首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histochemical demonstration of neurotoxic esterase   总被引:1,自引:0,他引:1  
We developed a histochemical method for localizing neurotoxic esterase (NTE), defined as the phenylvalerate (PV)-hydrolyzing esterase that is resistant to 40 microM paraoxon (A) but inactivated by paraoxon plus 50 microM mipafox (B). NTE is considered to be the target enzyme in the production of organophosphorus ester-induced delayed neurotoxicity (OPIDN). Cryostat sections were incubated in a medium containing alpha-naphthyl valerate and 6-benzamido-4-methoxy-m-toluidine diazonium chloride (fast violet B) after treatment with the above-mentioned inhibitors, leading to formation of an aqueous insoluble precipitate at sites of enzymatic activity. NTE activity was estimated as staining detectable in A but not in B. In the central nervous system (CNS) of chicken, NTE appeared to be present primarily in the somata of most neurons, but at sites indistinguishable from those of the other inhibitor-resistant and -sensitive alpha-naphthyl valerate-hydrolyzing esterases. It could not be distinguished in the CNS of cat, probably because it constitutes less than 3% of the total PV-hydrolyzing activity in the CNS of that species.  相似文献   

2.
Neuropathy target esterase (NTE) is the proposed target site for the mechanism of initiation of the so-called organophosphorus-induced delayed polyneuropathy (OPIDP). NTE is operationally defined in this article as the phenylvalerate esterase activity which is resistant to inhibition by 40 μM paraoxon and sensitive to 250 μM mipafox. Soluble (S-NTE) and particulate (P-NTE) forms of NTE had first been identified in hen sciatic nerve [E. Vilanova, J. Barril, V. Carrera, and M. C. Pellín (1990). J. Neurochem., 55, 1258–1265]. P-NTE and S-NTE showed different sensitivities to the inhibition by several organophosphorus compounds over a range of inhibitor concentrations for a 30 or 120 minute fixed inhibition time at 37°C. S-NTE was less sensitive to the inhibition by O,O′-diisopropyl phosphorofluoridate (DFP), hexyl 2,5-dichlorophenyl phosphoramidate (H-DCP), and mipafox than P-NTE and brain NTE, while the opposite was true for O,S-dimethyl phosphoroamidothioate (methamidophos). For each of the four inhibitors assayed, S-NTE showed two components of different sensitivity according to the inhibition curves fitted with exponential models. However, the inhibition of P-NTE by mipafox, DFP, and HDCP did not show the presence of a considerable proportion of a second component. The kinetics of heat inactivation showed that P-NTE inactivated faster and to a greater extent than S-NTE. It is concluded that (1) sciatic nerve S-NTE is more different from brain NTE than P-NTE; (2) P-NTE and S-NTE have different sensitivities to the inhibition by the studied organophosphorous compounds; (3) the inhibition curves suggest that S-NTE has two different enzymatic components while these are not so evident for P-NTE. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
4.
The mechanism by which organo-phosphorus-induced delayed polyneuropathy is induced relates to the specific inhibition and subsequent modification (“aging”) of a protein known as neuropathy target esterase (NTE), operatively defined as paraoxon-resistant and mipafox-sensi-tive phenyl valerate (PV) esterase activity. This protein has fundamentally been investigated in hen brain, the latter being the habitually employed OPIDP study model. In the present article, a partial characterization is made of the NTE and other related PV esterases in the bovine adrenal medulla and brain; NTE sensitivity to the neurotoxic or-ganophosphorus compound mipafox is investigated, and its subcellular distribution is studied. The NTE activity of the adrenal medulla was found to be the highest of those among the tissues studied to date (5000 ± 1400 mU/g tissue; ± SD, n = 12). This activity represented 93% of the PV esterase activity resistant to 40 μm paraoxon in the par-ticulate fraction of the adrenal medulla and approximately 50% of total PV esterase activity. In the bovine brain, these proportions were 72 and 26%, respectively, i.e., similar to those described in hen brain. The mipafox inhibition curve of PV esterase activity resistant to 40μM paraoxon in the particulate fraction of the adrenal medulla suggests that NTE activity fundamentally comprises a mipafox-sensitive component with an I 50 of 6.39 μM at 30 minutes, which is similar to the value reported in hen brain. NTE activity in the bovine adrenal medulla is almost exclusively limited to the particulate fraction, the microsomal fraction, plasma membrane, and chromaffin granule-enriched fractions being the highest in terms of specific activity. On the contrary, the mitochondria-enriched fraction was very poor in such activity. In bovine brain, most NTE activity was likewise limited to the particulate fraction.  相似文献   

