首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A DNA duplex can be torn open at a specific position by introducing a branch or bulge to create an asymmetric three-way junction (TWJ). The opened duplex manifests a bent conformation (bending angle approximately 60 degrees , relative to the unopened form), which leads to a dramatic decrease in gel electrophoretic mobility. In the presence of a basepair mismatch at the opening position, the DNA backbone becomes less bent and assumes a distorted T-shaped structure, resulting in an increase in polyacrylamide gel electrophoretic mobility. Both conformational changes are confirmed using fluorescence resonance energy transfer experiments and found to be similar to the signature conformational changes of DNA duplex upon MutS protein binding. Our results imply that some structural rearrangements essential for mismatch recognition are achievable without protein interference. The gel electrophoretic mobility data for DNA TWJs with and without base mismatches correlates well with rotational diffusivity, computed by taking into account the conformational change of TWJ induced by base mismatch.  相似文献   

4.
Wojtuszewski K  Mukerji I 《Biochemistry》2003,42(10):3096-3104
HU, an architectural DNA-binding protein, either stabilizes DNA in a bent conformation or induces a bend upon binding to give other proteins access to the DNA. In this study, HU binding affinity for a bent DNA sequence relative to a linear sequence was investigated using fluorescence anisotropy measurements. A static bend was achieved by the introduction of two phased A4T4 tracts in a 20 bp duplex. Binding affinity for 20 bp duplexes containing two phased A-tracts in either a 5'-3' or 3'-5' orientation was found to be almost 10-fold higher than HU binding to a random sequence 20 bp duplex (6.1 vs 0.68 microM(-1)). The fluorescence technique of resonance energy transfer was used to quantitatively determine the static bend of the DNA duplexes and the HU-induced bend. DNA molecules were 5'-end labeled with fluorescein as the donor or rhodamine as the acceptor. From the efficiency of energy transfer, the end-to-end distance of the DNA duplexes was calculated. The end-to-end distance relative to DNA contour length (R/R(C)) yields a bend angle for the A-tract duplex of 45 +/- 7 degrees in the absence of HU and 70 +/- 3 degrees in the presence of HU. The bend angle calculated for the T4A4 tract duplex was 62 +/- 4 degrees after binding two HU dimers. Fluorescence anisotropy measurements reveal that HU binds in a 1:1 stoichiometry to the A4T4 tract duplex but a 2:1 stoichiometry to the T4A4 tract and random sequence duplex. These findings suggest that HU binding and recognition of DNA may be governed by a structural mechanism.  相似文献   

5.
We investigated the mechanism and kinetic specificity of binding of peptide nucleic acid clamps (bis-PNAs) to double-stranded DNA (dsDNA). Kinetic specificity is defined as a ratio of initial rates of PNA binding to matched and mismatched targets on dsDNA. Bis-PNAs consist of two homopyrimidine PNA oligomers connected by a flexible linker. While complexing with dsDNA, they are known to form P-loops, which consist of a [PNA]2-DNA triplex and the displaced DNA strand. We report here a very strong pH-dependence, within the neutral pH range, of binding rates and kinetic specificity for a bis-PNA consisting of only C and T bases. The specificity of binding reaches a very sharp and high maximum at pH 6.9. In contrast, if all the cytosine bases in one of the two PNA oligomers within the bis-PNA are replaced by pseudoisocytosine bases (J bases), which do not require protonation to form triplexes, a weak dependence on pH of the rates and specificity of the P-loop formation is observed. A theoretical analysis of the data suggests that for (C+T)-containing bis-PNA the first, intermediate step of PNA binding to dsDNA occurs via Hoogsteen pairing between the duplex target and one oligomer of bis-PNA. After that, the strand invasion occurs via Watson-Crick pairing between the second bis-PNA oligomer and the homopurine strand of the target DNA, thus resulting in the ultimate formation of the P-loop. The data for the (C/J+T)-containing bis-PNA show that its high affinity to dsDNA at neutral pH does not seriously compromise the kinetic specificity of binding. These findings support the earlier expectation that (C/J+T)-containing PNA constructions may be advantageous for use in vivo.  相似文献   

