首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initiation mass, defined as cell mass per origin of deoxyribonucleic acid replication (optical density units at 460 nm of culture/origins per milliliter of culture), reflects the intracellular concentration or activity of a hypothetical factor that controls initiation of chromosome replication in bacteria. In Escherichia coli B/r, the initiation mass was found to increase about twofold with increasing growth rate between 0.6 and 1.6 doublings per h; at higher growth rates it remained essentially constant (measured up to 2.4 doublings per h). A low-thymine-requiring (thyA deoB) derivative of E. coli B/r, strain TJK16, was found to have a 60 to 80% greater initiation mass than B/r which was independent of the replication velocity and not related to the thyA and deoB mutations. It is suggested that TJK16 had acquired, during its isolation, a mutation in a gene affecting the initiation of deoxyribonucleic acid replication. The initiation age was not altered by this mutation, but other parameters, including deoxyribonucleic acid concentration and cell size, were changed in comparison with the B/r parent, as expected from theoretical considerations.  相似文献   

2.
An 18.5-kb DNA fragment containing the oriC region of the chromosome of the alkaliphilic Bacillus halodurans C-125 was obtained by PCR and sequenced. Sixteen open reading frames (ORFs) were identified in this region. A sequencing similarity search using the BSORF database found that ORF1 to 13 all had significant similarities to gene products of Bacillus subtilis. Three other ORFs (ORF14-16) of unknown function were positioned down-stream of gyrB instead of rrnO, which is found in the same region in the case of B. subtilis. The ORF organization from gidA to gyrA was the same as that of B. subtilis. The gene organization and the location of the DnaA-box region were also similar to those of the chromosomes of other bacteria, such as Escherichia coli and Pseudomonas putida. There were two DnaA-box clusters (Box-region C and R) with a consensus sequence TTATCCACA on both sides of the dnaA gene but another DnaA box cluster (Box-region L) which is found in the region between thdF and jag in B. subtilis was not found in the corresponding region in the case of alkaliphilic Bacillus halodurans C-125.  相似文献   

3.
4.
AIMS: To evaluate the possibility for discrimination of Bacillus cereus and B. thuringiensis using 16S rRNA and gyrB gene based PCR methods, and to obtain the sequences of the primer annealing sites so that the PCR results may be explained. METHODS AND RESULTS: Based on the sequence difference in the variable region (V1) of 16S rRNA and in the gyrB gene between B. cereus and B. thuringiensis, PCR primers specific to these Bacillus spp. were designed. When these primers were used to discriminate B. cereus and B. thuringiensis, six of 82 B. cereus strains were identified as B. thuringiensis while 67 of 73 B. thuringiensis strains were identified as B. cereus. Sequence analysis of the primer annealing sites showed that there is no clear-cut difference in the V1 region of 16S rRNA, and in the gyrB gene, between B. cereus and B. thuringiensis strains. CONCLUSIONS: Although 16S rDNA based probes and gyrB gene based PCR primers have been suggested for the discrimination of B. cereus and B. thuringiensis strains, when a large number of Bacillus strains was tested, results showed that discrimination between B. cereus and B. thuringiensis is difficult. Therefore, to distinguish B. thuringiensis from B. cereus, a single feature, such as the presence of a parasporal crystal protein or cry gene, may sometimes be reliable. SIGNIFICANCE AND IMPACT OF THE STUDY: Discrimination between B. cereus and B. thuringiensis is a challenging debate to which this paper makes a contribution.  相似文献   

5.
6.
To further develop genetic techniques for the enteropathogen Brachyspira hyodysenteriae, the gyrB gene of this spirochete was isolated from a lambdaZAPII library of strain B204 genomic DNA and sequenced. The putative protein encoded by this gene exhibited up to 55% amino acid sequence identity with GyrB proteins of various bacterial species, including other spirochetes. B. hyodysenteriae coumermycin A(1)-resistant (Cn(r)) mutant strains, both spontaneous and UV induced, were isolated by plating B204 cells onto Trypticase soy blood agar plates containing 0.5 microg of coumermycin A(1)/ml. The coumermycin A(1) MICs were 25 to 100 microg/ml for the resistant strains and 0.1 to 0.25 microg/ml for strain B204. Four Cn(r) strains had single nucleotide changes in their gyrB genes, corresponding to GyrB amino acid changes of Gly(78) to Ser (two strains), Gly(78) to Cys, and Thr(166) to Ala. When Cn(r) strain 435A (Gly(78) to Ser) and Cm(r) Km(r) strain SH (DeltaflaA1::cat Deltanox::kan) were cultured together in brain heart infusion broth containing 10% (vol/vol) heat-treated (56 degrees C, 30 min) calf serum, cells resistant to chloramphenicol, coumermycin A(1), and kanamycin could be isolated from the cocultures after overnight incubation, but such cells could not be isolated from monocultures of either strain. Seven Cn(r) Km(r) Cm(r) strains were tested and were determined to have resistance genotypes of both strain 435A and strain SH. Cn(r) Km(r) Cm(r) cells could not be isolated when antiserum to the bacteriophage-like agent VSH-1 was added to cocultures, and the numbers of resistant cells increased fivefold when mitomycin C, an inducer of VSH-1 production, was added. These results indicate that coumermycin resistance associated with a gyrB mutation is a useful selection marker for monitoring gene exchange between B. hyodysenteriae cells. Gene transfer readily occurs between B. hyodysenteriae cells in broth culture, a finding with practical importance. VSH-1 is the likely mechanism for gene transfer.  相似文献   

