首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alkyl-dihydroxyacetonephosphate synthase (alkyl-DHAP synthase) is a peroxisomal enzyme that plays a key role in ether phospholipid biosynthesis. To determine the turnover of alkyl-DHAP synthase in several peroxisomal disorders, pulse-chase experiments were performed. In control fibroblasts, mature alkyl-DHAP synthase displayed a half-life of 23 +/- 12 h. In Zellweger syndrome and rhizomelic chondrodysplasia punctata fibroblast cell lines, in which alkyl-DHAP synthase cannot be imported into peroxisomes, the enzyme was mainly detected in its precursor form. This precursor form showed a much shorter half-life, 5 +/- 2 h. In contrast, when the precursor protein accumulated inside the peroxisome of a particular neonatal adrenoleukodystrophy cell line in which processing does not take place, a half-life of 18 +/- 8 h, resembling that of the mature protein in controls, was observed. In a cell line from a patient with a single deficiency in the activity of alkyl-DHAP synthase, the mature form was detected and its radioactivity decreased with a half-life of 16 +/- 7 h. Collectively, these results provide an explanation for the instability of alkyl-DHAP synthase outside its target organelle. Additionally, they indicate that both the precursor and mature form of alkyl-DHAP synthase exhibit considerable intraperoxisomal turnover.  相似文献   

2.
The biosynthesis and intracellular localization of nonspecific lipid transfer protein (nsLTP) in control human subjects and in patients with peroxisome-deficient disorders were investigated. The molecular mass of human nsLTP was indistinguishable from that of rat nsLTP (13 kDa) by immunoblot analysis. Intracellular localization was identical with that of catalase, a marker enzyme of peroxisomal matrix, by a double immunofluorescence study. The nsLTP was deficient in liver tissues or fibroblasts from patients with peroxisome-deficient disorders such as Zellweger syndrome and neonatal adrenoleukodystrophy (ALD). Pulse-chase experiments showed that nsLTP was synthesized as a large precursor in both the control and Zellweger fibroblasts. However, the processing to the 13 kDa mature protein was disturbed and the degradation was rapid in Zellweger fibroblasts. After somatic cell fusion using Zellweger fibroblasts from different genetic groups, the processing was normalized. These results suggest that the biosynthesis and localization of human nsLTP are similar to those of rat nsLTP and that the defect of nsLTP in peroxisome-deficient disorders is a phenomenon secondary to an abnormal transport mechanism of peroxisomal proteins. The defect of nsLTP may play an important role in metabolic disturbances in bile acid synthesis and steroidogenesis in peroxisome-deficient disorders.  相似文献   

3.
We have previously reported the isolation of Chinese hamster ovary (CHO) cell mutants that are defective in the biosynthesis of plasmalogens, deficient in at least two peroxisomal enzymes (dihydroxyacetonephosphate (DHAP) acyltransferase and alkyl-DHAP synthase), and in which catalase is not found within peroxisomes (Zoeller, R. A., and Raetz, C. R. H. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 5170). We now provide further evidence that three such strains are more generally defective in peroxisome biogenesis. Electron microscopic cytochemistry revealed that the mutants did not contain recognizable peroxisomes. However, immunofluorescence microscopy using an antibody directed against peroxisomal integral membrane proteins revealed the presence of peroxisomal membrane ghosts resembling those seen in cells of patients suffering from one of the human peroxisomal disorders, Zellweger syndrome. Immunoblot analyses, using antibodies specific for peroxisomal matrix proteins, demonstrated deficiencies of peroxisomal proteins in the mutant CHO cells that were similar to those in Zellweger syndrome. Fusion of a CHO mutant with fibroblasts obtained from Zellweger patients resulted in restoration of peroxisomal dihydroxyacetonephosphate acyltransferase and peroxisomal acyl-coenzyme A oxidation activities. The hybrid cells also regained the ability to synthesize plasmenylethanolamine. Moreover, normal peroxisomes were seen by immunofluorescence in the hybrid cells. These results indicate that the hybrid cells have recovered the ability to assemble peroxisomes and that, although the mutant CHO cells are biochemically and morphologically very similar to cells from patients with Zellweger syndrome, the genetic lesions are distinct. Our somatic cell mutants should be useful in identifying factors and genes involved in peroxisome biogenesis and may aid the genetic categorization of the various peroxisomal disorders.  相似文献   