6.
Tet repressor binding induced curvature of tet operator DNA.   总被引:2,自引:1,他引:1       下载免费PDF全文
Tet repressor dimer binds to two tet operator sites spaced by 30 bp in the Tn10 encoded tet regulatory DNA. The effect of repressor binding on the gel mobility of circular permutated DNA fragments containing either one or both operator sequences is reported. The EcoRI induced bending of DNA is used to compare the results with other protein binding induced structural perturbations of DNA. Tet repressor bends a DNA fragment with a single tet operator to an angle of 42 degrees +/- 7 degrees. The apparent bend angle of DNA fragments containing the tandem tet operator arrangement occupied by two Tet repressor dimers turns out to be 52 degrees +/- 9 degrees. These results are interpreted with respect to the end to end distances of the bent DNA fragments. They indicate that either the intervening tet regulatory DNA between the operators or the bound operator sequences themselves contain additional perturbations from the canonical B-DNA structure. This finding is discussed in the light of previously obtained results from CD, neutron scattering, and electrooptical studies.  相似文献   

7.
We have inserted d(C)10 in a set of DNA fragments with bent segments on both ends, which are rotated with respect to each other by base pair wise increasing insertions. The electrophoretic mobilities on polyacrylamide gels of these DNA fragments were used to identify insertion sizes with cis conformations of the bent ends. These experiments revealed a helical repeat in solution of d(C).d(G) tracts of 11.1 +/- 0.08 bp. The electrophoretic mobilities of ligation ladders with properly phased d(C)5 and d(C)16 runs demonstrate a small but clearly detectable curvature of these fragments.  相似文献   

8.
9.
10.
11.
A bis-peptide nucleic acid (PNA)-anthraquinone imide (AQI) conjugate has been synthesized and shown to form strand invasion complexes with a duplex DNA target. The two arms of the bis-PNA each consist of five consecutive thymine residues and are linked by a flexible, hydrophilic spacer. Probing with potassium permanganate reveals that the bis-PNA complexes to duplex DNA at A5.T5sites with local displacement of the T5DNA strand. The 5 bp sequence targeted by the PNA is the shortest strand invasion complex reported to date. Irradiation of the strand invasion complex results in asymmetric cleavage of the displaced strand, with more efficient cleavage at the 3'-end of the loop. This result indicates that the bis-PNA binds to the DNA such that the C-terminal T5sequence forms the strand invasion complex, leaving the N-terminal T5sequence to bind by triplex formation, thereby placing the AQI closer to the 3'-end of the displaced strand, consistent with the observed photocleavage pattern. The ability of the PNA to directly report its binding site by photoinduced cleavage could have significant utility in mapping the secondary and tertiary structure of nucleic acids.  相似文献   

12.
In a phasing experiment, two bends are introduced into a long duplex RNA or DNA and the number of base pairs between them varied. When electrophoresed in a gel, the set of molecules may show a periodic variation in mobility that contains information about the twist associated with the bends and the intervening helix. We show how a set of three phasing experiments can be used to extract this information, and apply it to an RNA helix bend at the bulge sequence A2. The bulge introduces a negative (left-handed) twist of approximately 30 degrees; at low temperatures, it is mostly confined to the 5' side of the bulge. The apparent helical repeat of random sequence RNA measured in these experiments was 10.2 +/- 0.1 base pairs, an unexpectedly low value. It is likely that moderate curvative of the RNA helix axis (30-40 degrees over 80 bp) has affected the measurement.  相似文献   

13.
The chemical probes potassium permanganate (KMnO4) and diethylpyrocarbonate (DEPC) have been used to study the conformation of bent kinetoplast DNA from Crithidia fasciculata at different temperatures. Chemical reactivity data shows that the numerous short A-tracts of this bent DNA adopt a similar structure at 43 degrees C. This conformation appears to be very similar to the conformation of A-tracts in DNA exhibiting normal gel mobility. The A-tract structure detected by chemical probing is characterized by a high degree of base stacking on the thymine strand, and by an abrupt conformational change at the 3' end of the adenine strand. In general, no major alteration of this A-tract specific structure was detected between 4-53 degrees C. However, probing with KMnO4 revealed two unusual features of the C. fasciculata sequence that may contribute to the highly aberrant gel mobility of this DNA: 1) the B DNA/A-tract junction 5' dC/A3-6 3'. 5' dT3-6/G 3' is disproportionately represented and is conformationally distinct from other 5' end junctions, and 2) low temperature favors a novel strand-specific conformational distortion over a 20 base pair region of the bent kinetoplast DNA. Presence of the minor groove binding drug distamycin had little detectable effect on the A-tract conformation. However, distamycin did inhibit formation of the novel KMnO4 sensitive low temperature structure and partially eliminated the anomalous gel mobility of the kinetoplast DNA. Finally, we describe a simple and reproducible procedure for the production of an adenine-specific chemical DNA sequence ladder.  相似文献   

