共查询到20条相似文献,搜索用时 0 毫秒
1.
Structure of the Rab7:REP-1 complex: insights into the mechanism of Rab prenylation and choroideremia disease 总被引:2,自引:0,他引:2
Members of the RabGDI/REP family serve as multifunctional regulators of the Rab family of GTP binding proteins. Mutations in members of this family, such as REP-1, lead to abnormalities, including progressive retinal degradation (choroideremia) in humans. The crystal structures of the REP-1 protein in complex with monoprenylated or C-terminally truncated Rab7 proteins revealed that Rab7 interacts with the Rab binding platform of REP-1 via an extended interface involving the Switch 1 and 2 regions. The C terminus of the REP-1 molecule functions as a mobile lid covering a conserved hydrophobic patch on the surface of REP-1 that in the complex coordinates the C terminus of Rab proteins. Using semisynthetic fluorescent Rab27A, we demonstrate that although Rab27A can be prenylated by REP-2, this reaction can be effectively inhibited by other Rab proteins, providing a possible explanation for the accumulation of unprenylated Rab27A in choroideremia. 相似文献
2.
Tomato Rab1A homologs as molecular tools for studying Rab geranylgeranyl transferase in plant cells. 总被引:5,自引:5,他引:5 下载免费PDF全文
Rab proteins attach to membranes along the secretory pathway where they contribute to distinct steps in vesicle-mediated transport. To bind membranes, Rab proteins in fungal and animal cells must be isoprenylated by the enzyme Rab geranylgeranyl transferase (Rab GGTase). We have isolated three tomato (Lycopersicon esculentum, M.) cDNAs (LeRab 1A, B, and C) encoding Rab-like proteins and show here that all three are substrates for a Rab GGTase-like activity in plant cells. The plant enzyme is similar to mammalian Rab GGTase in that the plant activity (a) is enhanced by detergent and (b) is inhibited by mutant Rab lacking a prenylation consensus sequence. LeRab1B contains a rare prenylation target motif and was the best substrate for the plant, but not the yeast, Rab GGTase. LeRab1A, B, and C are functional homologs of the Saccharomyces cerevisiae Rab protein encoded by YPT1 and are differentially expressed in tomato. LeRab1A mRNA, but not that of LeRab1B or C, is induced by ethylene in tomato seedlings and is also upregulated in ripening fruit. The increase in LeRab1A mRNA expression in ripe fruit may be linked to increased synthesis and export of enzymes like polygalacturonase, pectin esterase, and other enzymes important in fruit softening. 相似文献
3.
《Molecular membrane biology》2013,30(7):243-256
AbstractRab geranylgeranyl transferase is an enzyme responsible for double geranylgeranylation of Rab proteins in all eukaryotic cells. In the present article we would like to focus on new findings concerning the holoenzyme structure and mechanism of catalytic activity, its mode of regulation and consequences of RGGT deficiency in different eucaryotic model organisms and patients. 相似文献
4.
N H Thom? A Iakovenko R S Goody K Alexandrov 《The Journal of biological chemistry》2001,276(52):48637-48643
Rab geranylgeranyltransferase (RabGGTase or GGTase-II) catalyzes the post-translational prenylation of Rab proteins. Rab proteins are recognized as substrates only when they are complexed to Rab Escort Protein (REP). The classical model of prenylation complex assembly assumes initial formation of the Rab.REP binary complex, which subsequently binds to RabGGTase loaded with the isoprenoid donor geranylgeranyl pyrophosphate (GGpp). We demonstrate here that REP-1 can also associate with RabGGTase in the absence of Rab protein and that this interaction is dramatically strengthened by the presence of phosphoisoprenoids such as GGpp. The GGpp-dependent interaction between RabGGTase and REP-1 was observed using affinity precipitations and gel filtration and was quantitated on the basis of fluorescence assays. In the presence of GGpp, REP-1 binds to RabGGTase with a K(d) value of approximately 10 nm, while in its absence the affinity between the two proteins is in the micromolar range. We further demonstrate that binding of Rab7 to the RabGGTase.GGpp.REP-1 complex occurs without prior dissociation of REP-1. Analysis of binding and prenylation rate constants indicate that the RabGGTase.GGpp.REP-1 complex can function as a kinetically competent intermediate of the prenylation reaction. We conclude that, depending on the prevailing concentrations, binding of REP-1 to RabGGTase in the presence of GGpp may serve as an alternative pathway for the assembly of the prenylation machinery in vivo. Implications of these findings for the role of REP-1 in the prenylation reaction are discussed. 相似文献
5.
