exclusion of Diadema.  相似文献   

6.
Abstract.— The causes of speciation in the sea are rarely obvious, because geographical barriers are not conspicuous and dispersal abilities or marine organisms, particularly those of species with planktonic larvae, are hard to determine. The phylogenetic relations of species in cosmopolitan genera can provide information on the likely mode of their formation. We reconstructed the phylogeny of the pantropical and subtropical sea urchin genus Diadema, using sequences of mitochondrial DNA from 482 individuals collected around the world, to determine the efficacy of barriers to gene flow and to ascertain the history of possible dispersal and vicariance events that led to speciation. We also compared 22 isozyme loci between all described species except D. palmeri. The mitochondrial DNA data show that the two deepest lineages are found in the Indian and West Pacific Oceans. (Indo‐Pacific) Diadema setosum diverged first from all other extant Diadema, probably during the initiation of wide fluctuations in global sea levels in the Miocene. The D. setosum clade then split 3‐5 million years ago into two clades, one found around the Arabian Peninsula and the other in the Indo‐West Pacific. On the lineage leading to the other species of Diadema, the deepest branch is composed of D. palmeri, apparently separated when the climate of New Zealand became colder and other tropical echinoids at these islands went extinct. The next lineage to separate is composed of a currently unrecognized species of Diadema that is found at Japan and the Marshall Islands. Diadema mexicanum in the eastern Pacific separated next, whereas D. paucispinum, D. savignyi, and D. antillarum from the western and central Atlantic, and (as a separate clade) D. antillarum from the eastern Atlantic form a shallow polytomy. Apparently, Indo‐Pacific populations of Diadema maintained genetic contact with Atlantic ones around the southern tip of Africa for some time after the Isthmus of Panama was complete. Diadema paucispinum contains two lineages: D. paucispinum sensu stricto is not limited to Hawaii as previously thought, but extends to Easter Island, Pitcairn, and Okinawa; A second mitochondrial clade of D. paucispinum extends from East Africa and Arabia to the Philippines and New Guinea. A more recent separation between West Indian Ocean and West Pacific populations was detected in D. setosum. Presumably, these genetic discontinuities are the result of water flow restrictions in the straits between northern Australia and Southeast Asia during Pleistocene episodes of low sea level. Diadema savignyi is characterized by high rates of gene flow from Kiribati in the central Pacific all the way to the East African Coast. In the Atlantic, there is a biogeographic barrier between the Caribbean and Brazil, possibly caused by fresh water outflow from the Amazon and the Orinoco Rivers. Diadema antillarum populations of the central Atlantic islands of Ascension and St. Helena are genetically isolated and phylogenetically derived from Brazil. Except for its genetic separation by the mid‐Atlantic barrier, Diadema seems to have maintained connections through potential barriers to dispersal (including the Isthmus of Panama) more recently than did Eucidaris or Echinometra, two other genera of sea urchins in which phylogeography has been studied. Nevertheless, the mtDNA phylogeography of Diadema includes all stages expected from models of allopatric differentiation. There are anciently separated clades that now overlap in their geographic distribution, clades isolated in the periphery of the genus range that have remained in the periphery, clades that may have been isolated in the periphery but have since spread towards the center, closely related clades on either side of an existing barrier, and closely related monophyletic entities on either side of an historical barrier that have crossed the former barrier line, but have not attained genetic equilibrium. Except for D. paucispinum and D. savignyi, in which known hybridization may have lodged mtDNA from one species into the genome of the other, closely related clades are always allopatric, and only distantly related ones overlap geographically. Thus, the phylogenetic history and distribution of extant species of Diadema is by and large consistent with allopatric speciation.  相似文献   