14.
Recently, the single strand conformation polymorphism (SSCP) analyses were shown to be useful for identification a variety of bacterial genes. Although, SSCP was successfully applied for detection of single nucleotide polymorphism (SNP), it was also considered a time consuming and insufficiently reliable technique. Therefore, the modified Multitemperature-SSCP method was introduced. It was shown to be reliable and time effective technique due to a stringent control of the gel temperature and utilization of a high voltage up to 1 kV. In this study the usefulness of MSSCP for differentiation of gene variants and detection of the single point mutations was evaluated, using Yersinia enterocolitica O3 and O8 ail alleles or genes blaCTX-M-15 and blaCTX-M-3, which differs by a single point mutation. The 425 and 251 bp fragments of O3 and O8 ail alleles containing 15 and 11 point mutations respectively, as well as 277 and 208 bp fragments of both blaCTX-M genes differing in positions 243 and 62 were PCR amplified, denatured and loaded onto 7% and 9% polyacrylamide nondenaturing gel. Electrophoresis was carried out in the DNA-Pointer apparatus (Kuchrczyk, Poland) at voltage ranging from 500 to 750 V. The thermal profile consisted of 50 min. at 35 degrees C, 40 min at 20 degrees C and 40 min at 5 degrees C. Obtained results showed, MSSCP was capable to differentiate ail alleles independently of the length of analyzed fragment. However, the 425 bp fragment profile consisted of three bands, whereas 251 bp revealed two bands. The single point mutation in blaCTM, genes was also successfully distinguished by MSSCP in both tested fragments. Surprisingly, 277 bp fragment profile showed differences more apparently than 208 bp. Summarizing, MSSCP was found to be useful, sensitive and time efficient tool for detection of multiple and single point mutations in DNA fragments ranging from 208-425 bp.  相似文献   

15.
We have employed a variety of physical methods to study the equilibrium melting and temperature-dependent conformational dynamics of dA.dT tracts in fractionated synthetic DNA polymers and in well-defined fragments of kinetoplast DNA (kDNA). Using circular dichroism (CD), we have detected a temperature-dependent, "premelting" event in poly(dA).poly(dT) which exhibits a midpoint near 37 degrees C. Significantly, we also detect this CD "premelting" behavior in a fragment of kDNA. By contrast, we do not observe this "premelting" behavior in the temperature-dependent CD spectra of poly[d(AT)].poly[d(AT)], poly(dG).poly(dC), poly[d(GC)].poly[d(GC)], or calf thymus DNA. Thus, poly(dA).poly(dT) and kDNA exhibit a common CD-detected "premelting" event which is absent in the other duplex systems studied in this work. Furthermore, we find that the anomalous electrophoretic retardation of the kDNA fragments we have investigated disappears at temperatures above approximately 37 degrees C. We also observe that the rotational dynamics of poly(dA).poly(dT) and kDNA as assessed by singlet depletion anisotropy decay (SDAD) and electric birefringence decay (EBD) also display a discontinuity near 37 degrees C, which is not observed for the other duplex systems studied. Thus, in the aggregate, our static and dynamic measurements suggest that the homo dA.dT sequence element [common to both poly(dA).poly(dT) and kDNA] is capable of a temperature-dependent equilibrium between at least two helical states in a temperature range well below that required to induce global melting of the host duplex. We suggest that this "preglobal" melting event may correspond to the thermally induced "disruption" of "bent" DNA.  相似文献   

16.
Helical repeat of DNA in solution. The V curve method.   总被引:6,自引:3,他引:3       下载免费PDF全文
The V-like dependence of the electrophoretic mobility of small DNA rings on their topological constraint, which has been documented in a recent paper [Zivanovic et al. (1986), J. Mol. Biol., 192, 645-660], has been explored as a tool to measure the helical twist of the torsionally unstressed duplex. The method was applied to single mixed sequence fragments approximately 350 to 1400 base pairs in length, providing estimates of their average helical periodicity. It was also used to compare two DNA fragments, and to evaluate the helical repeat of poly(dA.dT).poly(dA.dT) and poly(dA).poly(dT) inserts, and the helix unwindings associated with dA and dC methylations by dam and Hhal methylases, respectively. Data were found to be highly reproducible and helical repeat estimates were in good agreement with those obtained from previous techniques.  相似文献   