7.
Abstract We have isolated spontaneous mutant strains of Escherichia coli KL16 showing different levels of nalidixic acid (NAL) resistance. From 40 independent mutants, 36 had gyrA and four had gyrB mutations. Most of the gyrA mutations (30/36) conferred high level NAL resistance. In contrast, the only gyrB mutation that conferred a relatively high level of NAL resistance also determined enhanced susceptibility to quinolones with a piperazinyl substituent at C7 position of the quinolone ring (amphoteric quinolones). This gyrB mutation (denoted gyrB1604 ), jointly with a gyrA mutation (denoted gyrA972 ) which confers a high level of quinolone resistance, were used to construct strain IC2476, carrying the two gyr mutant alleles. The susceptibility of this strain to amphoteric quinolones (pipemidic acid, norfloxacin and ciprofloxacin) was similar to that of the gyrA972 single mutant. This result indicates that the change in GyrA subunit which determines a high level of quinolone-resistance has the capacity to mask the hypersusceptibility to amphoteric quinolones promoted by the GyrB1604 mutant subunit. This capacity was further confirmed by studying the effects of ciprofloxacin (CFX) on gyrase inhibition in the gyrA972 gyrB1604 strain.  相似文献   

8.
The mutagenic characteristics of formaldehyde on bacteria were examined. All the tester strains of Escherichia coli deficient in DNA-repair enzymes tested in the present study were significantly more sensitive to the killing effect of formaldehyde than the corresponding wild-type strain. Among the E. coli B strains, H/r30R (wild-type) and Hs30R (uvrA) were mutable, whereas NG30 (recA) and O16 (polA) were not. There is no appreciable difference in mutation frequency of E. coli B between the wild-type and the uvrA strains in a dose range below 4 mM. However, the mutation frequency of the wild-type strain started to decrease in a higher concentration range, whereas that of the uvrA strain continued to increase linearly. This was confirmed with the E. coli B/r tester strains. The decrease in mutation frequency may be produced by prolongation of the lag period before entering the S-phase so as to give the cells a greater chance for DNA repair through the excision mechanism. In fact, it was evidenced that formaldehyde retarded to a remarkable extent the initiation of DNA synthesis of the cells at the higher dose range used for mutation assay. Some discrepancies found between the results obtained in this study and those previously reported by Nishioka (1973) were pointed out.  相似文献   

9.
The cell cycle kinetics of Escherichia coli B/r A and B/r K cells were studied by flow cytometry. Three-dimensional histograms of cell cultures show the number of cells as a function of cellular DNA and protein contents and give detailed pictures of the cell cycle distribution with regard to these parameters. Histograms of slowly growing chemostat cultures showed that cell cycle periods B and C + D increase with a decreasing growth rate and that the B period occupies an increasing fraction of the cycle. The DNA replication patterns of B/r A and K were found to be quite similar. At extremely low growth rates (doubling time [T] = 17 h), B/r A cells had a B period of 0.8 T, a C period of 0.1 T, and a D period of 0.1 T, and B/r K cells (T = 16 h) had a B period of 0.6 T, a C period of 0.15 T, and a D period of 0.25 T. Mass increase, i.e., essentially protein synthesis, was seen in all three periods of the cell cycle. For B/r A cells, the average rate of mass increase was 11 times greater in the D period than in the B period, whereas for B/r K cells the rate of mass increase was twice as great in the D period as in the B period. The DNA and cell size distributions of batch cultures in exponential growth were found to vary with time, indicating that such cultures are not suitable for studies of cell cycle kinetics.  相似文献   