7.
To examine the effects of echinoid grazing on shallow water coral community structure, the entire Diadema antillarum Philippi population (> 3000 individuals) was eliminated from a patch reef in Discovery Bay, Jamaica W.I. in January 1974. All remaining regular echinoids, notably including Echinometra viridis A. Agassiz (> 7000 individuals), were removed from one-half of the same reef 6 months later.Where Echinometra was present, its grazing was highly patchy, even at densities of up to 50/m2. On the other hand, the effects of grazing by Diadema were more uniformly distributed at equivalent or lower densities.Percent-cover of adult corals was enhanced in the presence of Echinometra viridis, however, it was greatly reduced in the absence of all echinoid grazing as a result of massive overgrowth by algae. Success of coral recruitment (density of coral spat) increased in the absence of Diadema due to the alleviation of biological disturbance imposed by this urchin's feeding activities. The presence of Echinometra viridis, even at the high densities naturally present on the reef, did not deter coral settlement.Coral diversity was highest in the presence of all echinoids, intermediate in the presence of E. viridis (without Diadema), and lowest in the absence of all echinoids. This was due to the disproportionately successful recruitment and resultant high relative abundance of Agaricia at low echinoid densities. Favia, Millepora, Helioseris and Acropora all exhibited universally low recruitment levels. Predation by Diadema and Echinometra is responsible for damaging larger coral colonies, particularly Porites.As echinoid species composition and density was altered, the species composition of benthic algae and associated invertebrates shifted. In this way, the array of species competing for space with coral spat shifted as did their competitive relationships. Major epifaunal competitors included spirorbid polychaetes, various foraminifera (particularly Gypsina), and sponges. Algal competitors included filamentous chlorophytes, corallines (e.g. Jania), and numerous other red algae; the species composition of algal competitors shifted through time. Competitive success in corals varied as echinoid density changed and was species-specific with respect to coral genus. Interspecific competition between coral spat (i.e., interspecific aggression via extracoelenteric digestion) was negligible under all treatments.The presence of Echinometra viridis in high densities (in the absence of Diadema) created conditions where growth and fusion in Agaricia spat were optimized. Under these conditions, fusion allows a young coral colony to attain a large enough size to survive damage incurred from grazing or from competitive overgrowth, decreasing the probability of whole-colony mortality during the early stages of development.  相似文献   

8.
Caribbean coral reefs have transformed into algal-dominated habitats over the past half-century, but the role of specific anthropogenic drivers is unresolved due to the lack of ecosystem-level data predating human disturbance. To better understand the extent and causes of long-term Caribbean reef declines, we produced a continuous 3000-yr record of the ecosystem state of three reefs in Bocas del Toro, Caribbean Panama. From fossils and sediments obtained from reef matrix cores, we tracked changes in reef accretion rates and the taxonomic and functional group composition of fish, coral, urchin, bivalve and benthic foraminifera. This dataset provided a comprehensive picture of reef community and environmental change. At all sites, reefs shifted from systems with greater relative abundance of herbivorous fish, epifaunal suspension feeding bivalves and Diadema urchins to systems with greater relative abundance of micropredator fish, infaunal bivalves and Echinometra urchins. These transitions were initiated a millennium ago at two less-degraded reefs fringing offshore islands and ~250 yr ago at a degraded patch reef near the continental coast. Ecosystem shifts were accompanied by a decline in reef accretion rates, and at the patch reef, a decline in water quality since the 18th century. Within all cores, synchronous increases in infaunal bivalves and declines in herbivorous fish regardless of water quality suggest a loss of hard substrate and increasingly hypoxic sediment conditions related to herbivore loss. While the early timing of ecosystem transitions at the fringing reefs implicates large-scale hydrological change, the more recent timing of change and loss of water quality at the patch reef implicates terrigenous runoff from land-clearing. Our whole-ecosystem reconstruction reveals that reef ecosystem deterioration appears to follow a predictable trajectory whether driven by natural or anthropogenic disturbances and that historical local human activities have quickly unraveled reefs at a scale similar to longer-term natural environmental change.  相似文献   