17.
Bentin T  Larsen HJ  Nielsen PE 《Biochemistry》2003,42(47):13987-13995
"Tail-clamp" PNAs composed of a short (hexamer) homopyrimidine triplex forming domain and a (decamer) mixed sequence duplex forming extension have been designed. Tail-clamp PNAs display significantly increased binding to single-stranded DNA compared with PNAs lacking a duplex-forming extension as determined by T(m) measurements. Binding to double-stranded (ds) DNA occurred by combined triplex and duplex invasion as analyzed by permanganate probing. Furthermore, C(50) measurements revealed that tail-clamp PNAs consistently bound the dsDNA target more efficiently, and kinetics experiments revealed that this was due to a dramatically reduced dissociation rate of such complexes. Increasing the PNA net charge also increased binding efficiency, but unexpectedly, this increase was much more pronounced for tailless-clamp PNAs than for tail-clamp PNAs. Finally, shortening the tail-clamp PNA triplex invasion moiety to five residues was feasible, but four bases were not sufficient to yield detectable dsDNA binding. The results validate the tail-clamp PNA concept and expand the applications of the P-loop technology.  相似文献   

18.
Energetics of DNA twisting. II. Topoisomer analysis   总被引:28,自引:0,他引:28  
A gel electrophoresis method has been developed for resolving small (approximately equal to 250 bp DNA topoisomers. In this size range only one major topoisomer band is observed, except for ligase closure conditions in which the probabilities are nearly equal for circularization by untwisting and overtwisting the corresponding linear DNA. The two probabilities are nearly equal when delta Tw is close to 0.5, if the mean helical twist of the linear DNA is n + delta Tw, where n is an integer and delta Tw is the fractional twist. We determine delta Tw of the linear DNA in standard conditions (20 degrees C, no ethidium) by titration experiments in which delta Tw is varied at the time of ligase closure, either by changing temperature or ethidium concentration. The endpoint (delta Tw = 0.5) is found when the two topoisomers formed by untwisting and overtwisting are present at equal concentrations. This analysis assumes that the net writhe is zero and the DNA helix is isotropically bendable. The results confirm the analysis of cyclization probabilities given in the preceding paper: delta Tw = 0 at the two maxima in the curve of j-factor versus DNA length and delta Tw = 0.5 at the minimum. Consequently, we can determine the DNA lengths at which Tw takes on integral values and use them to measure precisely the average helix repeat. From the difference between the delta Tw values of DNAs with 237 and 247 bp, we obtain an approximate value for the helix repeat of h = 10.4 +/- 0.1 bp/turn, in good agreement with earlier values found by the band-shift and nuclease-cutting methods. The twist is integral at 250.8 +/- 0.4 bp and from h = 10.4 +/- 0.1 we find n = 24; then 250.8/24 gives h = 10.45 +/- 0.02 bp/turn. The mean linking number (Lk) changes in a stepwise manner as delta Tw is varied for 250 bp DNAs. This result is expected when the free energy of twisting half a turn becomes large compared to thermal fluctuations. In these experiments, it is possible to obtain the mean Tw value from the mean Lk value only when delta Tw = 0.5, and consequently the mean Lk value is not simply related to DNA length for 250 bp DNAs except when delta Tw = 0.5.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The synthesis of a diaminopurine PNA monomer, N-[N6-(benzyloxycarbonyl)-2,6-diaminopurine-9-yl] acetyl-N-(2-t-butyloxycarbonylaminoethyl)glycine, and the incorporation of this monomer into PNA oligomers are described. Substitution of adenine by diaminopurine in PNA oligomers increased the T m of duplexes formed with complementary DNA, RNA or PNA by 2.5-6.5 degrees C per diaminopurine. Furthermore, discrimination against mismatches facing the diaminopurine in the hybridizing oligomer is improved. Finally, a homopurine decamer PNA containing six diaminopurines is shown to form a (gel shift) stable strand displacement complex with a target in a 246 bp double-stranded DNA fragment.  相似文献   

20.
We demonstrated that a P-loop, a looped complex formed inside duplex DNA by adding peptide nucleic acids (PNA), acts catalytically as a template for enzymatic cleavage of single-stranded probe oligodeoxynucleotides (ODN). A PD-loop complex formed from P-loop and probe ODN was digested efficiently by a restriction enzyme, and the truncated probe ODN was released. The P-loop nicked by the enzyme can form PD-loop again with another probe ODN, and then assisted the enzymatic cleavage of an excess of probe ODN. In addition, by using dumbbell-formed ODN as a probe ODN, the efficiency of the P-loop-assisted ODN cleavage was enhanced considerably as compared with that of linear ODN. Thus, the method utilizing P-loop will make it possible to amplify the sequence information of duplex DNA via a catalytic cleavage of probe ODNs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号