10.
As 16S rRNA sequence analysis has proven inadequate for the differentiation of Bacillus cereus from closely related species, we employed the gyrase B gene (gyrB) as a molecular diagnostic marker. The gyrB genes of B. cereus JCM 2152(T), Bacillus thuringiensis IAM 12077(T), Bacillus mycoides ATCC 6462(T), and Bacillus anthracis Pasteur #2H were cloned and sequenced. Oligonucleotide PCR primer sets were designed from within gyrB sequences of the respective bacteria for the specific amplification and differentiation of B. cereus, B. thuringiensis, and B. anthracis. The results from the amplification of gyrB sequences correlated well with results obtained with the 16S rDNA-based hybridization study but not with the results of their phenotypic characterization. Some of the reference strains of both B. cereus (three serovars) and B. thuringiensis (two serovars) were not positive in PCR amplification assays with gyrB primers. However, complete sequencing of 1.2-kb gyrB fragments of these reference strains showed that these serovars had, in fact, lower homology than their originally designated species. We developed and tested a procedure for the specific detection of the target organism in boiled rice that entailed 15 h of preenrichment followed by PCR amplification of the B. cereus-specific fragment. This method enabled us to detect an initial inoculum of 0.24 CFU of B. cereus cells per g of boiled rice food homogenate without extracting DNA. However, a simple two-step filtration step is required to remove PCR inhibitory substances.  相似文献   

11.
Studies of the biology of Borrelia burgdorferi and the pathogenesis of Lyme disease are severely limited by the current lack of genetic tools. As an initial step toward facile genetic manipulation of this pathogenic spirochete, we have investigated gene inactivation by allelic exchange using a mutated borrelial gyrB gene that confers resistance to the antibiotic coumermycin A1 as a selectable marker. We have transformed B. burgdorferi by electroporation with a linear fragment of DNA in which this selectable marker was flanked by sequences from a native borrelial 26-kb circular plasmid. We have identified coumermycin A1-resistant transformants in which gyrB had interrupted the targeted site on the 26-kb plasmid via homologous recombination with the flanking sequences. Antibiotic resistance conferred by the mutated gyrB gene on the plasmid is dominant, and transformed spirochetes carrying this plasmid do not contain any unaltered copies of the plasmid. Coumermycin A1 resistance can be transferred to naive B. burgdorferi by transformation with borrelial plasmid DNA from the initial transformants. This work represents the first example of a directed mutation in B. burgdorferi whereby a large segment of heterologous DNA (gyrB) has been inserted via homologous recombination with flanking sequences, thus demonstrating the feasibility of specific gene inactivation by allelic exchange.  相似文献   

12.
13.
We have determined the nucleotide sequence of a 5.3-kb segment of the Staphylococcus aureus chromosome that includes the gyrA and gyrB genes coding for both subunits of DNA gyrase, the enzyme that catalyzes ATP-dependent DNA supercoiling. The gene order at this locus, dnaA-dnaN-recF-gyrB-gyrA, is similar to that found in the Bacillus subtilis replication origin region. S. aureus recF, gyrB, and gyrA genes are closely spaced, occupy the same reading frame, and may be coordinately expressed. The S. aureus gyrB and gyrA genes encode 640- and 889-residue proteins, respectively, that share strong homology with other bacterial gyrase subunits, notably those from B. subtilis. These results are discussed in regard to the mechanism of DNA gyrase and its role as a target for the 4-quinolones and other antistaphylococcal agents.  相似文献   

14.
In Salmonella enterica serovar Typhimurium, an S431P substitution in the B subunit of gyrase (allele gyrB651) confers resistance to nalidixic acid and causes reduced DNA superhelicity and hypersensitivity to novobiocin. Selection for novobiocin resistance allowed isolation of a mutation in the gyrA gene (allele gyrA659), a T467S substitution, which partially suppresses the supercoiling defect of gyrB651. Modeling analysis suggests that this mutation acts by destabilizing the GyrA bottom dimer interface. This is the first example of a gyrA mutation that compensates for a gyrB defect.  相似文献   

15.
Commonly, 16S ribosome RNA (16S rRNA) sequence analysis has been used for identifying enteric bacteria. However, it may not always be applicable for distinguishing closely related bacteria. Therefore, we selected gyrB genes that encode the subunit B protein of DNA gyrase (a topoisomerase type II protein) as target genes. The molecular evolution rate of gyrB genes is higher than that of 16S rRNA, and gyrB genes are distributed universally among bacterial species. Microarray technology includes the methods of arraying cDNA or oligonucleotides on substrates such as glass slides while acquiring a lot of information simultaneously. Thus, it is possible to identify the enteric bacteria easily using microarray technology. We devised a simple method of rapidly identifying bacterial species through the combined use of gyrB genes and microarrays. Closely related bacteria were not identified at the species level using 16S rRNA sequence analysis, whereas they were identified at the species level based on the reaction patterns of oligonucleotides on our microarrays using gyrB genes.  相似文献   