4.
Insulin-degrading enzyme (IDE) was detected by immunoblot analysis in highly purified rat liver peroxisomes. IDE in the peroxisomal fraction was resistant to proteolysis by trypsin and chymotrypsin under conditions where the peroxisomal membranes remained intact. After sonication of the peroxisomal fraction, IDE was recovered in the supernatant fraction. Further, the localization of IDE in the peroxisomes was shown by immunoelectron microscopy. In addition, IDE isolated from peroxisomes degraded insulin as well as oxidized lysozyme as a model substrate for oxidized proteins. These results suggest that IDE exists in an active form in the matrix of rat liver peroxisomes and is involved in elimination of oxidized proteins in peroxisomes.  相似文献   

5.
Exposure to nicotine during smoking causes a multitude of metabolic changes that are poorly understood. We quantified and analyzed 198 metabolites in 283 serum samples from the human cohort KORA (Cooperative Health Research in the Region of Augsburg). Multivariate analysis of metabolic profiles revealed that the group of smokers could be clearly differentiated from the groups of former smokers and non-smokers. Moreover, 23 lipid metabolites were identified as nicotine-dependent biomarkers. The levels of these biomarkers are all up-regulated in smokers compared to those in former and non-smokers, except for three acyl-alkyl-phosphatidylcholines (e.g. plasmalogens). Consistently significant results were further found for the ratios of plasmalogens to diacyl-phosphatidylcolines, which are reduced in smokers and regulated by the enzyme alkylglycerone phosphate synthase (alkyl-DHAP) in both ether lipid and glycerophospholipid pathways. Notably, our metabolite profiles are consistent with the strong down-regulation of the gene for alkyl-DHAP (AGPS) in smokers that has been found in a study analyzing gene expression in human lung tissues. Our data suggest that smoking is associated with plasmalogen-deficiency disorders, caused by reduced or lack of activity of the peroxisomal enzyme alkyl-DHAP. Our findings provide new insight into the pathophysiology of smoking addiction. Activation of the enzyme alkyl-DHAP by small molecules may provide novel routes for therapy.  相似文献   

6.
We investigated the localization of urate oxidase, peroxisomal fatty acyl-CoA oxidase, and catalase in bovine kidney by immunoblot analysis and protein A-gold immunocytochemistry, using the respective polyclonal monospecific antibodies raised against the enzymes purified from rat liver. By immunoblot analysis, these three proteins were detected in bovine kidney and bovine liver homogenates. Subcellular localization of these three enzymes in kidney was ascertained by protein A-gold immunocytochemical staining of Lowicryl K4M-embedded tissue. Peroxisomes in bovine kidney cortical epithelium possessed crystalloid cores or nucleoids, which were found to be the exclusive sites of urate oxidase localization. The limiting membrane, the marginal plate, and the matrix of renal peroxisomes were negative for urate oxidase staining. In contrast, catalase and fatty acyl-CoA oxidase were found in the peroxisome matrix. These results demonstrate that, unlike rat kidney peroxisomes which lack urate oxidase, peroxisomes of bovine kidney contain this enzyme as well as peroxisomal fatty acyl-CoA oxidase.  相似文献   

7.
Many cell surface proteins in mammalian cells are anchored to the plasma membrane via glycosylphosphatidylinositol (GPI). The predominant form of mammalian GPI contains 1-alkyl-2-acyl phosphatidylinositol (PI), which is generated by lipid remodeling from diacyl PI. The conversion of diacyl PI to 1-alkyl-2-acyl PI occurs in the ER at the third intermediate in the GPI biosynthetic pathway. This lipid remodeling requires the alkyl-phospholipid biosynthetic pathway in peroxisome. Indeed, cells defective in dihydroxyacetone phosphate acyltransferase (DHAP-AT) or alkyl-DHAP synthase express only the diacyl form of GPI-anchored proteins. A defect in the alkyl-phospholipid biosynthetic pathway causes a peroxisomal disorder, rhizomelic chondrodysplasia punctata (RCDP), and defective biogenesis of peroxisomes causes Zellweger syndrome, both of which are lethal genetic diseases with multiple clinical phenotypes such as psychomotor defects, mental retardation, and skeletal abnormalities. Here, we report that GPI lipid remodeling is defective in cells from patients with Zellweger syndrome having mutations in the peroxisomal biogenesis factors PEX5, PEX16, and PEX19 and in cells from patients with RCDP types 1, 2, and 3 caused by mutations in PEX7, DHAP-AT, and alkyl-DHAP synthase, respectively. Absence of the 1-alkyl-2-acyl form of GPI-anchored proteins might account for some of the complex phenotypes of these two major peroxisomal disorders.  相似文献   