5.
Abstract: Neuropathy target esterase (NTE) activity is operatively defined in this work as the phenyl valerate esterase (PVase) activity resistant to 40 µ M paraoxon but sensitive to 250 µ M mipafox. Gel filtration chromatography with Sephacryl S-300 of the soluble fraction from spinal cord showed two PVase peaks containing NTE activity (S-NTE1 and S-NTE2). The titration curve corresponding to inhibition by mipafox was studied over the 1–250 µ M range, in the presence of 40 µ M paraoxon. The data revealed that S-NTE1 and S-NTE2 have different sensitivities to mipafox with I50 (30 min) values of 1.7 and 19 µ M , respectively. This was similar to the pattern observed in the soluble fraction from sciatic nerve with two components ( V o peak, or S-NTE1; and 100-K peak, or S-NTE2) with different sensitivity to mipafox. However, in the brain soluble fraction, only the high-molecular-mass (>700-kDa) peak or S-NTE1 was obtained. It showed an I50 of 5.2 µ M in the mipafox inhibition curve. The chromatographic profile was different on changing the pH in the subcellular fractionation. When the homogenized tissue was centrifuged at pH 6.8, the V o peak activity decreased in the soluble fraction from these nerve tissues. This suggests that the V o peak could be related to materials partly solubilized from membranes at higher pH. The chromatographic pattern and mipafox sensitivity suggest that the different tissues have a different NTE isoform composition. S-NTE2 should be a different entity than S-NTE1 and particulate NTE. The potential role of soluble forms in the mechanism of initiation or promotion of neuropathy due to organophosphorus remain unknown.  相似文献   

6.
Abstract: 2-Octyl-4H-1,3,2-benzodioxaphosphorin 2-oxide (octyl-BDPO) is one of the most potent inhibitors known for neuropathy target esterase (NTE) of hen brain with 50% inhibition at 0.2 nM. Two NTE-like proteins, i.e., resistant to paraoxon and sensitive to mipafox, of ~155 and ~119 kDa (designated NTE-155 and NTE-119, respectively) are labeled by [octyl-3H]octyl-BDPO and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Labeling with [aryl-3H]octyl-BDPO is only ~15% of that with [octyl-3H]octyl-BDPO, indicating that the majority of the phosphorylated NTE undergoes aging with only a small proportion of nonaged target or intramolecular group transfer (“alkylation”). NTE-155 and NTE-119 have the same kinetic constants and maximal number of phosphorylation sites, equivalent for each of them to 26 fmol/mg of protein and totalling at least 0.44–1.2 µg of NTE protein/g of brain. Structure-activity investigations involving 17 combinations of organophosphorus (OP) compounds of varied chemical type, stereo-chemistry, and concentration establish an excellent correlation (r = 0.95) between inhibition of NTE activity and protein labeling and thereby the toxicological relevance of these assays, which equally implicate NTE-155 and NTE-119 (probably an autolysis product of NTE-155) as targets in OP-induced delayed neuropathy. [octyl-3H]-Octyl-BDPO is an improved probe for NTE in terms of its potency, reactivity, selectivity, and the formation of 3H-labeled NTE with a stable phosphorus-carbon bond.  相似文献   

7.
The mechanism and substrate specificity of the phosphotriesterase from Pseudomonas diminuta have been examined. The enzyme hydrolyzes a large number of phosphotriester substrates in addition to paraoxon (diethyl p-nitrophenyl phosphate) and its thiophosphate analogue, parathion. The two ethyl groups in paraoxon can be changed to propyl and butyl groups, but the maximal velocity and Km values decrease substantially. The enzyme will not hydrolyze phosphomonoesters or -diesters. There is a linear correlation between enzymatic activity and the pKa of the phenolic leaving group for 16 paraoxon analogues. The beta value in the corresponding Br?nsted plot is -0.8. No effect on either Vmax or Vmax/Km is observed when sucrose is used to increase the relative solvent viscosity by 3-fold. These results are consistent with rate-limiting phosphorus-oxygen bond cleavage. A plot of log V versus pH for the hydrolysis of paraoxon shows one enzymatic group that must be unprotonated for activity with a pKa of 6.1. The deuterium isotope effect by D2O on Vmax and Vmax/Km is 2.4 and 1.2, respectively, and the proton inventory is linear, which indicates that only one proton is "in flight" during the transition state. The inhibition patterns by the products are consistent with a random kinetic mechanism.  相似文献   

