首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A gene contributing to human growth has previously been tentatively mapped to the long arm of the Y chromosome. In the present study, recently developed sequence-tagged site markers covering the entire Y chromosome were used to define deletion breakpoints in 15 males with partial deletions of Yq. By correlating the height of these individuals with their deletion breakpoints, we located a region whose presence or absence has a marked effect on stature. This critical region comprises the most proximal portion of the long arm, extending from marker sY78 in interval 4B to marker sY94 in interval 5G of the proximal long arm.  相似文献   

2.
Results of a molecular-genetics study of microdeletions in the Y chromosome among males with disturbances in spermatogenesis and among patients with cryptorchism are presented. A study of subregions AZFa, AZFb and AZFc with the use of DNA analysis in the STS loci sY84, sY86, sY127, sY134, sY254, sY255, and the gene SRY is performed. Microdeletions in the Y chromosome were found in 13.3% of infertile males studied who exhibited failed spermogram indicators, attesting to the significant information value of the study. The frequency of genetic (cyto- and molecular-genetic) damage among young boys with isolated cryptorchism amounted to 4%, which points to a need for further study of the genetic basis of cryptorchism. Management and optimization of the molecular-genetics study of microdeletions in the Y chromosome are of great importance for medical practice.  相似文献   

3.
The aim of this study was to detect frequency of microdeletions of Y chromosome in idiopathic cases of male infertility in Serbian population. Patients were subjected to detailed clinical, endocrinological and cytogenetic examinations. Ninety patients with normal cytogenetic findings with azoospermia and severe oligozoospermia were included in the study. In these patients microdeletion analysis was performed by multiplex polymerase chain reaction (PCR) method on DNA extracted from peripheral blood. In each case 6 markers in azoospermia factor (AZF) regions were tested: sY84, sY86 (AZFa); sY127, sY134 (AZFb); sY254, sY255 (AZFc). Deletions on Y chromosome were detected in 14 of 90 cases (15.6%), 9 with azoospermia and 5 with severe oligozoospermia. Of total number of 17 deletions, 11 (64.7%) were detected in AZFc region, 3 (17.6%) in AZFa region and 3 (17.6%) in AZFb region. Microdeletions in AZF region of Y chromosome, especially AZFc microdeletions, represent common genetic cause of idiopathic azoospermia and severe oligozoospremia in Serbian infertile men. Therefore, testing for Y chromosome microdeletions should be considered as an important element in diagnosis and genetic counseling of infertile men in Serbia and decisions regarding the assisted reproduction should be made based on the presence and type of AZF microdeletions.  相似文献   

4.
We report the clinical and molecular investigations in a girl with 46,X,-X,+der(X)t(X;Y)(p22;q11) de novo karyotype who presented an intricate phenotype characterized by mental retardation and facial dysmorphisms in combination with short stature. The structure of the derivative X chromosome was studied using BAC array-CGH which disclosed the Xp22 breakpoint between the STS and the VCX3A gene and the presence of the Yq11.1qter chromosome. It is common that females with Xp;Yq translocations present only short stature and are normal in every other aspect. Thus, this would be the first case in which a girl with Xp;Yq translocation presents an unusual phenotype with intermediate male clinical features with Xp;Yq translocations. The risk of developing gonadoblastoma in females with Y chromosome material is also discussed and, to this effect, different explanations related to this apparent variation are also presented.  相似文献   

5.
The aim of this study was to detect frequency of microdeletions of Y chromosome in idiopathic cases of male infertility in Serbian population. Patients were subjected to detailed clinical, endocrinological and cytogenetic examinations. Ninety patients with normal cytogenetic findings with azoospermia and severe oligozoospermia were included in the study. In these patients microdeletion analysis was performed by multiplex polymerase chain reaction (PCR) method on DNA extracted from peripheral blood. In each case 6 markers in azoospermia factor (AZF) regions were tested: sY84, sY86 (AZFa); sY127, sY134 (AZFb); sY254, sY255 (AZFc). Deletions on the Y chromosome were detected in 14 of 90 cases (15.6%), nine with azoospermia and five with severe oligozoospermia. Of total number of 17 deletions, 11 (64.7%) were detected in AZFc region, three (17.6%) in AZFa region and three (17.6%) in AZFb region. Microdeletions in AZF region of the Y chromosome, especially AZFc microdeletions, represent common genetic cause of idiopathic azoospermia and severe oligozoospremia in Serbian infertile men. Therefore, testing for Y chromosome microdeletions should be considered as an important element in diagnosis and genetic counseling of infertile men in Serbia and decisions regarding the assisted reproduction should be made based on the presence and type of AZF microdeletions. The text was submitted by the authors in English.  相似文献   