9.
Summary When the common sea urchin Diadema antillarum was removed from a 50 m strip of reef in St. Thomas, US Virgin Islands, cover of upright algae and the grazing rates and densities of herbivorous parrotfish and surgeonfish increased significantly within 11–16 weeks when compared to immediately adjacent control areas. Sixteen months after removal, Diadema had recovered to 70% of original density, abundance of upright algae no longer differed between removal and control areas, and the abundance and grazing activity of herbivorous fish in the removal was approaching equivalence with control areas. On a patch reef in St. Croix that had been cleared of Diadema 10–11 years earlier (Ogden et al. 1973b), urchins had recovered to only 50–60% of original density. This reef still showed significantly higher rates of grazing by fish and a significantly greater density of parrotfish and surgeonfish than a nearby control reef where Diadema densities had not been altered. These results indicate that high Diadema densities (7–12/m2 for this study) may suppress the densities of herbivorous fish on Caribbean reefs.  相似文献   

10.
El Nifio related coral mortality and a subsequent increase in crustose coralline algae and sea urchins have resulted in profound changes to the coral reef ecosystem at Uva Island, Panama (Pacific coast). New data and a model are presented that analyze the CaCO3 budget of the reef. The model accounts for production by corals and coralline algae, erosion byDiadema, infauna, fish and other motile organisms, and the retention of sediments as a function of size. The 2.5 ha reef is currently eroding at an average rate of 4,800 kg/y or –0.19 kg/m2/y but there is tremendous variation among reef zones. While deposition in other zones range from +0.1 to 0.4 kg/m2/y, erosion of the seaward reef base averages about –3.65 kg/m2/y. The damselfish/algal lawn symbiosis protects portions of the reef framework, reducing net losses there by 2,000 kg/y (up to 0.33 kg/m2/y). Before the 1982-1983 El Niño, the overall reef was depositional. At that time, estimated production exceeded erosion in most zones, resulting in a net deposition of approximately 8,600 kg/y or 0.34 kg/m2/y.  相似文献   

11.
Vertebrates live in complex species networks in which interspecific interactions are common. In some contexts, the aggressive behaviours shown in these interspecific interactions are very similar to those shown in intraspecific interactions. It is still an open question whether intra‐ and interspecific aggression share common causality. We studied a year‐round territorial species the jewel damselfish, (Plectroglyphidodon lacrymatus), which cultivate algae they feed on. Territory holders aggressively defend these algae that are an attractive resource for many other species. In this study, we recorded territorial aggression in free‐living individuals and recorded aggressive responses to a standardized territorial intrusion test in captive individuals. Field observations indicated that territorial aggression was selectively targeted towards food competitors. Independent of the size of the species, aggression was more frequent towards common species around their territories. This relationship was confirmed experimentally by confronting the jewel damselfish with novel objects to which the subjects were exposed either frequently or rarely. We suggest that jewel damselfish have to learn which species are competitors and therefore should be chased. In a standardized intrusion test with captive individuals, no significant differences were found in territorial responses towards intra‐ or interspecific intruders. Neither territorial aggression nor the intrusion showed any relationship with plasma androgen levels. Together, these data suggest that experience might be more important in non‐seasonal territorial aggression than circulating hormonal factors.  相似文献   