8.
The toxicity of trichlorfon (O,O-dimethyl-2,2,2,-trichloro-1-hydroxyethylphosphonate, Dipterex, Dylox), reported to elicit delayed neurotoxicity in man and chickens, was studied by administering single subcutaneous doses of 100 or 300 mg/kg to adult White Leghorn hens. At 24 h posttreatment, the birds were observed for visible signs of neurotoxicity, were euthanized, and samples of blood plasma, brain, and spinal cord (cervical and thoracic regions) were obtained for quantification of cholinesterase and neurotoxic esterase (NTE) activities. In subacute studies, hens were dosed with trichlorfon (100 mg/kg) every 72 h for a total of six doses. Seventy-two hours after the final dose the hens were euthanized, the brains, spinal cords, and distal sciatic nerves were removed for enzymatic and (or) histological examination. Parallel acute and subacute studies were conducted using diisopropyl phosphorofluoridate (DFP), a known neurotoxic agent, at subcutaneous dosages of 1.0 mg/kg. In the acute studies, both DFP and trichlorfon markedly inhibited tissue cholinesterase activities but only DFP elicited a significant inhibition of NTE. In the subacute studies, DFP produced a characteristic central-peripheral distal axonopathy in the 18-day period of study which was confirmed by clinical and morphological evidence and by marked inhibition of neuronal NTE. Trichlorfon caused little or no obvious neurotoxicity, an observation that was supported by minimal morphological changes and impairment of walking ability and no inhibition of brain or spinal cord NTE.  相似文献   

9.
10.
Neuropathy target esterase (NTE) and NTE-related esterase (NRE) are endoplasmic reticulum (ER) membrane-anchored proteins belonging to the NTE protein family. NTE and NRE are degraded by macroautophagy and by the ubiquitin–proteasome pathway. However, the regulation of NTE and NRE by proteasome has not been well understood. Western blotting showed that the deletion of the regulatory region of NTE and NRE led to protein accumulation compared with that of the corresponding wild-type proteins. Further, deletion and site-directed mutagenesis experiments demonstrated that the destruction (D) box was required for the proteasomal degradation of NTE and NRE. However, unlike the deletion of the regulatory region, the deletion of the D box did not affect the subcellular localisation of NTE or NRE or disrupt the ER. Moreover, the deletion of the D box or the regulatory region of NTE has similar inhibitory effects on cell growth, which are greater than those produced by the full-length NTE. Here, for the first time, we show that the D box is involved in the regulation of NTE family proteins by the proteasome but not in their subcellular localisation. In addition, these results suggest that the NTE overexpression-mediated inhibition of cell growth is related to active protein levels but not to its ER disruption effect.  相似文献   

11.
Phenyl di-n-pentylphosphinate is a reasonably stable easily synthesized inhibitor of neuropathy target esterase (NTE) with low anticholinesterase activity. Like phenylmethylsulphonyl fluoride it protects hens against neuropathic effects of compounds such as diisopropylphosphorofluoridate. At intervals up to 15 days after dosing hens (10 mg/kg s.c. to inhibit 90% NTE) assays were made of catalytically active and of phosphinylated NTE in autopsy tissue. The sum of these components was always within the range of catalytic activity in undosed controls. However, the half-life of reappearance of active NTE was 2.07 days +/- 0.13 (SD, n = 6) for brain and 3.62 days +/- 0.23 (SD, n = 6) for spinal cord--shorter than after dosing with phenylmethylsulphonyl fluoride. It is proposed that: (1) The physiological turnover mechanism cannot distinguish between catalytically active and di-n-pentylphosphinylated NTE although initiation of organophosphate-induced delayed polyneuropathy might involve recognition of aged di-alkyl-phosphorylated NTE as "foreign". (2) The short half-lives indicate a slow spontaneous dephosphinylation of inhibited NTE occurs in vivo as well as de novo synthesis. The difference in half-lives for brain and spinal cord NTE may be due to different rates of synthesis de novo or (more likely) to different rates of spontaneous reactivation of the inhibited NTE in the two tissues.  相似文献   