6.
R. Scott Hawley 《Genetics》1980,94(3):625-646
Meiotic exchange was measured in females heterozygous for a normal sequence X chromosome and for each of eleven T(1;4)s and each of sixteen T(1;Y)s. The results indicate that the X chromosome can be divided into five intervals, such that heterozygosity for a breakpoint in one interval strongly suppresses exchange within that interval, but has little or no effect on exchange in other intervals. The boundaries between these intervals are identified and mapped to regions 3C4-6/7, 7A-7E, 11A and proximal to 18C on the standard salivary map; each boundary is located at (or within a small region containing) a major constriction (i.e., a block of intercalary heterochromatin).--Exchange was examined in females heterozygous for translocations broken within the constriction at 11A. The results imply that a boundary occupies only a subregion of the entire constriction and is subdivisible by translocation breakpoints. Several other properties of boundaries have been elucidated. Finally, the relationship of these data to a simple model of meiotic pairing proposed by I. Sandler (1956) and to the role of intercalary heterochromatin in the meiotic process is discussed.  相似文献   

7.
We report on a 29-year-old male patient with an inverted 7(q35-qter) duplication diagnosed by combining cytogenetic and FISH studies. Traditional G-banding detected an abnormally long chromosome 7 which was further demonstrated to be entirely of chromosome 7 origin by using fluorescent whole chromosome 7 painting. The presence within the additional segment of a signal for 7q36 region (Williams control probe) and the absence of signals for 7q33 (Y938G5 probe) and 7q34 (Y815G5 probe) regions indicated that the breakpoint for this rearrangement was distal to 7q34 and proximal to 7q36. A distal 7p22 deletion was confirmed by the absence of signal for the 7p subtelomeric probe. Apart from kyphosis, developmental/mental retardation and abnormal ears, the clinical features of the present patient, who is the oldest individual ever reported with this duplication/deletion, were not typical for partial 7q trisomy syndrome. A review of the cases reported with 7(q35-qter) duplication is made and shows important clinical variability but constantly normal pre- and postnatal growth, a feature which can therefore be confirmed as distinctive of distal 7q trisomy syndrome.  相似文献   

8.
A female patient with a structurally abnormal idic(Y) (p11.32) chromosome was studied using fluorescence in situ hybridization and PCR to define the precise position of the breakpoint. The patient had a complex mosaic karyotype with eight cell lines and at least two morphologically distinct derivatives from the Y chromosome. The rearrangement was a result of a meiosis I exchange between sister chromatids at the pseudoautosomal region, followed by centromere misdivision at meiosis II. Due to instability of the dicentric Y chromosome, new cell lines later arose because of mitotic errors occurring during embryonic development. Physical examination revealed a normal female phenotype without genital ambiguity, a normal uterus and rudimentary gonads which were surgically removed.  相似文献   

9.
Ambiguous genitalia or disorder of the sexual development is a birth defect where the external genitals do not have the typical appearance of either a male or female. Here we report a boy with ambiguous genitalia and short stature. The cytogenetic analysis by G-banding revealed a small Y chromosome and an additional material on the 15p arm. Further, molecular cytogenetic analysis by Fluorescence in situ hybridization (FISH) using whole chromosome paint probes showed the presence of Y sequences on the 15p arm, confirming that it is a Y;15 translocation. Subsequent, FISH with centromere probe Y showed two signals depicting the presence of two centromeres and differing with a balanced translocation. The dicentric nature of the derivative 15 chromosome was confirmed by FISH with both 15 and Y centromeric probes. Further, the delineation of the Y chromosomal DNA was also done by quantitative real time PCR. Additional Y-short tandem repeat typing was performed to find out the extent of deletion on small Y chromosome. Fine mapping was carried out with 8 Y specific BAC clones which helped in defining the breakpoint regions. MLPA was performed to check the presence or absence of subtelomeric regions and SHOX regions on Y. Finally array CGH helped us in confirming the breakpoint regions. In our study we identified and characterized a novel complex Y chromosomal rearrangement with a complete deletion of the Yq region and duplication of the Yp region with one copy being translocated onto the15p arm. This is the first report of novel and unique Y complex rearrangement showing a deletion, duplication and a translocation in the same patient. The possible mechanism of the rearrangement and the phenotype–genotype correlation are discussed.  相似文献   