Dursina B Thomä NH Sidorovitch V Niculae A Iakovenko A Rak A Albert S Ceacareanu AC Kölling R Herrmann C Goody RS Alexandrov K 《Biochemistry》2002,41(21):6805-6816
Small GTPases from the Rab/Ypt family regulate events of vesicular traffic in eukaryotic cells. For their activity, Rab proteins require a posttranslational modification that is conferred by Rab geranylgeranyltransferase (RabGGTase), which attaches geranylgeranyl moieties onto two cysteines of their C terminus. RabGGTase is present in both lower and higher eukaryotes in the form of heterodimers composed of alpha and beta subunits. However, the alpha subunits of RabGGTases from lower eukaryotes, including Saccharomyces cerevisiae (yRabGGTase), are half the size of the corresponding subunit of the mammalian enzyme. This difference is due to the presence of additional immunoglobulin (Ig)-like and leucine rich (LRR) domains in the mammalian transferase. To understand the possible evolutionary implications and functional consequences of structural differences between RabGGTases of higher and lower eukaryotes, we have investigated the interactions of yeast RabGGTase with its lipid and protein substrate. We have demonstrated that geranylgeranyl pyrophosphate binds to the enzyme with an affinity of ca. 40 nM, while binding of farnesyl pyrophosphate is much weaker, with a K(d) value of ca. 750 nM. This finding suggests that despite the structural difference, yRabGGTase selects its lipid substrate in a fashion similar to mammalian RabGGTase. However, unlike the mammalian enzyme, yRabGGTase binds prenylated and unprenylated Ypt1p:Mrs6p complexes with similar affinities (K(d) ca. 200 nM). Moreover, in contrast to the mammalian enzyme, phosphoisoprenoids do not influence the affinity of Mrs6p for yRabGGTase. Using an in vitro prenylation assay, we have demonstrated that yRabGGTase can prenylate Rab proteins in complex with mammalian REP-1, thus indicating that neither the LRR nor the Ig-like domains, nor the recently discovered alternative pathway of catalytic complex assembly, are essential for the catalytic activity of RabGGTase. Despite the ability to function in concert with yRabGGTase in vitro, expression of mammalian REP-1 could not complement deletion of MRS6 gene in S. cerevisiae in vivo. The implications of these findings are discussed. 相似文献
6.
Manuel Arellano Pedro M. Coll Wenli Yang Angel Duran Fuyuhiko Tamanoi & Pilar Perez 《Molecular microbiology》1998,29(6):1357-1367
The Schizosaccharomyces pombe cwg2+ gene encodes the β-subunit of geranylgeranyl transferase I (GGTase I), which participates in the post-translational C-terminal modification of several small GTPases, allowing their targeting to the membrane. Using the two-hybrid system, we have identified the cwp1+ gene that encodes the α-subunit of the GGTase I. cwp1p interaction with cwg2p was mapped to amino acids 1–244 or 137–294 but was not restricted to amino acids 137–244. The genomic cwp1+ was isolated and sequenced. It has two putative open reading frames of 677 and 218 bp, separated by a 51 bp intron. The predicted amino acid sequence shows significant similarity to GGTase I α-subunits from different species. However, complementation of Saccharomyces cerevisiae ram2-1 mutant by overexpressing the cwp1+ gene was not possible. Expression of both cwg2+ and cwp1+ in Escherichia coli allowed ‘in vitro’ reconstitution of the GGTase I activity. S. pombe cells expressing the mutant enzyme containing the cwg2-1 mutation do not grow at 37°C, but the growth defect can be suppressed by the addition of sorbitol. Actin immunostaining of the cwg2-1 mutant strain grown at 37°C showed an abnormal distribution of actin patches. The cwg2-1 mutation was identified as a guanine to adenine substitution at nucleotide 604 of the coding region, originating the change A202T in the cwg2p. Deletion of the cwg2 gene is lethal; Δcwg2 spores can divide two or three times before losing viability. Most cells have aberrant morphology and septation defects. Overexpression of the rho1G15VC199R double-mutant allele in S. pombe caused loss of polarity but was not lethal and did not render the (1–3)β-D -glucan synthase activity independent of GTP. Therefore, geranylgeranylation of rho1p is required for the appropriate function of this GTPase. 相似文献
7.