12.
Neuropathy target esterase (NTE) is involved in several disorders in adult organisms and embryos. A relationship between NTE and nervous system integrity and maintenance in adult systems has been suggested. NTE-related motor neuron disease is associated with the expression of a mutant form of NTE and the inhibition and further modification of NTE by organophosphorus compounds is the trigger of a delayed neurodegenerative neuropathy. Homozygotic NTE knockout mice embryos are not viable, while heterozygotic NTE knockout mice embryos yields mice with neurological disorders, which suggest that this protein plays a critical role in embryonic development. The present study used D3 mouse embryonic stem cells with the aim of gaining mechanistic insights on the role of Pnpla6 (NTE gene encoding) in the developmental process. D3 cells were silenced by lipofectamine transfection with a specific interference RNA for Pnpla6. Silencing Pnpla6 in D3 monolayer cultures reduced NTE enzymatic activity to 50% 20 h post-treatment, while the maximum loss of Pnpla6 expression reached 80% 48 h postsilencing. Pnpla6 was silenced in embryoid bodies and 545 genes were differentially expressed regarding the control 96 h after silencing, which revealed alterations in multiple genetic pathways, such as cell motion and cell migration, vesicle regulation, and cell adhesion. These findings also allow considering that these altered pathways would impair the formation of respiratory, neural, and vascular tubes causing the deficiencies observed in the in vivo development of nervous and vascular systems. Our findings, therefore, support the previous observations made in vivo concerning lack of viability of mice embryos not expressing NTE and help to understand the biology of several neurological and developmental disorders in which NTE is involved.  相似文献   

13.
Inflammatory demyelinating neuropathies can be classified according to the topography of the nervous lesion. Acute and chronic polyradiculoneuritis are characterized by diffuse and multifocal, but predominantly proximal lesions, multifocal motor and sensory-motor neuropathies with persistent conduction blocks are restricted to some nerve trunks, while neuropathies due to monoclonal IgM with anti-MAG (Myelin Associated Glycoprotein) activity show distal and symmetric distribution. The clinical characteristics of inflammatory demyelinating neuropathies vary according to the type of neuropathy. Their course can be remittent or progressive but is especially marked by the risk of definitive axonal lesions, source of permanent neurological deficits. These neuropathies correspond to various mechanisms, which can be differentiated according to the antigenic target, the type of immunological disorder (with respect to cellular or humoral predominance), and the adapted therapeutic strategy. The inflammatory process is accompanied by energetic failure, leading to Na+/K+ pump impairment and intra-axonal Na+ accumulation. This failure results in Na+/Ca2+ exchanger activation, provoking neuronal Ca2+ influx, enzymatic proteolysis and axonal degeneration.  相似文献   

14.
Parathion hydrolase purified from Pseudomonas sp. was injected i.v. into mice to demonstrate the feasibility of using organophosphorus acid anhydride (OPA) hydrolases as pretreatment against organophosphates (OP) poisoning. Results show that exogenous administration of as low as 7 to 26 micrograms of parathion hydrolase conferred protection against challenge with multiple median lethal doses (LD50) of diethyl p-nitrophenyl phosphate (paraoxon; 3.8-7.3 x LD50) and diethylfluorophosphate (DEFP; 2.9 x LD50) without administration of supportive drugs. The extent of protection observed was consistent with blood-parathion hydrolase levels and the kinetic constants of the enzymatic hydrolysis of paraoxon and DEFP by parathion hydrolase. OPA hydrolases not only appear to be potential prophylactic drugs capable of increasing survival ratio following OP intoxication but also to alleviate post-exposure symptoms.  相似文献   

