共查询到20条相似文献,搜索用时 0 毫秒
1.
H. B. Nersisyan 《Plasma Physics Reports》2001,27(10):852-859
A study is made of the excitation of wake waves by a one-dimensional electron bunch in an electron plasma in the presence of an intense monochromatic pump wave with circular polarization. In the main state (in the absence of a bunch), the interaction between a pump wave and a plasma is described by Maxwell's equations and the nonlinear relativistic hydrodynamic equations for a cold plasma. The excitation of linear waves by a one-dimensional bunch is investigated against a cold plasma background. It is shown that, in a certain range of parameter values of the bunch, pump wave, and plasma, the excitation is resonant in character and the amplitude of the excited wake waves increases with distance from the bunch. 相似文献
2.
A study is made of the main regimes of interaction of relativistically strong electromagnetic waves with plasma under conditions in which the radiation from particles plays a dominant role. The discussion is focused on such issues as the generation of short electromagnetic pulses in the interaction of laser light with clusters and highly efficient ion acceleration in a thin plasma slab under the action of the ponderomotive pressure of the wave. An approach is developed for generating superintense electromagnetic pulses by means of up-to-date laser devices. 相似文献
3.
The spatial structure of a wake wave excited in a low-density plasma by a laser pulse with a small focal spot radius is studied
both analytically and numerically. Numerical study shows that, in a small-amplitude laser field, a wake wave breaks after
the formation of an off-axis density maximum, which grows in height away from the pulse to become infinitely high after several
periods. Analytical and numerical calculations show that the singularity in the density arises from the intersection of the
trajectories of neighboring particles. Numerical simulations demonstrate that, as the laser field amplitude increases, the
breaking point of the wake wave rapidly approaches the pulse trailing edge. For weakly nonlinear conditions, an analytic dependence
of the coordinate of the breaking point on the amplitude and transverse size of the laser pulse is obtained. 相似文献
4.
Specific features of Bragg backscattering under conditions of strong polarization degeneracy near the cutoff surface in an anisotropic medium are studied analytically and numerically. It is shown that the linear interaction of normal waves can substantially affect wave scattering by suppressing the amplification of Bragg backscattering near the cutoff region in the case of weak coupling between normal waves. 相似文献
5.
It is shown that a short laser pulse propagating in a plasma with electron density fluctuations can emit electromagnetic waves with frequencies much lower than the laser carrier frequency. Emissions with frequencies close to the plasma frequency and the doubled plasma frequency in a nonisothermal plasma, as well as emission generated in a turbulent plasma, are examined. The effects in question are related to the transformation of the laser pulse wakefield into electromagnetic radiation by electron density fluctuations. The phenomenon under study opens new possibilities for diagnostics of both plasma fields excited by laser pulses and electron density fluctuations in a plasma. 相似文献
6.
M B Golant 《Biofizika》1986,31(1):139-147
A short systematized analysis of Soviet and foreign published materials is presented dealing with biological and physical factors responsible for the effects of monochromatic electromagnetic radiations of low power on the living activity. 相似文献
7.
The linear propagation of the dust-acoustic (DA) waves in a nonuniform adiabatic dusty plasma, which consists of inertialess adiabatic electrons, inertialess adiabatic ions, and inertial negatively charged dust by taking into account the effects of polarization force, is theoretically investigated. It is found that the linear dispersion properties of the DA waves are significantly modified by the dust density nonuniformity, adiabaticity of electrons and ions, and the effects of the polarization force. It is shown that the phase speed of the DA waves is increased with the increase of adiabaticity of electrons and ions but decreased with the increase of the effects of polarization force. It is also shown that the dust density is enhanced with the increase of adiabatic index but depleted with the increase of polarization force. The scenarios relevant to dust-ion plasma in space environments are briefly addressed. 相似文献
8.
Results are presented from full-scale numerical simulations of the excitation of wake waves by a sequence of weakly relativistic laser pulses in a subcritical plasma. Computations were carried out with a 2D3V version of the SUR-CA code that is based on the local-recursive nonlocal-asynchronous algorithm of the particle-in-cell method. The parameters of a train of laser pulses were chosen to correspond to the resonant excitation of the wake field. The curvature of the envelope of the pulses was chosen to depend on the number of the pulse in the train. Numerical simulations showed that there are plane waves during the first period of the plasma wave behind the pulse train. 相似文献
9.
The properties of a nonlinear plasma wake wave excited by an axially symmetric relativistic electron bunch are studied. It is shown that the nonlinear dependence of the wake wavelength on the transverse coordinate leads to distortion of the phase front of the wake wave and to steepening and oscillations of the transverse profile of the wakefield. The magnetic field of the wake wave is nonzero and oscillates at a frequency higher than the plasma electron frequency. Because of nonlinearity, the amplitude of the excited wake wave changes with distance from the bunch. The increase in nonlinearity leads to the development of turbulence and chaotization of the wakefield and results in the switching-on of the thermal effects and plasma heating. 相似文献
10.