Purification of component A of Rab geranylgeranyl transferase: possible identity with the choroideremia gene product. 总被引:3,自引:0,他引:3
Rab geranylgeranyl transferase (GG transferase) from rat brain contains two components, A and B. Component B comprises polypeptides of 60 and 38 kd. Here we report the purification of component A, a single 95 kd polypeptide. The holoenzyme attaches 3H-geranylgeranyl to cysteines in two GTP-binding proteins, Rab3A and Rab1A. The reaction is abolished when both cysteines in the COOH-terminal CysCys sequence of Rab1A are mutated to serines. The mutant protein inhibits transfer of 3H-geranylgeranyl to wild-type Rab1A and Rab3A, suggesting that the enzyme recognizes conserved sequences distinct from the COOH-terminus. Six peptides from rat component A show striking similarity to the product of the defective gene in choroideremia, an X-linked retinal degeneration disease. The choroideremia protein resembles Rab3A GDI, which binds Rab3A. We hypothesize that component A binds conserved sequences in Rab and that component B transfers geranylgeranyl. A defect in this reaction may cause choroideremia. 相似文献
8.
Coxon FP Helfrich MH Larijani B Muzylak M Dunford JE Marshall D McKinnon AD Nesbitt SA Horton MA Seabra MC Ebetino FH Rogers MJ 《The Journal of biological chemistry》2001,276(51):48213-48222
Nitrogen-containing bisphosphonate drugs inhibit bone resorption by inhibiting FPP synthase and thereby preventing the synthesis of isoprenoid lipids required for protein prenylation in bone-resorbing osteoclasts. NE10790 is a phosphonocarboxylate analogue of the potent bisphosphonate risedronate and is a weak anti-resorptive agent. Although NE10790 was a poor inhibitor of FPP synthase, it did inhibit prenylation in J774 macrophages and osteoclasts, but only of proteins of molecular mass approximately 22-26 kDa, the prenylation of which was not affected by peptidomimetic inhibitors of either farnesyl transferase (FTI-277) or geranylgeranyl transferase I (GGTI-298). These 22-26-kDa proteins were shown to be geranylgeranylated by labelling J774 cells with [(3)H]geranylgeraniol. Furthermore, NE10790 inhibited incorporation of [(14)C]mevalonic acid into Rab6, but not into H-Ras or Rap1, proteins that are modified by FTase and GGTase I, respectively. These data demonstrate that NE10790 selectively prevents Rab prenylation in intact cells. In accord, NE10790 inhibited the activity of recombinant Rab GGTase in vitro, but did not affect the activity of recombinant FTase or GGTase I. NE10790 therefore appears to be the first specific inhibitor of Rab GGTase to be identified. In contrast to risedronate, NE10790 inhibited bone resorption in vitro without markedly affecting osteoclast number or the F-actin "ring" structure in polarized osteoclasts. However, NE10790 did alter osteoclast morphology, causing the formation of large intracellular vacuoles and protrusion of the basolateral membrane into large, "domed" structures that lacked microvilli. The anti-resorptive activity of NE10790 is thus likely due to disruption of Rab-dependent intracellular membrane trafficking in osteoclasts. 相似文献
9.