12.
Summary

Four species of sea urchins of the genus Echinometra, designated species A, B, C, and D, occur along the coast of Okinawa; they are distinguished by color pattern and other characteristics. The two most distinct species, Echinometra sp. A (Ea) with white-tipped spines and Echinometra sp. D (Ed) with nearly black spines (possibly E. oblonga), were examined for potential hybridization through a series of fertilization experiments and rearing of the resulting hybrids. Fertilization was reciprocally asymmetrical; Ed ova were readily fertilized by sperm of Ea, but less than 20% of the ova of Ea were fertilized by sperm of Ed. Nevertheless, hybrids resulting from crosses in both directions developed normally through larval and juvenile stages to produce sexually mature adults. Larvae of Ed♀×Ea♂ and Ed♂×Ed♀ were larger than those of Ea♂ × Ed♀ and Ea♂ × Ea♀, reflecting the larger eggs of Ed. However, Ea♂×Ea♀ juveniles and later stages, up to maturity, were consistently larger than those of equivalent ages of the other crosses; largest to smallest were Ea♂×Ea♀, Ed♂×Ea♀, Ea♂ × Ed♀, and Ed♂×Ed♀, respectively. Ova and sperm of the hybrids were viable and fertilizable in all combination of crosses, although fertilization of those of Ed♂×Ea♀ hybrids was consistently higher than those of Ea♂ × Ed♀ hybrids. These experiments represent the first reported successful production of hybrid sea urchins with viable gametes. They indicate that reproductive isolation is achieved by prezygotic isolating mechanisms in these two species. Of these mechanisms, gametic incompatibility is probably only partly involved, if at all, and differences in spawning times, habitat segregation, or other factors appear to be important for maintaining reproductive isolation in these closely related species.  相似文献   

13.
Populations of the desert seed-harvesting ant Pheidole xerophylla are often characterized by high nest density leading to competitive interactions between foragers from different nests. We investigated the inter-nest aggression, spatial distribution and genetic structure of a P. xerophylla population of the Mojave Desert in Southern California. Inter-nest aggression was quantified by standardized staged encounters in a neutral arena. Genetic relatedness within nests and relatedness between nests were calculated using allelic frequencies at four microsatellite-DNA loci. We found a bimodal distribution of inter-colony aggression levels with a first mode at low aggression levels and another mode at much higher aggression levels. Inter-colony aggression levels were largely non-transitive. No effect of geographical distance on inter-nest aggression levels was detected. Despite high amounts of variation in inter-colony relatedness ( − 0.24 to 0.37) this variable did not correlate with the level of aggression between nests. Intra-nest relatedness ranged from 0.40 to 0.75 and close inspection of worker genotypes within colonies revealed a high proportion of polygynous colonies or a mixture of polygyny and polyandry. Aggression levels among nests was found to decrease with increasing intra-nest relatedness. These results do not support the idea that aggression is modulated by a nestmate recognition mechanism based on overall genetic similarity. Instead, the absence of transitivity found in inter-colony aggression and bimodal distribution of aggression levels are compatible with a common label acceptance model of nestmate recognition and suggest that label diversity may be encoded by a limited number of loci. Received 29 March 2005; revised 8 September 2005; accepted 27 September 2005.  相似文献   

14.
Coral communities at Moorea, French Polynesia, and on the Great Barrier Reef (GBR), Australia, were severely depleted by disturbances early in the 1980s. Corals were killed by the predatory starfish Acanthaster planci, by cyclones, and/or by depressed sea level. This study compares benthic community structure and coral population structures on three disturbed reefs (Vaipahu-Moorea; Rib and John Brewer Reefs-GBR) and one undisturbed reef (Davies Reef-GBR) in 1987–89. Moorea barrier reefs had been invaded by tall macrophytes Turbinaria ornata and Sargassum sp., whereas the damaged GBR reefs were colonised by a diverse mixture of short macrophytes, turfs and coralline algae. The disturbed areas had broadly similar patterns of living and dead standing coral, and similar progress in recolonisation, which suggests their structure may converge towards that of undisturbed Davies Reef. Corals occupying denuded areas at Vaipahu, Rib and John Brewer were small (median diameter 5 cm in each case) and sparse (means 4–8 m-2) compared to longer established corals at Davies Reef (median diameter 9 cm; mean 18 m-2). At Moorea, damselfish and sea urchins interacted with corals in ways not observed in the GBR reefs. Territories of the damselfish Stegastes nigricans covered much of Moorea's shallow reef top. They had significantly higher diversity and density of post-disturbance corals than areas outside of territories, suggesting that the damselfish exerts some influences on coral community dynamics. Sea urchins on Moorea (Diadema setosum Echinometra mathaei, Echinotrix calamaris) were causing widespread destruction of dead standing coral skeletons. Overall, it appears that the future direction and speed of change in the communities will be explicable more in terms of local than regional processes.  相似文献   