10.
Derivative 22 (der[22]) syndrome is a rare disorder associated with multiple congenital anomalies, including profound mental retardation, preauricular skin tags or pits, and conotruncal heart defects. It can occur in offspring of carriers of the constitutional t(11;22)(q23;q11) translocation, owing to a 3:1 meiotic malsegregation event resulting in partial trisomy of chromosomes 11 and 22. The trisomic region on chromosome 22 overlaps the region hemizygously deleted in another congenital anomaly disorder, velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS). Most patients with VCFS/DGS have a similar 3-Mb deletion, whereas some have a nested distal deletion endpoint resulting in a 1.5-Mb deletion, and a few rare patients have unique deletions. To define the interval on 22q11 containing the t(11;22) breakpoint, haplotype analysis and FISH mapping were performed for five patients with der(22) syndrome. Analysis of all the patients was consistent with 3:1 meiotic malsegregation in the t(11;22) carrier parent. FISH-mapping studies showed that the t(11;22) breakpoint occurred in the same interval as the 1.5-Mb distal deletion breakpoint for VCFS. The deletion breakpoint of one VCFS patient with an unbalanced t(18;22) translocation also occurred in the same region. Hamster-human somatic hybrid cell lines from a patient with der(22) syndrome and a patient with VCFS showed that the breakpoints occurred in an interval containing low-copy repeats, distal to RANBP1 and proximal to ZNF74. The presence of low-copy repetitive sequences may confer susceptibility to chromosome rearrangements. A 1.5-Mb region of overlap on 22q11 in both syndromes suggests the presence of dosage-dependent genes in this interval.  相似文献   

11.
Despite the current lack of understanding the mechanism of deleterious effects of Y chromosome microdeletions and their prognostic influence on male subfertility, the Y chromosome microdeletion test is widely used in the diagnostic evaluation of male subfertility. However, currently used diagnostic schemes have not been sufficiently evaluated for their diagnostic performance. The purpose of this study was to analyze a large database of published Y chromosome microdeletions to develop the optimal screening strategy for male subfertility. Therefore, we created a database from genetic and clinical data published in 52 peer-reviewed studies reporting on 512 cases with Y chromosome microdeletions. We developed a computerized procedure with the goal of minimizing the number of genetic markers included in the diagnostic set while maximizing the detection rate in patients with microdeletions. We estimate that 85.6% of all published Y chromosome microdeletions can be covered by a set of six genetic markers (sY84, sY127, sY152, RBMY1, sY147, sY254-DAZ). Inclusion of additional markers brings relatively little to the sensitivity of the test and is potentially related to the population origin.  相似文献   

12.
In a Brazilian population of the neotropical rodent Akodon montensis we found five sex-reversed XY females. These animals were cytogenetically analyzed by chromosome painting using species-specific DNA probes from the Y chromosome, generated by chromosomal microdissection and subsequent use of the degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR). The results showed a chromosome complement with an apparently normal Y chromosome and an X chromosome carrying a translocation that encompasses a large portion of the Y chromosome (seemingly the entire Y). Ovarian histology suggested that these females are fertile. Amplification of the SRY HMG box sequence by PCR shows that at least one copy of the Sry gene is present in the A. montensis XY females. Based on our findings, we suggest that the breakpoint of the X;Y translocation probably altered an X-linked sex-determining locus (or loci), blocking testicular organogenesis in the XY females. Further studies are necessary to determine the precise location and role of this putative sex-determining chromosomal region. Genetic mechanisms of XY sex reversal in A. montensis populations are discussed.  相似文献   

13.
AIM: The aim of this study was to determine the prevalence and type of microdeletions of the Y chromosome of men with severe oligozoospermia-ICSI candidates in the Serbian population and to compare our findings with those from other parts of the world. METHODS: In all patients spermiogram has been performed in order to determine the sperm concentration. Patients were subjected to detailed clinical, endocrinological and cytogenetic examinations. Microdeletion analysis was performed by polymerase chain reaction (PCR) on 203 patients with normal cytogenetic findings. The STS markers tested in each case were sY84, sY86 (AZFa); sY127, sY134 (AZFb); sY254, sY255 (AZFc). RESULTS: at least one of the STS markers was deleted in 11 of the 203 cases (5.4%). CONCLUSION: AZFc microdeletions were identified with a rather high prevalence in men with severe oligozoospermia ICSI candidates in Serbian population.  相似文献   

14.
A derivative Y chromosome was found in a 55-year-old man with Lambert-Eaton paraneoplasic pseudomyastheniform disease. Small testicles, azoospermia were noticed and hormonal level values were as in the Klinefelter syndrome. A 45,X/46,XYp+ mosa?cism was described on peripheral blood lymphocytes. Cytogenetic investigations with R-G-C- and Q-banding have been performed. In situ hybridization with the GMGY 10 DNA probe showed two copies of proximal Yp sequences. Southern blot analyses were performed using the Y DNA probes 27a, 47z, 64a7, 50f2 disclosing specific Yp and Yq sequences from the pseudoautosomal boundary to the Yq proximal portion. The der(Y) has been defined as a dicentric isochromosome for the long arm with one active and one apparently suppressed centromere. The breakpoint leading to the der(Y), has been located in the pairing segment of the Y short arm (i.e. Yp11.32). So the der(Y) was interpreted as a psu dic(Y) (qter-->cen-->p11.32 ::p11.32-->qter). There was thus an almost complete duplication of the Y chromosome.  相似文献   