Rab geranylgeranyl transferase. A multisubunit enzyme that prenylates GTP-binding proteins terminating in Cys-X-Cys or Cys-Cys. 总被引:8,自引:0,他引:8
M C Seabra J L Goldstein T C Südhof M S Brown 《The Journal of biological chemistry》1992,267(20):14497-14503
Rab proteins are membrane-bound prenylated GTP-binding proteins required for the targeted movement of membrane vesicles from one organelle to another. In the current paper we have characterized and purified an enzyme that attaches geranylgeranyl residues to Rab proteins that bear the COOH-terminal sequence Cys-X-Cys (such as Rab3A) and Cys-Cys (such as Rab1A). This enzyme is designated Rab geranylgeranyl transferase (Rab GG transferase). At high salt concentrations, Rab GG transferase from rat brain cytosol separates into two components, designated A and B, both of which are required for activity. We purified Component B to apparent homogeneity and found that it contains two peptides of 60 and 38 kDa. The purified Rab GG transferase did not attach geranylgeranyl to p21H-ras-CVLL, which is prenylated by a GG transferase of the CAAX type that resembles the CAAX farnesyltransferase. Rab GG transferase was strongly inhibited by Zn2+, a cation that is absolutely required by farnesyltransferase. The Rab GG transferase was also inhibited by NaCl concentrations in excess of 100 mM. Together with previous data, the current findings indicate that mammalian cells possess at least three protein prenyltransferases (CAAX farnesyltransferase, CAAX GG transferase, and Rab GG transferase) that are specific for different classes of low molecular weight GTP-binding proteins and other proteins. 相似文献
10.
Rak A Niculae A Kalinin A Thomä NH Sidorovitch V Goody RS Alexandrov K 《Protein expression and purification》2002,25(1):23-30
Posttranslational modification with the geranygeranyl moiety is essential for the ability of Rab GTPases to control processes of membrane docking and fusion. This modification is conferred by Rab geranylgeranyltransferase (RabGGTase), which catalyzes the transfer of two 20-carbon geranylgeranyl groups from geranylgeranyl pyrophosphate onto C-terminal cysteine residues of Rab proteins. The enzyme consists of a catalytic alpha/beta heterodimer and an accessory protein termed Rab escort protein (REP-1) that delivers the newly prenylated Rab proteins to their target membrane. In order to understand the structural basis of Rab prenylation, we have investigated in vitro assembly and crystallization of the RabGGTase:REP-1:Rab complex. In order to ensure maximal stability of the ternary complex, we generated its monoprenylated form, which corresponds to a reaction intermediate and displays the highest affinity between the components. This was achieved by expressing the individual components in baculovirus and Escherichia coli systems with subsequent purification followed by in vitro monoprenylation of Rab7 with immobilized recombinant RabGGTase. Purified monoprenylated REP-1:Rab7 was complexed with recombinant RabGGTase and crystallized in hanging drops. The crystals obtained initially diffract to 8 A on an in-house X-ray source. 相似文献
11.
Joanna Maolepsza Aleksandra Marchwicka Remigiusz A. Serwa Sanna P. Niinivehmas Olli T. Pentikinen Edyta Gendaszewska-Darmach Katarzyna M. Baewska 《Journal of enzyme inhibition and medicinal chemistry》2022,37(1):940
Rab geranylgeranyltransferase (GGTase-II, RGGT) catalyses the post-translational modification of eukaryotic Rab GTPases, proteins implicated in several pathologies, including cancer, diabetes, neurodegenerative, and infectious diseases. Thus, RGGT inhibitors are believed to be a potential platform for the development of drugs and tools for studying processes related to the abnormal activity of Rab GTPases. Here, a series of new α-phosphonocarboxylates have been prepared in the first attempt of rational design of covalent inhibitors of RGGT derived from non-covalent inhibitors. These compounds were equipped with electrophilic groups capable of binding cysteines, which are present in the catalytic cavity of RGGT. A few of these analogues have shown micromolar activity against RGGT, which correlated with their ability to inhibit the proliferation of the HeLa cancer cell line. The proposed mechanism of this inhibitory activity was rationalised by molecular docking and mass spectrometric measurements, supported by stability and reactivity studies. 相似文献
12.