15.
Predators may have consumptive (lethal) and non-consumptive (sub-lethal) effects on prey. Non-consumptive effects include altered behavior and reduced growth and fecundity. Native prey may not recognize non-native predators as a threat, and therefore may suffer pronounced effects. Additionally, non-native predators may elicit different behavioral responses from prey compared to native predators. Theory predicts that consumptive effects should be greater for non-native predators (due to prey naiveté), and non-consumptive effects should be greater for native predators (due to predator recognition). To test these hypotheses, I monitored bicolor damselfish (Stegastes partitus) in the presence of invasive predatory Pacific lionfish (Pterois spp.), a native predator (graysby, Cephalopholis cruentata), and an egg predator (bluehead wrasse, Thalassoma bifasciatum). Body size and location of lionfish and graysby were monitored on reefs in the Bahamas. Bicolor fecundity was measured as the number and size of egg-masses that individual fish laid. Bicolor fecundity was negatively correlated with lionfish density but not graysby or bluehead density. Neither predator had a detectable effect on bicolor body size, but lionfish density was negatively correlated with the size of mature adult damselfish. I observed behavioral responses of bicolors to the two piscivores, to bluehead wrasse, and to two herbivorous fishes (Acanthurus coeruleus, Scarus spp.) as non-aggressive controls. Bicolors changed behavior (feeding and aggression) in the presence of all native fishes, but not in the presence of lionfish. Thus, differential effects exist between native and non-native predators, and invasive lionfish pose a non-consumptive threat to bicolor damselfish via reduced growth and fecundity.  相似文献   

16.
Bindin is a gamete recognition protein known to control species-specificsperm-egg adhesion and membrane fusion in sea urchins. Previousanalyses have shown that diversifying selection on bindin aminoacid sequence is found when gametically incompatible speciesare compared, but not when species are compatible. The presentstudy analyzes bindin polymorphism and divergence in the threeclosely related species of Echinometra in Central America: E.lucunter and E. viridis from the Caribbean, and E. vanbruntifrom the eastern Pacific. The eggs of E. lucunter have evolveda strong block to fertilization by sperm of its neotropicalcongeners, whereas those of the other two species have not.As in the Indo-West Pacific (IWP) Echinometra, the neotropicalspecies show high intraspecific bindin polymorphism in the samegene regions as in the IWP species. Maximum likelihood analysisshows that many of the polymorphic codon sites are under mildpositive selection. Of the fixed amino acid replacements, mosthave accumulated along the bindin lineage of E. lucunter. Weanalyzed the data with maximum likelihood models of variationin positive selection across lineages and codon sites, and withmodels that consider sites and lineages simultaneously. Ourresults show that positive selection is concentrated along theE. lucunter bindin lineage, and that codon sites with aminoacid replacements fixed in this species show by far the highestsignal of positive selection. Lineage-specific positive selectionparalleling egg incompatibility provides support that adaptiveevolution of sperm proteins acts to maintain recognition ofbindin by changing egg receptors. Because both egg incompatibilityand bindin divergence are greater between allopatric speciesthan between sympatric species, the hypothesis of selectionagainst hybridization (reinforcement) cannot explain why adaptiveevolution has been confined to a single lineage in the AmericanEchinometra. Instead, processes acting to varying degrees withinspecies (e.g., sperm competition, sexual selection, and sexualconflict) are more promising explanations for lineage-specificpositive selection on bindin.  相似文献   