8.
The cellular localization of phospholipase A2 (PLA2) was examined in normal and ras-transformed rat fibroblasts using immunohistochemical techniques. Polyclonal antibodies were generated against porcine pancreatic PLA2 and were affinity purified for use in this study. The antibodies detected a 16-kD band on immunoblots of total cellular proteins from fibroblasts. In cell-free assays of phospholipase A2 activity, the purified antibodies inhibited the bulk of the enzyme activity whereas control IgG preparations had no effect. Immunofluorescence microscopy indicated that PLA2 was diffusely distributed throughout the cell. Increased concentration of PLA2 was detected under membrane ruffles in normal and ras-transformed cells. Specific immunofluorescence staining was also detected on the outer surface of the normal cells. Immunoelectron microscopy demonstrated the increased accumulation of PLA2 in membrane ruffles and also revealed the presence of the enzyme in microvilli and its association with intracellular vesicles. Ultrastructural localization of PLA2 and the ras oncogene protein, using a double immunogold labeling technique, indicated a spatial proximity between PLA2 and ras proteins in the ruffles of ras-transformed cells. The possible role of PLA2 in the structural rearrangements that underlie membrane ruffling is discussed.  相似文献   

9.
Thiolase is part of the fatty acid oxidation machinery which in plants is located within glyoxysomes or peroxisomes. In cucumber cotyledons, proteolytic modification of thiolase takes place during the transfer of the cytosolic precursor into glyoxysomes prior to the intraorganellar assembly of the mature enzyme. This was shown by size comparison of the in vitro synthesized precursor and the 45 kDa subunit of the homodimeric glyoxysomal form. We isolated a full-length cDNA clone encoding the 48 539 Da precursor of thiolase. This plant protein displayed 40% and 47% identity with the precursor of fungal peroxisomal thiolase and human peroxisomal thiolase, respectively. Compared to bacterial thiolases, the precursor of the plant enzyme was distinguished by an N-terminal extension of 34 amino acid residues. This putative targeting sequence of cucumber thiolase shows similarities with the cleavable presequences of rat peroxisomal thiolase and plant peroxisomal malate dehydrogenase.  相似文献   

10.
Recent studies have indicated that two peroxisomal enzymes involved in ether lipid synthesis, i.e., dihydroxyacetonephosphate acyltransferase and alkyl-dihydroxyacetonephosphate synthase, are directed to peroxisomes by different targeting signals, i.e., peroxisomal targeting signal type 1 and type 2, respectively. In this study, we describe a new human fibroblast cell line in which alkyl-dihydroxyacetonephosphate synthase was found to be deficient both at the level of enzyme activity and enzyme protein. At the cDNA level, a 128 base pair deletion was found leading to a premature stop. Remarkably, dihydroxyacetonephosphate acyltransferase activity was strongly reduced to a level comparable to the activities measured in fibroblasts from patients affected by the classical form of rhizomelic chondrodysplasia punctata (caused by a defect in peroxisomal targeting signal type 2 import). Dihydroxyacetonephosphate acyltransferase activity was completely normal in another alkyl-dihydroxyacetonephosphate synthase activity-deficient patient. Fibroblasts from this patient showed normal levels of the synthase protein and inactivity results from a point mutation leading to an amino acid substitution.These results strongly suggest that the activity of dihydroxyacetonephosphate acyltransferase is dependent on the presence of alkyl-dihydroxyacetonephosphate synthase protein. This interpretation implies that the deficiency of dihydroxyacetonephosphate acyltransferase (targeted by a peroxisomal targeting signal type 1) in the classic form of rhizomelic chondrodysplasia punctata is a consequence of the absence of the alkyl-dihydroxyacetonephosphate synthase protein (targeted by a peroxisomal targeting signal type 2).  相似文献   

11.
We have detected and begun to characterize a 17-kD centromere-specific protein, CENP-A (Earnshaw, W. C., and N. Rothfield, 1985, Chromosoma., 91:313-321). Sera from several humans with CREST scleroderma autoimmune disease (CREST: calcinosis, Raynaud's phenomenon, esophageal dsymotility, sclerodactyly, and telangiectasia) bind this protein in immunoblot assays of HeLa whole cell or nuclear extracts. We have affinity purified the anti-17-kD centromere protein (anti-CENP-A) specific antibodies from immunoblots of HeLa nuclear protein. The antibodies react with epitopes present on CENP-A derived from humans but apparently do not recognize specific epitopes in either rat or chicken nuclei. Only human nuclear protein is CENP-A positive by immunoblot. Furthermore, human cells show localization of anti-CENP-A antibody to centromeres by immunofluorescence microscopy, whereas rat cells do not. On extraction from the nucleus, CENP-A copurifies with core histones and with nucleosome core particles. We conclude that this centromere-specific protein is a histone-like component of chromatin. The data suggest that CENP-A functions as a centromere-specific core histone.  相似文献   