The linear stage of electron cyclotron instability of quasi-TE modes in a waveguide filled with a magnetoactive plasma is studied using a kinetic approach. The dispersion relation of the instability is derived analytically. It is shown that the presence of the plasma can reduce both the linear instability growth rate and the instability region; in this case, the maximum of the growth rate is displaced toward lower frequencies. The results obtained are compared with the available experimental observations. They can be useful for optimizing the operating regimes of high-power continuous-wave gyrotrons. 相似文献
11.
Recent publications devoted to the electrodynamics of media in which waves with a negative group velocity can exist are discussed. The properties of such waves have been studied from the beginning of the past century, and the most important results in this field were obtained by Soviet physicists in the 1940s–1950s. However, in most recent publications, this circumstance has not been taken into account. 相似文献
12.
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively. 相似文献
13.
By numerically calculating the second-order nonlinear time-dependent equation for the wave phase on a particle trajectory, the effect of the longitudinal (with respect to the external magnetic field) momentum of electrons on the dynamics of their surfatron acceleration by an electromagnetic wave propagating across the external magnetic field in space plasma is analyzed. It is shown that, for strongly relativistic initial values of the longitudinal component of the electron momentum (the other parameters of the problem being fixed), the electrons are trapped into the ultrarelativistic regime of surfatron acceleration within a definite interval of the initial wave phase Ψ(0) on the particle trajectory. It was assumed in the calculations that Ψ(0) ≤ π. For the initial wave phases lying within the interval of 0 < Ψ(0) ≤ π, the electrons are immediately trapped by the wave, whereas at π ≤ Ψ(0) ≤ 0, no electron trapping is observed even at long computation times. This result substantially simplifies estimates of the wave damping caused by particle acceleration. The dynamics of the velocity components, momentum, and relativistic factor of electrons in the course of their ultrarelativistic acceleration are considered. The obtained results present interest for the development of modern concepts of the mechanisms for the generation of ultrarelativistic particles in space plasma, correct interpretation of experimental data on the flows of such particles, explanation of possible reasons for the deviation of the fast particle spectra observed in the heliosphere from the standard power-law scaling, and analysis of the relation between such deviations and the space weather. 相似文献
14.
This paper builds on the past study of single-spike waves in one-dimensional integrate-and-fire networks to provide a framework for the study of waves with arbitrary (finite or countably infinite) collections of spike times. Based on this framework, we prove an existence theorem for single-spike traveling waves, and we combine analysis and numerics to study two-spike traveling waves, periodic traveling waves, and general infinite spike trains. For a fixed wave speed, finite-spike waves, periodic waves, and other infinite-spike waves may all occur, and we discuss the relationships among them. We also relate the waves considered analytically to waves generated in numerical simulations by the transient application of localized excitation.Key words or phrases:Traveling waves, Integrate-and-fire network, Excitatory synaptic coupling 相似文献
15.
A study is made of the effect of the radial plasma profile on the spectra and fields of the surface waves in a plasma waveguide. It is shown that the surface wave is localized in the region where the plasma permittivity vanishes. In waveguides with smoother radial plasma profiles, the region where the surface wave can exist is narrower and may even disappear. 相似文献
16.
The effect of the Debye layer on the absorption of an electromagnetic surface wave propagating along the plasma-dielectric interface is considered. The electric field distribution in the Debye layer and the energy absorbed by the plasma electrons in this layer are determined. It is shown that the ratio of the rate at which surface waves are damped due to Cherenkov absorption by the electrons reflected from the electric field potential in the transition layer to their frequency is on the order of the ratio of the electron thermal velocity to the wave phase velocity. 相似文献
17.
Plasma Physics Reports - A study is made of the propagation of a long-wavelength fast magnetosonic wave in a space plasma with a low particle density and high temperature... 相似文献
18.
S. V. Kuznetsov 《Plasma Physics Reports》2012,38(2):116-125
The process of trapping and acceleration of nonmonoenergetic electron bunches by a wake wave excited by a laser pulse in a plasma channel is investigated. The electrons are injected into the vicinity of the maximum of the wakefield potential with a velocity lower than the wave phase velocity. The study is aimed at utilizing specific features of a wakefield with substantially overlapped focusing and accelerating phases for achieving monoenergetic electron acceleration. Conditions are found under which electrons in a finite-length nonmonoenergetic bunch are accelerated to high energies, while the energy spread between them is minimal. The effect of energy grouping of electrons makes it possible to obtain compact high-energy electron bunches with a small energy spread during laser plasma acceleration. 相似文献
19.
The modulational instability in a plasma in a strong constant external magnetic field is considered. The plasmon condensate is modulated not by conventional low-frequency ion sound but by the beatings of two high-frequency transverse electromagnetic waves propagating along the magnetic field. The instability reduces the spatial scales of Langmuir turbulence along the external magnetic field and generates electromagnetic fields. It is shown that, for a pump wave with a sufficiently large amplitude, the effect described in the present paper can be a dominant nonlinear process. 相似文献
20.