Characterization of a soluble ternary complex formed between human interferon-beta-1a and its receptor chains. 下载免费PDF全文
R. M. Arduini K. L. Strauch L. A. Runkel M. M. Carlson X. Hronowski S. F. Foley C. N. Young W. Cheng P. S. Hochman D. P. Baker 《Protein science : a publication of the Protein Society》1999,8(9):1867-1877
The extracellular portions of the chains that comprise the human type I interferon receptor, IFNAR1 and IFNAR2, have been expressed and purified as recombinant soluble His-tagged proteins, and their interactions with each other and with human interferon-beta-1a (IFN-beta-1a) were studied by gel filtration and by cross-linking. By gel filtration, no stable binary complexes between IFN-beta-1a and IFNAR1, or between IFNAR1 and IFNAR2 were detected. However, a stable binary complex formed between IFN-beta-1a and IFNAR2. Analysis of binary complex formation using various molar excesses of IFN-beta-1a and IFNAR2 indicated that the complex had a 1:1 stoichiometry, and reducing SDS-PAGE of the binary complex treated with the cross-linking reagent dissucinimidyl glutarate (DSG) indicated that the major cross-linked species had an apparent Mr consistent with the sum of its two individual components. Gel filtration of a mixture of IFNAR1 and the IFN-beta-1a/IFNAR2 complex indicated that the three proteins formed a stable ternary complex. Analysis of ternary complex formation using various molar excesses of IFNAR1 and the IFN-beta-1a/IFNAR2 complex indicated that the ternary complex had a 1:1:1 stoichiometry, and reducing SDS-PAGE of the ternary complex treated with DSG indicated that the major cross-linked species had an apparent Mr consistent with the sum of its three individual components. We conclude that the ternary complex forms by the sequential association of IFN-beta-1a with IFNAR2, followed by the association of IFNAR1 with the preformed binary complex. The ability to produce the IFN-beta-1a/IFNAR2 and IFN-beta-1a/IFNAR1/IFNAR2 complexes make them attractive candidates for X-ray crystallography studies aimed at determining the molecular interactions between IFN-beta-1a and its receptor. 相似文献
13.
Prenylation (or geranylgeranylation) of Rab GTPases is catalysed by RGGT (Rab geranylgeranyl transferase) and requires REP (Rab escort protein). In the classical pathway, REP associates first with unprenylated Rab, which is then prenylated by RGGT. In the alternative pathway, REP associates first with RGGT; this complex then binds and prenylates Rab proteins. In the present paper we show that REP mutants defective in RGGT binding (REP1 F282L and REP1 F282L/V290F) are unable to compete with wild-type REP in the prenylation reaction in vitro. When over-expressed in cells, REP wild-type and mutants are unable to form stable cytosolic complexes with endogenous unprenylated Rabs. These results suggest that the alternative pathway may predominate in vivo. We also extend previous suggestions that GGPP (geranylgeranyl pyrophosphate) acts as an allosteric regulator of the prenylation reaction. We observed that REP-RGGT complexes are formed in vivo and are unstable in the absence of intracellular GGPP. RGGT increases the ability of REP to extract endogenous prenylated Rabs from membranes in vitro by stabilizing a soluble REP-RGGT-Rab-GG (geranylgeranylated Rab) complex. This effect is regulated by GGPP, which promotes the dissociation of RGGT and REP-Rab-GG to allow delivery of prenylated Rabs to membranes. 相似文献
14.