12.
Alkyl-dihydroxyacetonephosphate synthase, a peroxisomal enzyme involved in the biosynthesis of ether phospholipids, is synthesized with a cleavable N-terminal presequence containing the peroxisomal targeting signal type 2. The human alkyl-dihydroxyacetonephosphate synthase precursor produced in vitro or expressed in Escherichia coli could be processed to a lower molecular weight protein by incubation at 37 degrees C with a guinea pig liver fraction, enriched in mitochondria, lysosomes, and peroxisomes. This lower molecular weight protein was identified as the mature human alkyl-dihydroxyacetonephosphate synthase by radiosequencing, indicating that the processing protease is present in this organellar fraction. Characterization of the processing protease indicated that it is a cysteine protease with a pH optimum of 6.5. Furthermore, it was demonstrated that exogenously added pre-alkyl-dihydroxyacetonephosphate synthase was imported and processed in purified peroxisomes in vitro. Processing of alkyl-dihydroxyacetonephosphate synthase did not increase the activity of the enzyme. This indicates that the presence of the presequence does not affect the activity of the enzyme.  相似文献   

13.
14.
The import into peroxisomes and maturation of peroxisomal 3-oxoacyl-CoA thiolase are impaired in patients with the Rhizomelic form of Chondrodysplasia Punctata (RCDP). Here we show by means of immunoblotting and subcellular fractionation that non-specific lipid transfer protein (nsLTP), another peroxisomal protein synthesised as a larger precursor, is localised in peroxisomes and is present as the mature protein in RCDP fibroblasts. Thus the component of the import machinery defective in RCDP is not required for the import of nsLTP into peroxisomes.  相似文献   

15.
The activity of a lysosomal enzyme, alpha-D-mannosidase (EC 3.2.1.24), increased markedly in normal lymphocytes when they were cultured together with fibroblasts from a patient with an inherited deficiency of this enzyme. Cell-to-cell contact was obligatory for this increase in activity, which also required new protein synthesis. The enzyme induced in the co-cultured lymphocytes was a high molecular weight form of alpha-D-mannosidase that was not detected in lymphocytes cultured alone, which had only the low molecular weight mature enzyme. It was this precursor form alone that was directly transferred to the mannosidosis fibroblasts, where it was present initially in organelles of low density. When the culture period was extended the lymphocyte precursor enzyme was transported to the heavy lysosomes in the recipient cells, and correctly processed to the functionally effective mature enzyme.  相似文献   

16.
Mouse very long-chain acyl-CoA synthetase in X-linked adrenoleukodystrophy   总被引:5,自引:0,他引:5  
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder characterized by accumulation of very long-chain fatty acids (VLCFA). This accumulation has been attributed to decreased VLCFA beta-oxidation and peroxisomal very long-chain acyl-CoA synthetase (VLCS) activity. The X-ALD gene, ABCD1, encodes a peroxisomal membrane ATP binding cassette transporter, ALDP, that is hypothesized to affect VLCS activity in peroxisomes by direct interaction with the VLCS enzyme. Recently, a VLCS gene that encodes a protein with significant sequence identity to known rat and human peroxisomal VLCS protein has been identified in mice. We find that the mouse VLCS gene (Vlcs) encodes an enzyme (Vlcs) with VLCS activity that localizes to peroxisomes and is expressed in X-ALD target tissues. We show that the expression of Vlcs in the peroxisomes of X-ALD mouse fibroblasts improves VLCFA beta-oxidation in these cells, implying a role for this enzyme in the biochemical abnormality of X-ALD. X-ALD mice, which accumulate VLCFA in tissues, show no change in the expression of Vlcs, the subcellular localization of Vlcs, or general peroxisomal VLCS activity. These observations imply that ALDP is not necessary for the proper expression or localization of Vlcs protein, and the control of VLCFA levels does not depend on the direct interaction of Vlcs and ALDP.  相似文献   