16.
The partial nucleotide sequences of the rpoB and gyrB genes as well as the complete sequence of the 16S-23S rRNA intergenic transcribed spacer (ITS) were determined for all known Acholeplasma species. The same genes of Mesoplasma and Entomoplasma species were also sequenced and used to infer phylogenetic relationships among the species within the orders Entomoplasmatales and Acholeplasmatales. The comparison of the ITS, rpoB, and gyrB phylogenetic trees with the 16S rRNA phylogenetic tree revealed a similar branch topology suggesting that the ITS, rpoB, and gyrB could be useful complementary phylogenetic markers for investigation of evolutionary relationships among Acholeplasma species. Thus, the multilocus phylogenetic analysis of Acholeplasma multilocale sequence data (ATCC 49900 (T) = PN525 (NCTC 11723)) strongly indicated that this organism is most closely related to the genera Mesoplasma and Entomoplasma (family Entomoplasmataceae) and form the branch with Mesoplasma seiffertii, Mesoplasma syrphidae, and Mesoplasma photuris. The closest genetic relatedness of this species to the order Entomoplasmatales was additionally supported by the finding that A. multilocale uses UGA as the tryptophan codon in its gyrB and gyrA sequences. Use of the UGA codon for encoding tryptophan was previously reported as a unique genetic feature of Entomoplasmatales and Mycoplasmatales but not of Acholeplasmatales. These data, as well as previously published data on metabolic features of A. multilocale, leads to the proposal to reclassify A. multilocale as a member of the family Entomoplasmataceae.  相似文献   

17.
The homolog of the gyrB gene, which has been reported to be present in the vicinity of the initiation site of replication in bacteria, was mapped on the Mycoplasma hominis genome, and the region was subsequently sequenced. Five open reading frames were identified flanking the gyrB gene, one of which showed similarity to that which encodes the LicA protein of Haemophilus influenzae. The organization of the genes in the region showed no resemblance to that in the corresponding regions of other bacteria sequenced so far. The gyrA gene was mapped 35 kb downstream from the gyrB gene.  相似文献   

18.
19.
在中国农业微生物菌种中心(ACCC)菌株的定期转接保藏过程中,发现解淀粉芽孢杆菌ACCC 19742在同一培养基上出现两种不同的菌落形态,将这两个不同形态的菌株编号为19742-1和19742-2。通过形态学、生理生化及基因组分析相结合鉴定不同菌落形态ACCC 19742,并进一步确定该菌株的分类地位。首先将菌株进行分离与纯化,其次将纯化后的菌株进行16S rRNA及gyrB基因扩增及序列分析,通过MEGA 7.0软件构建系统发育树;API 20NE、BIOLOG及脂肪酸等分析菌株的生理生化特性;全基因组分析菌株的ANI和DDH值。两株菌在API 20NE中,仅葡萄糖酸盐同化反应存在差异;脂肪酸检测中主要组成相同,仅是百分含量方面略有差别;两株菌的16S rRNA基因相似性为100%,gyrB基因的相似性为99.4%;全基因组测序表明,两株菌的ANI值为99.95%,DDH值为99.62%。综合遗传学特征和表型特征,证实两者为来源于同一菌株不同的形态变异型,而并非污染所致。同时,19742-1和19742-2与Bacillus velezensis NRRL_B 41580~T的ANI及DDH值最高,分别为97%和77%,且16S rRNA和gyrB系统进化分析也表明,该菌株在分类地位上属于贝莱斯芽孢杆菌(Bacillus velezensis),而非解淀粉芽孢杆菌。这为菌株的保藏提供了一定的参考价值。  相似文献   

20.
Bacillus anthracis, the causative agent of the human disease anthrax, Bacillus cereus, a food-borne pathogen capable of causing human illness, and Bacillus thuringiensis, a well-characterized insecticidal toxin producer, all cluster together within a very tight clade (B. cereus group) phylogenetically and are indistinguishable from one another via 16S rDNA sequence analysis. As new pathogens are continually emerging, it is imperative to devise a system capable of rapidly and accurately differentiating closely related, yet phenotypically distinct species. Although the gyrB gene has proven useful in discriminating closely related species, its sequence analysis has not yet been validated by DNA:DNA hybridization, the taxonomically accepted "gold standard". We phylogenetically characterized the gyrB sequences of various species and serotypes encompassed in the "B. cereus group," including lab strains and environmental isolates. Results were compared to those obtained from analyses of phenotypic characteristics, 16S rDNA sequence, DNA:DNA hybridization, and virulence factors. The gyrB gene proved more highly differential than 16S, while, at the same time, as analytical as costly and laborious DNA:DNA hybridization techniques in differentiating species within the B. cereus group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号