15.
Neuropathy target esterase (NTE) is a novel phospholipase B and plays a role in phospholipid homeostasis. Although over-expression of NTE inhibits cell division, the role of NTE in cell proliferation is still unknown. In the current study, we firstly used synchronous HeLa cells to study the expression profile of NTE during the cell cycle. NTE protein and activity are regulated during the cell cycle with highest level at G1 and lowest at G2/M phase. However, NTE mRNA levels are constant during the cell cycle. The role of NTE in cell proliferation was investigated by short hairpin RNA (shRNA) to suppress the expression of NTE. Knockdown of NTE significant down-regulated of NTE expression and reduced the glycerophosphocholine level. However, suppression of NTE did not affect phosphatidylcholine content or cell cycle progression. In addition, NTE was demonstrated to be degraded by the ubiquitin-proteasome pathway. These results suggested for the first time that NTE is a cell cycle-dependent protein, but is not essential for cell proliferation, and the ubiquitin-mediated proteolysis may be involved in the regulation of NTE during the cell cycle.  相似文献   

16.
We have recently found that there is a proximo-distal delay in the recovery of neurotoxic esterase (NTE) following inhibition along the sciatic nerve of the hen. To determine whether this delay could be due to a requirement for the transport of newly synthesized NTE from the cell body, we investigated the transport of NTE by measuring the rate of accumulation of activity at either one or two ligations. Although rapid turnaround of accumulated protein confounds calculation of the transport rate, it appeared that NTE is transported down the hen sciatic nerve at a rate close to 300 mm/day. Acetylcholinesterase (AChE) was found to be transported at a rate of about 500 mm/day, which is close to the expected rate of fast axoplasmic transport in the chicken. The relatively rapid turnaround of NTE compared with the retrograde transport rate precluded the estimation of a retrograde transport rate. A model is presented that accounts for turnaround as a result of exchange between mobile and stationary transport pools. Exchange of NTE between pools may account for the rapid turnaround of NTE described in this paper and for the proximo-distal delay in recovery as a dilution of newly synthesized NTE in the anterograde fast transport pool by inhibited protein as it travels down the nerve.  相似文献   

17.
Phosphotriesterases catalyze the hydrolytic detoxification of phosphotriester pesticides and chemical warfare nerve agents with various efficiencies. The directed evolution of phosphotriesterases to enhance the breakdown of poor substrates is desirable for the purposes of bioremediation. A limiting factor in the identification of phosphotriesterase mutants with increased activity is the ability to effectively screen large mutant libraries. To this end, we have investigated the possibility of coupling phosphotriesterase activity to cell growth by using methyl paraoxon as the sole phosphorus source. The catabolism of paraoxon to phosphate would occur via the stepwise enzymatic hydrolysis of paraoxon to dimethyl phosphate, methyl phosphate, and then phosphate. The Escherichia coli strain DH10B expressing the phosphotriesterase from Agrobacterium radiobacter P230 (OpdA) is unable to grow when paraoxon is used as the sole phosphorus source. Enterobacter aerogenes is an organism capable of growing when dimethyl phosphate is the sole phosphorus source. The enzyme responsible for hydrolyzing dimethyl phosphate has been previously characterized as a nonspecific phosphohydrolase. We isolated and characterized the genes encoding the phosphohydrolase operon. The operon was identified from a shotgun clone that enabled E. coli to grow when dimethyl phosphate is the sole phosphorus source. E. coli coexpressing the phosphohydrolase and OpdA grew when paraoxon was the sole phosphorus source. By constructing a short degradative pathway, we have enabled E. coli to use phosphotriesters as a sole source of phosphorus.  相似文献   

18.
AimsNeuropathy target esterase (NTE) was proposed as the initial target during the process of organophosphate-induced delayed neuropathy (OPIDN) in humans and some sensitive animals. NTE was recently identified as a novel phospholipase B that is anchored to the cytoplasmic side of the endoplasmic reticulum. However, little is known about the degradation of NTE. In this study, we have investigated the role of the macroautophagic-lysosomal pathway in NTE degradation in neuronal and non-neuronal cells.Main methodsMacroautophagy inhibitors and activators were used to interrupt the lysosomal pathway, and NTE protein level was followed using western blotting analysis. A fluorescent microscopy assay was used to determine the co-localization of NTE and lysosomes.Key findingsWestern blotting analysis showed that the macroautophagy inhibitors 3-methyladenine and ammonium chloride increased the levels of a heterologously expressed NTE-GFP fusion protein as well as endogenous NTE. Starvation had the opposite effect. The role of macroautophagy in NTE degradation was further supported by the co-localization of exogenous NTE with lysosomes in starved COS7 cells. Furthermore, the contribution of NTE activity and protein domains to the degradation of NTE by macroautophagy was investigated, showing that both the transmembrane and regulatory domains played a role in the degradation of NTE and that the catalytic domain, and thus NTE activity, was not involved.SignificanceOur findings clearly demonstrate, for the first time, that the macroautophagy/lysosome pathway plays a role in controlling NTE quantity, providing a further understanding of the function of NTE.  相似文献   