Posttranslational geranylgeranylation of Rab GTPases is catalyzed by Rab geranylgeranyltransferase (RabGGTase), which consists of a catalytic alpha/beta heterodimer and an accessory Rab escort protein (REP). REP functions as a molecular chaperone that presents Rab proteins to the RabGGTase and after prenylation delivers them to their target membrane. Mutations in the REP-1 gene in humans lead to an X-chromosome-linked defect known as choroideremia, a progressive disease that inevitably culminates in complete blindness. Here we report in vitro assembly, purification, and crystallization of the monoprenylated Rab7GDP:REP-1 complex. X-Ray diffraction data for the REP-1:Rab7 complex were collected to 2.2-A resolution at the ESRF. The crystals belong to the orthorhombic space group P2(1)2(1)2 with unit-cell parameters a=64.3A, b=105.3A, c=132.6A. Preliminary structural analysis revealed the presence of one complex in the asymmetric unit. To understand the conformational changes in Rab protein on complex formation we also crystallized the GDP-bound form of Rab7 that diffracted to at least 1.8A on the in-house X-ray source. 相似文献
15.
Rab24 interacts with the Rab7/Rab interacting lysosomal protein complex to regulate endosomal degradation 下载免费PDF全文
Celina Amaya Rodrigo D. Militello Sebastián D. Calligaris María I. Colombo 《Traffic (Copenhagen, Denmark)》2016,17(11):1181-1196
Endocytosis is a multistep process engaged in extracellular molecules internalization. Several proteins including the Rab GTPases family coordinate the endocytic pathway. The small GTPase Rab7 is present in late endosome (LE) compartments being a marker of endosome maturation. The Rab interacting lysosomal protein (RILP) is a downstream effector of Rab7 that recruits the functional dynein/dynactin motor complex to late compartments. In the present study, we have found Rab24 as a component of the endosome‐lysosome degradative pathway. Rab24 is an atypical protein of the Rab GTPase family, which has been attributed a function in vesicle trafficking and autophagosome maturation. Using a model of transiently expressed proteins in K562 cells, we found that Rab24 co‐localizes in vesicular structures labeled with Rab7 and LAMP1. Moreover, using a dominant negative mutant of Rab24 or a siRNA‐Rab24 we showed that the distribution of Rab7 in vesicles depends on a functional Rab24 to allow DQ‐BSA protein degradation. Additionally, by immunoprecipitation and pull down assays, we have demonstrated that Rab24 interacts with Rab7 and RILP. Interestingly, overexpression of the Vps41 subunit from the homotypic fusion and protein‐sorting (HOPS) complex hampered the co‐localization of Rab24 with RILP or with the lysosomal GTPase Arl8b, suggesting that Vps41 would affect the Rab24/RILP association. In summary, our data strongly support the hypothesis that Rab24 forms a complex with Rab7 and RILP on the membranes of late compartments. Our work provides new insights into the molecular function of Rab24 in the last steps of the endosomal degradative pathway. 相似文献
16.
17.
Characterization of an Acholeplasma laidlawii variant with a REP- phenotype. 总被引:4,自引:3,他引:4 下载免费PDF全文
An Acholeplasma laidlawii variant has been isolated that has a REP- phenotype. The properties of this variant, relative to parental cells, are: (i) it exhibits no change in cell growth kinetics; (ii) it does not propagate single-stranded deoxyribonucleic acid (DNA) mycoplasmaviruses but does propagate double-stranded DNA mycoplasmaviruses; (iii) it converts parental circular single-stranded mycoplasmavirus DNA to double-stranded replicative forms that are not replicated further; (iv) it exhibits no change in host modification and restriction; and (v) it has an increased ultraviolet light sensitivity. The REP- isolate is the first stable mycoplasma variant to which a physiological defect has been attributed. 相似文献
18.
