首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pioneer myoblasts generate the first myotomal fibers and act as a scaffold to pattern further myotome development. From their origin in the medial epithelial somite, they dissociate and migrate towards the rostral edge of each somite, from which differentiation proceeds in both rostral-to-caudal and medial-to-lateral directions. The mechanisms underlying formation of this unique wave of pioneer myofibers remain unknown. We show that rostrocaudal or mediolateral somite inversions in avian embryos do not alter the original directions of pioneer myoblast migration and differentiation into fibers, demonstrating that regulation of pioneer patterning is somite-intrinsic. Furthermore, pioneer myoblasts express Robo2 downstream of MyoD and Myf5, whereas the dermomyotome and caudal sclerotome express Slit1. Loss of Robo2 or of sclerotome-derived Slit1 function perturbed both directional cell migration and fiber formation, and their effects were mediated through RhoA. Although myoblast specification was not affected, expression of the intermediate filament desmin was reduced. Hence, Slit1 and Robo2, via RhoA, act to pattern formation of the pioneer myotome through the regulation of cytoskeletal assembly.  相似文献   

3.
4.
During vertebrate embryogenesis, the newly formed mesoderm is allocated to the paraxial, intermediate, and lateral domains, each giving rise to different cell and tissue types. Here, we provide evidence that the forkhead genes, Foxc1 and Foxc2, play a role in the specification of mesoderm to paraxial versus intermediate fates. Mouse embryos lacking both Foxc1 and Foxc2 show expansion of intermediate mesoderm markers into the paraxial domain, lateralization of somite patterning, and ectopic and disorganized mesonephric tubules. In gain of function studies in the chick embryo, Foxc1 and Foxc2 negatively regulate intermediate mesoderm formation. By contrast, their misexpression in the prospective intermediate mesoderm appears to drive cells to acquire paraxial fate, as revealed by expression of the somite markers Pax7 and Paraxis. Taken together, the data indicate that Foxc1 and Foxc2 regulate the establishment of paraxial versus intermediate mesoderm cell fates in the vertebrate embryo.  相似文献   

5.
The Notch signalling pathway plays essential roles during the specification of the rostral and caudal somite halves and subsequent segmentation of the paraxial mesoderm. We have re-investigated the role of presenilin 1 (Ps1; encoded by Psen1) during segmentation using newly generated alleles of the Psen1 mutation. In Psen1-deficient mice, proteolytic activation of Notch1 was significantly affected and the expression of several genes involved in the Notch signalling pathway was altered, including Delta-like3, Hes5, lunatic fringe (Lfng) and Mesp2. Thus, Ps1-dependent activation of the Notch pathway is essential for caudal half somite development. We observed defects in Notch signalling in both the caudal and rostral region of the presomitic mesoderm. In the caudal presomitic mesoderm, Ps1 was involved in maintaining the amplitude of cyclic activation of the Notch pathway, as represented by significant reduction of Lfng expression in Psen1-deficient mice. In the rostral presomitic mesoderm, rapid downregulation of the Mesp2 expression in the presumptive caudal half somite depends on Ps1 and is a prerequisite for caudal somite half specification. Chimaera analysis between Psen1-deficient and wild-type cells revealed that condensation of the wild-type cells in the caudal half somite was concordant with the formation of segment boundaries, while mutant and wild-type cells intermingled in the presomitic mesoderm. This implies that periodic activation of the Notch pathway in the presomitic mesoderm is still latent to segregate the presumptive rostral and caudal somite. A transient episode of Mesp2 expression might be needed for Notch activation by Ps1 to confer rostral or caudal properties. In summary, we propose that Ps1 is involved in the functional manifestation of the segmentation clock in the presomitic mesoderm.  相似文献   

6.
The specification and morphogenesis of slow and fast twitch muscle fibers are crucial for muscle development. In zebrafish, Hedgehog is required for slow muscle fiber specification. However, less is known about signals that promote development of fast muscle fibers, which constitute the majority of somitic cells. We show that when Hedgehog signaling is blocked, fast muscle cell elongation is disrupted. Using genetic mosaics, we show that Hedgehog signal perception is required by slow muscle cells but not by fast muscle cells for fast muscle cell elongation. Furthermore, we show that slow muscle cells are sufficient to pattern the medial to lateral wave of fast muscle fiber morphogenesis even when fast muscle cells cannot perceive the Hedgehog signal. Thus, the medial to lateral migration of slow muscle fibers through the somite creates a morphogenetic signal that patterns fast muscle fiber elongation in its wake.  相似文献   