15.
Male infertility is considered to be a difficult-to-treat condition because it is not a single entity, but rather reflects a variety of different pathologic conditions, thus making it difficult to use a single treatment strategy. Structural alterations in the Y chromosome have been the principal factor responsible for male infertility. We examined 26 family members of 13 patients with male infertility who showed deletions in the AZF region. In family 1, the father and a brother did not show microdeletions. However, a son showed a microdeletion in AZFa (sY84) and an azoospermic sperm analysis, but another son had a microdeletion in AZFa (sY84) and AZFb (sY127) and a normal sperm analysis. The father of family 2, with severe oligozoospermia, had a microdeletion in the AZFa region (sY84) and his son, conceived by intracytoplasmic sperm injection, also showed the same microdeletion. In the other families, only the men with an altered sperm analysis had a microdeletion. It is possible that in family 1, the father and brother who did not show microdeletions in this study, could have microdeletions in regions upstream or downstream of the one analyzed. The treatment with intracytoplasmic sperm injection can result in vertical transmission of microdeletions of the AZF region and can also cause the expansion of a de novo mutation. This finding reinforces the necessity of an investigation of microdeletions of the Y chromosome in individuals who are candidates for assisted reproduction, as well as genetic counciling and follow-up.  相似文献   

16.
The phenotypically normal sister of a patient affected by fragile X syndrome was referred for genetic counselling and was found to carry a mosaic karyotype 46,X,r(X)/45,X. Because the probability of the simultaneous chance occurrence of fragile X syndrome and a ring chromosome X in the same family is very low, we postulated that the breakpoint of the ring chromosome X originated in the cytogenetic break in Xq27.3 responsible for fragile X syndrome. In order to determine the relative positions of the breakpoint on the ring chromosome X and the (CGG)n unstable sequence responsible for the fragile X mutation, we used molecular markers to analyse the telomeric regions of chromosome X in this family. The results showed that the ring chromosome X was the maternal fragile X chromosome and that the telomeric deletion on the long arm encompassed the (CGG)n sequence. This suggests that the cytogenetic break in Xq27.3 is distinct from the unstable (CGG)n sequence, or that the break followed by the end-to-end fusion creating the ring chromosome was not completely conservative. Analysis of DNA markers on the short arm of chromosome X evidenced a deletion of a large part of the pseudoautosomal region, allowing us to position the genes involved in stature and in some syndromes associated with telomeric deletions of Xp on the proximal side of the pseudoautosomal region.  相似文献   

17.
18.
19.
Analysis of structural chromosomal polymorphism revealed the presence of a previously reported 2A·4B translocation common to all 15 strains of Ethiopian tetraploid wheat examined. Using the C-banding technique, we found two new translocations,T1B·6B and T5B·6B, and a pericentric inversion of chromosome 5A. The C-banding pattern indicated that in all three translocations the breakpoint was located in the centromeric region. Sequential N-banding and genomic in situ hybridization (GISH) confirmed the location of the breakpoint of translocation 2A·4B, and revealed that the breakpoint of another known translocation, 2A-2B, was in the proximal region of 2BL. The fixation of the 2A·4B translocation indicates the monophyletic origin of Ethiopian tetraploid wheat and the presence of a very severe bottleneck effect during its dispersal. Received: 29 June 1999 / Accepted: 18 February 2000  相似文献   

20.
A 32-year-old woman presented with secondary amenorrhea and infertility. She was of normal height and her breasts were well developed, but she had streak gonads; there were no signs of virilization, and she showed no somatic stigmata of Turner syndrome. Chromosome analysis revealed a dicentric X;Y translocation with Xq and Yp breakpoints. Centromeric banding demonstrated a Y centromere and a "suppressed" X centromere. The karyotype of the patient was interpreted as 46,X,t(X;Y)(q22;p11). The Yp breakpoint was confirmed by DNA-hybridization studies with six probes detecting Y-specific sequences. These DNA-hybridization studies were consistent with the presence of the long arm, centromere, and much of the proximal short arm of the Y. The Y-DNA studies of this female also revealed the absence of the distal short arm of the Y chromosome, to which the testis-determining factor has previously been localized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号