Pylypenko O Rak A Reents R Niculae A Sidorovitch V Cioaca MD Bessolitsyna E Thomä NH Waldmann H Schlichting I Goody RS Alexandrov K 《Molecular cell》2003,11(2):483-494
Posttranslational geranylgeranylation of Rab GTPases is catalyzed by Rab geranylgeranyltransferase (RabGGTase), which consists of a catalytic alpha/beta heterodimer and an accessory Rab escort protein (REP). The crystal structure of isoprenoid-bound RabGGTase complexed to REP-1 has been solved to 2.7 A resolution. The complex interface buries a surprisingly small surface area of ca. 680 A and is unexpectedly formed by helices 8, 10, and 12 of the RabGGTase alpha subunit and helices D and E of REP-1. We demonstrate that the affinity of RabGGTase for REP-1 is allosterically regulated by phosphoisoprenoid via a long-range trans-domain signal transduction event. Comparing the structure of REP-1 with the closely related RabGDI, we conclude that the specificity of the REP:RabGGTase interaction is defined by differently positioned phenylalanine residues conserved in the REP and GDI subfamilies. 相似文献
19.
ATP-induced dissociation of rabbit skeletal actomyosin subfragment 1. Characterization of an isomerization of the ternary acto-S1-ATP complex 总被引:1,自引:0,他引:1
The adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) induced dissociation of actomyosin subfragment 1 (S1) has been investigated by monitoring the light scattering changes that occur on dissociation. We have shown that ATP gamma S dissociates acto-S1 by a mechanism similar to that of ATP but at a rate 10 times slower. The maximum rate of dissociation is limited by an isomerization of the ternary actin-S1-nucleotide complex, which has a rate of 500 s-1 for ATP gamma S and an estimated rate of 5000 s-1 for ATP (20 degrees C, 0.1 M KCl, pH 7.0). The activation energy for the isomerization is the same for ATP and ATP gamma S, and both show a break in the Arrhenius plot at 5 degrees C. The reaction between acto-S1 and ATP was also followed by the fluorescence of a pyrene group covalently attached to Cys-374. We show that the fluorescence of the pyrene group reports the isomerization step and not actin dissociation. The characterization of this isomerization is discussed in relation to force-generating models of the actomyosin cross-bridge cycle. 相似文献
20.
Dale LB Seachrist JL Babwah AV Ferguson SS 《The Journal of biological chemistry》2004,279(13):13110-13118
Previous studies have demonstrated that the interaction of the angiotensin II type 1A receptor (AT(1A)R) carboxyl-terminal tail with Rab5a may modulate Rab5a activity, leading to the homotypic fusion of endocytic vesicles. Therefore, we have investigated whether AT(1A)R/Rab5a interactions mediate the retention of AT(1A)R.beta-arrestin complexes in early endosomes and whether the overexpression of Rab7 and Rab11 GTPases influences AT(1A)R lysosomal degradation and plasma membrane recycling. We found that internalized AT(1A)R was retained in Rab5a-positive early endosomes and was neither targeted to lysosomes nor recycled back to the cell surface, whereas a mutant defective in Rab5a binding, AT(1A)R-(1-349), was targeted to lysosomes for degradation. However, the loss of Rab5a binding to the AT(1A)R carboxyl-terminal tail did not promote AT(1A)R recycling. Rather, it was the stable binding of beta-arrestin to the AT(1A)R that prevented, at least in part, AT(1A)R recycling. The overexpression of wild-type Rab7 and Rab7-Q67L resulted in both increased AT(1A)R degradation and AT(1A)R targeting to lysosomes. The Rab7 expression-dependent transition of "putative" AT(1A)R.beta-arrestin complexes to late endosomes was blocked by the expression of dominant-negative Rab5a-S34N. Rab11 overexpression established AT(1A)R recycling and promoted the redistribution of AT(1A)R.beta-arrestin complexes from early to recycling endosomes. Taken together, our data suggest that Rab5, Rab7, and Rab11 work in concert with one another to regulate the intracellular trafficking patterns of the AT(1A)R. 相似文献