7.
Little is known about the tissue interactions and the molecular signals implicated in the sequence of events leading to the subdivision of the somite into its rostral and caudal compartments. It has been demonstrated that rostrocaudal identity of the sclerotome is acquired at the presomitic (PSM) level. However, it is not known whether this compartment specification is fully determined in the PSM or whether it is dependent upon maintenance cues from the surrounding environment, as is the case for somite epithelialization. In this report, we address this issue by examining the expression profiles of C-Delta-1 and C-Notch-1, the avian homologues of mouse Delta-like1 (Delta1) and Notch1 which have been implicated in the specification of the somite rostrocaudal polarity in mouse. In chick, these genes are expressed in distinct but partially overlapping domains in the PSM and subsequently in the caudal regions of the somites. We have used an in vitro assay that consists of culturing PSM explants to examine the regulation of these genes in this tissue. We find that PSM explants cultured without overlying ectoderm continue to lay down stripes of C-Delta-1 expression, although epithelialization is blocked. These results suggest that somite rostrocaudal patterning is an autonomous property of the PSM. In addition, they demonstrate that segmentation is not necessarily coupled with the formation of somites. Dev. Genet. 23:77–85, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Snider L  Tapscott SJ 《Cell》2003,113(7):811-812
Previously, skeletal muscle regeneration appeared to be very different from embryonic specification of muscle, but in this issue of Cell, Polesskaya et al. show that Wnt signaling induces myogenesis in adult muscle stem cells in a manner analogous to muscle induction in the somite.  相似文献   

9.
The genetics of vertebrate myogenesis   总被引:1,自引:0,他引:1  
The molecular, genetic and cellular bases for skeletal muscle growth and regeneration have been recently documented in a number of vertebrate species. These studies highlight the role of transient subcompartments of the early somite as a source of distinct waves of myogenic precursors. Individual myogenic progenitor populations undergo a complex series of cell rearrangements and specification events in different regions of the body, all of which are controlled by distinct gene regulatory networks. Collectively, these studies have opened a window into the morphogenetic and molecular bases of the different phases of vertebrate myogenesis, from embryo to adult.  相似文献   

10.
SUMMARY In the zebrafish embryo, expression of the prdm1 and patched1 genes in adaxial cells is indicative of their specification to give rise to slow twitch muscle fibers in response to Hedgehog (Hh) signaling. Subsets of these slow twitch muscle progenitors activate engrailed ( eng ) strongly in response to high-level Hh signaling, and differentiate into muscle pioneer cells, which are important for subsequent development of the horizontal myoseptum. In addition, eng is expressed more weakly in medial fast fibers in response to lower Hh levels. Somite morphology in the lamprey, an agnathan (jawless) vertebrate, differs significantly from that of teleosts. In particular, the lamprey does not have clear epaxial/hypaxial domains, lacks a horizontal myoseptum, and does not appear to possess distinct populations of fast and slow fibers in the embryonic somite. Nevertheless, Hh is expressed in the midline of the lamprey embryo, and we report here that, as in zebrafish, homologues of patched and prdm1 are expressed in adaxial regions of the lamprey somite, and an eng homologue is also expressed in the somite. However, the lamprey adaxial region does not exhibit the same distinct adaxial cell morphology as in the zebrafish. In addition, the expression of follistatin is not excluded from the adaxial region, and eng is not detected in discrete muscle pioneer-like cells. These data suggest the presence of conserved responses to Hh signaling in lamprey somites, although the full range of effects elicited by Hh in the zebrafish somite is not recapitulated.  相似文献   

11.
The developing embryo is a paradigmatic model to study molecular mechanisms of time control in Biology. Hox genes are key players in the specification of tissue identity during embryo development and their expression is under strict temporal regulation. However, the molecular mechanisms underlying timely Hox activation in the early embryo remain unknown. This is hindered by the lack of a rigorous temporal framework of sequential Hox expression within a single cluster. Herein, a thorough characterization of HoxB cluster gene expression was performed over time and space in the early chick embryo. Clear temporal collinearity of HoxB cluster gene expression activation was observed. Spatial collinearity of HoxB expression was evidenced in different stages of development and in multiple tissues. Using embryo explant cultures we showed that HoxB2 is cyclically expressed in the rostral presomitic mesoderm with the same periodicity as somite formation, suggesting a link between timely tissue specification and somite formation. We foresee that the molecular framework herein provided will facilitate experimental approaches aimed at identifying the regulatory mechanisms underlying Hox expression in Time and Space.  相似文献   

12.
Hematopoietic stem cells (HSCs) require multiple molecular inputs for proper specification, including activity of the Notch signaling pathway. A requirement for the Notch1 and dispensability of the Notch2 receptor has been demonstrated in mice, but the role of the remaining Notch receptors has not been investigated. Here, we demonstrate that three of the four Notch receptors are independently required for the specification of HSCs in the zebrafish. The orthologues of the murine Notch1 receptor, Notch1a and Notch1b, are each required intrinsically to fate HSCs, just prior to their emergence from aortic hemogenic endothelium. By contrast, the Notch3 receptor is required earlier within the developing somite to regulate HSC emergence in a non-cell-autonomous manner. Epistatic analyses demonstrate that Notch3 function lies downstream of Wnt16, which is required for HSC specification through its regulation of two Notch ligands, dlc and dld. Collectively, these findings demonstrate for the first time that multiple Notch signaling inputs are required to specify HSCs and that Notch3 performs a novel role within the somite to regulate the neighboring precursors of hemogenic endothelium.  相似文献   