19.
Paraoxon, the active metabolite of parathion, can be detoxified through a noncatalytic pathway by carboxylesterases and a catalytic pathway by calcium-dependent A-esterases, producing p-nitrophenol as a common metabolite. The detoxication patterns of carboxylesterases and A-esterases were investigated in vitro in the present study with a high tissue concentration (75 mg/mL rat liver homogenate or 50% rat serum solution) to more closely reflect enzyme concentrations in intact tissues. A final paraoxon concentration of 3.75 microM was used to incubate with liver homogenates or serum solutions for 5 seconds or 3, 5, 15, or 25 minutes; also 0.625, 1.25, 2.5, 3.125, 3.75, or 5.0 microM paraoxon (final concentration) was incubated with liver homogenates or serum solutions for 15 minutes. Phenyl saligenin cyclic phosphate and EDTA were used to inhibit carboxylesterases and A-esterases, respectively. Significant amounts of p-nitrophenol were generated with or without either inhibitor during a 15 minute incubation with paraoxon from low (0.625 microM) to high (5.0 microM) concentrations. The amount of p-nitrophenol generated via carboxylesterase phosphorylation was greater than via A-esterase-mediated hydrolysis in the initial period of incubation or when incubating with a low concentration of paraoxon. Plateau shape curves of p-nitrophenol concentration versus time or paraoxon concentration indicated that carboxylesterase phosphorylation was saturable. When incubated for long time intervals or with high concentrations of paraoxon, more p-nitrophenol was generated via A-esterase-mediated hydrolysis than from carboxylesterase phosphorylation. The ratio of paraoxon concentration to tissue amount used in in vitro assays of this study was equivalent to dosing a rat with toxicologically relevant dosages. These in vitro data suggest that both carboxylesterases and A-esterases detoxify paraoxon in vivo; carboxylesterases may be an important mode of paraoxon detoxication in initial exposures to paraoxon or parathion before they become saturated, whereas A-esterases may contribute to paraoxon detoxication in repeated exposures to paraoxon or parathion because they will not become inhibited and will remain catalytically active unlike the carboxylesterases. The importance of carboxylesterases in detoxication of paraoxon was verified by an in vivo study. In rats pretreated with tri-o-tolyl phosphate, an in vivo carboxylesterase inhibitor, brain acetylcholinesterase was significantly inhibited after intravenous exposure to parathion. No significant inhibition of brain acetylcholinesterase was observed in rats pretreated with corn oil.  相似文献   

20.
Phosphotriesterases catalyze the hydrolytic detoxification of phosphotriester pesticides and chemical warfare nerve agents with various efficiencies. The directed evolution of phosphotriesterases to enhance the breakdown of poor substrates is desirable for the purposes of bioremediation. A limiting factor in the identification of phosphotriesterase mutants with increased activity is the ability to effectively screen large mutant libraries. To this end, we have investigated the possibility of coupling phosphotriesterase activity to cell growth by using methyl paraoxon as the sole phosphorus source. The catabolism of paraoxon to phosphate would occur via the stepwise enzymatic hydrolysis of paraoxon to dimethyl phosphate, methyl phosphate, and then phosphate. The Escherichia coli strain DH10B expressing the phosphotriesterase from Agrobacterium radiobacter P230 (OpdA) is unable to grow when paraoxon is used as the sole phosphorus source. Enterobacter aerogenes is an organism capable of growing when dimethyl phosphate is the sole phosphorus source. The enzyme responsible for hydrolyzing dimethyl phosphate has been previously characterized as a nonspecific phosphohydrolase. We isolated and characterized the genes encoding the phosphohydrolase operon. The operon was identified from a shotgun clone that enabled E. coli to grow when dimethyl phosphate is the sole phosphorus source. E. coli coexpressing the phosphohydrolase and OpdA grew when paraoxon was the sole phosphorus source. By constructing a short degradative pathway, we have enabled E. coli to use phosphotriesters as a sole source of phosphorus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号