17.
Analysis of a cDNA clone derived from retrovirus-transformed rat fibroblasts has recently suggested that the mature 50-amino-acid form of transforming growth factor alpha (TGF alpha) is derived from a 159-amino-acid transmembrane precursor by proteolytic cleavage. To understand the processing of the TGF alpha precursor molecule in more detail, we have expressed this protein in baby hamster kidney (BHK) fibroblasts under control of the metal-ion-inducible metallothionein promoter and characterized the expressed precursor with site-specific antipeptide antibodies. One of the BHK transfectants, termed 5:2, expressed the TGF alpha mRNA in a cadmium- and zinc-inducible manner. The TGF alpha precursor protein was detected by immunoprecipitation analysis of radiolabeled cell cultures. In the induced 5:2 cells, a polypeptide of Mr 13,000 to 17,000 was readily identified by peptide antisera made to three different regions of the TGF alpha precursor protein. No such protein species were observed in BHK cells treated with cadmium and zinc or in uninduced 5:2 cells. However, two cell lines known to produce TGF alpha naturally, Leydig testicular tumor cells and Snyder-Theilan feline sarcoma virus-transformed Fisher rat embryo fibroblasts, possessed detectable levels of immunologically related Mr 13,000 to 17,000 proteins. Cell fractionation studies indicate that the Mr 13,000 to 17,000 species expressed in induced 5:2 cells is membrane associated, consistent with predictions based on the cDNA sequence of the TGF alpha precursor. Media conditioned by induced 5:2 cells contained epidermal growth factor receptor-competing activity, which, upon size fractionation, was similar in size to the mature processed form of TGF alpha. These data show that these nontransformed BHK cells possess the ability to process the TGF alpha precursor molecule into its native form.  相似文献   

18.
The initial steps of ether phospholipid biosynthesis take place in peroxisomes. Alkyl-dihydroxyacetonephosphate synthase, the peroxisomal enzyme that actually introduces the ether linkage, has been purified from guinea pig liver in this laboratory. With the amino acid sequences obtained from this protein, the authors were able to clone the cDNAs encoding this enzyme from both guinea pig and human liver. In both cases, the enzyme appears to be synthesized as a precursor protein with a N-terminal cleavable presequence containing a peroxisomal targeting signal (PTS) type 2. Levels of the enzyme protein were found to be strongly reduced in human fibroblasts derived from Zellweger syndrome and rhizomelic chondrodysplasia punctata patients. The molecular basis of an isolated alkyl-dihydroxyacetonephosphate synthase deficiency was resolved. A clone encoding a Caenorhabditis elegans homolog of the mammalian enzymes was characterized. In contrast to the mammalian enzymes, this C. elegans enzyme lacks a N-terminal PTS type 2 motif, but carries a C-terminal PTS type 1.  相似文献   

19.
We describe four infants with a novel subtype of an isolated deficiency of one of the peroxisomal β-oxidation enzymes with detectable enzyme protein. The patients showed characteristic clinical and biochemical abnormalities, including hypotonia, psychomotor retardation, hepatomegaly, typical facial appearance, accumulation of very-long-chain fatty acids, and decreased lignoceric acid oxidation. However, β-oxidation enzyme proteins were detected by immunoblot analyses, and large peroxisomes were identified by immunofluorescence staining. In order to identify the underlying defect in these patients, complementation analysis was introduced using fibroblasts from these patients and patients with an established deficiency of either acyl-CoA oxidase or bifunctional enzyme, as identified by immunoblotting. In the complementing combinations, fused cells showed increased lignoceric acid oxidation, resistance against 1-pyrene dodecanoic acid/UV selection, and normalization of the size and the distribution of peroxisomes. The results indicate that two patients with a more severe clinical course were suffering from bifunctional enzyme deficiency and that the other two infants, who were siblings and had a less severe clinical presentation, were the first patients with acyl-CoA oxidase deficiency with detectable enzyme protein.  相似文献   

20.
Peroxisomal enzyme activities in the guinea-pig harderian gland, which has a unique lipid composition, were studied. Activities of catalase, acyl-CoA oxidase and the cyanide-insensitive acyl-CoA beta-oxidation system in this tissue were comparable with those in rat liver. The activities of dihydroxyacetone phosphate acyltransferase (DHAPAT, EC 2.3.1.42) and alkyl-DHAP synthase (EC 2.5.1.26) were appreciable, and the distributions of both activities were consistent with that of sedimentable catalase activity. Glycerol-3-phosphate acyltransferase (GPAT, EC 2.3.1.15), which is localized in both microsomes (microsomal fractions) and mitochondria in the rat liver, was a peroxisomal enzyme in the harderian gland, though the activity was only about one-tenth of the DHAPAT activity. These enzymes had different pH profiles and substrate specificity. The existence of high activities of enzymes of the acyl-DHAP pathway in peroxisomes suggests the physiological significance of peroxisomes in the biosynthesis of glycerol ether phospholipid and 1-alkyl-2,3-diacylglycerol in the guinea-pig harderian gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号