13.
14.
The secreted glycoprotein Sonic hedgehog (SHH), a vertebrate homologue of the Drosophila segment polarity gene Hedgehog, is essential for the development of diverse tissues during embryogenesis. Studies of SHH function during neural tube and somite development have focused on its role in specifying the dorsoventral polarity of these structures, but a recent report by Ahlgren and Bronner-Fraser(1) supports the possibility that SHH has additional functions in cell survival and cell proliferation. Perturbation of SHH signaling after the early dorsoventral specification of the cranial neural tube leads to increased cell death in both the neural tube and the neural crest. This implies that SHH is continually required as a trophic and/or mitogenic factor during brain development, and expands the variety of cellular responses to SHH signaling. BioEssays 22:499-502, 2000.  相似文献   

15.
16.
The successful organization of the vertebrate body requires that local information in the embryo be translated into a functional, global pattern. Somite cells form the bulk of the musculoskeletal system. Heterotopic transplants of segmental plate along the axis from quail to chick were performed to test the correlation between autonomous morphological patterning and Hox gene expression in somite subpopulations. The data presented strengthen the correlation of Hox gene expression with axial specification and focus on the significance of Hox genes in specific derivatives of the somites. We have defined two anatomical compartments of the body based on the embryonic origin of the cells making up contributing structures: the dorsal compartment, formed from purely somitic cell populations; and the ventral compartment comprising cells from somites and lateral plate. The boundary between these anatomical compartments is termed the somitic frontier. Somitic tissue transplanted between axial levels retains both original Hox expression and morphological identity in the dorsal compartment. In contrast, migrating lateral somitic cells crossing the somitic frontier do not maintain donor Hox expression but apparently adopt the Hox expression of the lateral plate and participate in the morphology appropriate to the host level. Dorsal and ventral compartments, as defined here, have relevance for experimental manipulations that influence somite cell behavior. The correlation of Hox expression profiles and patterning behavior of cells in these two compartments supports the hypothesis of independent Hox codes in paraxial and lateral plate mesoderm.  相似文献   

17.
18.
Summary A model of a thoracolumbar somite of a chick embryo at the 53rd incubation hour was obtained by mathematical methods, after identification of somite cell types by means of electron microscopy.Each specific district occupied by the cell types was precisely determined.On the basis of these observations, the somite was three-dimensionally reconstructed and the spatial positions of the primitive myotome, dermatome, sclerotome, undifferentiated mesoderm and myocele were precisely identified.  相似文献   

19.
Cells were isolated from the somite mesoderm and from the unsegmented (presomite) mesoderm of early chick embryos and exposed to actinomycin D in single cell culture. Actinomycin D inhibited proliferation in cell cultures derived from the unsegmented mesoderm, although the same concentrations of this antibiotic did not inhibit cultures derived from the somite mesoderm. This differential sensitivity parallels the regionally specific necrosis and degeneration observed in the unsegmented mesoderm of intact chick embryos exposed to actinomycin D. In culture, both cell types exhibited approximately the same permeability to labeled actinomycin D and showed comparable inhibition of RNA, DNA, and protein syntheses in the presence of the antibiotic. However, freshly isolated mesodermal cells from the somite region had a higher content of RNA than did cells from the unsegmented region, and the somite cells maintained a higher rate of macromolecular synthesis in untreated cultures.  相似文献   

20.
In contrast to many vertebrates, the ventral body wall muscles and limb muscles of Xenopus develop at different times. The ventral body wall forms in the tadpole, while limb (appendicular) muscles form during metamorphosis to the adult frog. In organisms that have been examined thus far, a conserved mechanism has been shown to control migratory muscle precursor specification, migration, and differentiation. Here, we show that the process of ventral body wall formation in Xenopus laevis is similar to hypaxial muscle development in chickens and mice. Cells specified for the migratory lineage display an upregulation of pax3 in the ventro-lateral region of the somite. These pax3-positive cells migrate ventrally, away from the somite, and undergo terminal differentiation with the expression of myf-5, followed by myoD. Several other genes are selectively expressed in the migrating muscle precursor population, including neural cell adhesion molecule (NCAM), Xenopus kit related kinase (Xkrk1), and Xenopus SRY box 5 (sox5). We have also found that muscle precursor migration is highly coordinated with the migration of neural crest-derived melanophores. However, by extirpating neural crest at an early stage and allowing embryos to develop, we determined that muscle precursor migration is not dependent on physical or genetic interaction with melanophores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号