17.
Synopsis Successful recruitment of juvenile coral reef fishes may depend, in part, upon the aggressive behavior of adults already on the reef. In addition to initial levels of aggression, changes in aggressive behavior of adults, e.g., due to habituation, may have an even greater influence on recruiting juveniles. Adult males of the bicolor damselfish, Pomacentrus partitus, were used as subjects to study habituation of aggression toward conspecific and congeneric (P. variabilis) juveniles. Adults, held in a 1000 liter aquarium, habituated after 4 hours of constant exposure to juveniles restrained in a 1 liter model bottle. Stimulus strength of the juveniles depended on their species identity, size and proximity to the resident adult's shelter. There was a recovery of aggression with a change in stimulus location, but at the same location, a stimulus of greater strength was required to bring about recovery. The implications of these findings for coral reef fish community structure are discussed.  相似文献   

18.
Diadema antillarum was once ubiquitous in the Caribbean, but mass mortality in 1983–84 reduced its numbers by >97%. We measured Diadema abundance on back reefs and patch reefs that have been well studied for >25 years. From June 2000 to June 2001, populations on back reefs have increased >100% (June 2001 mean densities 0.004–0.368/m2), while patch reef populations increased >350% (June 2001 densities 0.236–0.516/m2). Populations are dominated by small urchins, suggesting high recent recruitment. Increased Diadema densities appear to be affecting macroalgae abundance. The general spatio-temporal pattern of recovery around St. Croix seems to be following that of the die-off, suggesting that the same oceanographic features that spread Diadema's pathogen are now carrying urchin larvae.  相似文献   

19.
Rising atmospheric CO2 concentrations will significantly reduce ocean pH during the 21st century (ocean acidification, OA). This may hamper calcification in marine organisms such as corals and echinoderms, as shown in many laboratory‐based experiments. Sea urchins are considered highly vulnerable to OA. We studied an Echinometra species on natural volcanic CO2 vents in Papua New Guinea, where they are CO2‐acclimatized and also subjected to secondary ecological changes from elevated CO2. Near the vent site, the urchins experienced large daily variations in pH (>1 unit) and pCO2 (>2000 ppm) and average pH values (pHT 7.73) much below those expected under the most pessimistic future emission scenarios. Growth was measured over a 17‐month period using tetracycline tagging of the calcareous feeding lanterns. Average‐sized urchins grew more than twice as fast at the vent compared with those at an adjacent control site and assumed larger sizes at the vent compared to the control site and two other sites at another reef near‐by. A small reduction in gonad weight was detected at the vents, but no differences in mortality, respiration, or degree of test calcification were detected between urchins from vent and control populations. Thus, urchins did not only persist but actually ‘thrived’ under extreme CO2 conditions. We suggest an ecological basis for this response: Increased algal productivity under increased pCO2 provided more food at the vent, resulting in higher growth rates. The wider implication of our observation is that laboratory studies on non‐acclimatized specimens, which typically do not consider ecological changes, can lead to erroneous conclusions on responses to global change.  相似文献   

20.
Summary Introduced populations of many invasive ants exhibit low levels of intraspecific aggression. Argentine ants (Linepithema humile), for example, maintain expansive supercolonies in many parts of their introduced range. Recent studies demonstrate that variation in nestmate recognition in L. humile can derive from both environmental and genetic sources. In some ants, pheromones emitted by queens also influence nestmate-recognition behavior. To test if such a phenomenon occurs in Argentine ants, we examined whether levels of intraspecific aggression vary as a function of queen presence or absence in experimental lab colonies. For each of four known supercolonies from southwestern California, we set up a pair of experimental colonies and randomly assigned replicates within each pair to treatment (queen removal) and control (no queen removal) groups. Using two different behavioral assays, we then measured aggressive behavior for ten days, removed queens from colonies in the treatment group, and continued to monitor aggression in both experimental groups for an additional 65 days. Both assays yielded qualitatively similar results: intraspecific aggression remained high throughout the experiment in both experimental groups. These results suggest that L. humile queens fail to influence levels of intraspecific aggression in introduced populations.Received 2 June 2003; revised 1 September 2003; accepted 18 September 2003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号