首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between replication of simian virus 40 (SV40) DNA and the various periods of the host-cell cycle was investigated in synchronized CV(1) cells. Cells synchronized through a double excess thymidine procedure were infected with SV40 at the beginning or the middle of S, or in G(2). The first viral progeny DNA molecules were in all instances detected approximately 20 h after release from the thymidine block, independent of the time of infection. The length of the early, prereplicative phase of the virus growth cycle therefore depended upon the period of the cell cycle at which the cells were infected. Infection with SV40 was also performed on cells obtained in early G(1) through selective detachment of cells in metaphase. As long as the cells were in G(1) at the time of infection, the first viral progeny DNA molecules were detected during the S period immediately following, whereas if infection took place once the cells had entered S, no progeny DNA molecule could be detected until the S period of the next cell cycle. These results suggest that the infected cell has to pass through a critical stage situated in late G(1) or early S before SV40 DNA replication can eventually be initiated.  相似文献   

2.
Phenotypic expression of the murine intraspecies and interspecies antigenic determinants of the major type C viral structural 30,000-dalton polypeptide, p30, was measured by radioimmunoassay inhibition in cell lines from different species. Uninfected normal rat kidney (NRK) cells did not contain detectable levels of murine intraspecies and interspecies p30 antigen, whereas rat cells transformed by and producing murine sarcoma virus (MSV)-Moloney leukemia virus (M-MSV-MuLV) contained high levels of both murine intraspecies and interspecies p30 antigen. Significant amounts of murine intraspecies and interspecies p30 antigen were detected in wild-type MSV-transformed nonproducer NRK cells. The control of p30 antigen expression was examined in temperature-sensitive MSV-transformed nonproducer cells [NRK(MSV-1b)] which are cold sensitive for maintenance of the transformed phenotype. Both murine intraspecies and interspecies p30 antigens were detected in NRK(MSV-1b) cells when grown at the permissive (39 C) or nonpermissive (33 C) temperature, suggesting that p30 antigen expression is not correlated with maintenance of the transformed phenotype. The results demonstrate that previously undetectable p30 antigens are expressed in MSV-transformed nonproducer NRK cells, and suggest that the expression of p30 antigen may be a useful marker for viral gene expression in mammalian cells.  相似文献   

3.
The development of erythroleukemia in Balb/c mice injected with Rauscher leukemia virus has been followed by indirect immunofluorescence technique and flow cytometry, using antiserum against disrupted of virions. The progression of the disease was accompanied by a great increase in the number of large, immunofluorescence positive cells. A subpopulation of normal spleen cells was also highly positive. The expression of the antigens in normal cells was examined in relation to the cell cycle. The majority of the S-G2/M phase cells were found in the antigen positive compartment of larger cells. A two-color analysis of immunofluorescence and DNA content revealed that the distribution of antigen expression in G1 phase was broad, gradually decreasing from a low-intensity mode. The cell with double DNA content distributed evenly around a modus of five-fold higher intensity. In experiments with stimulated bone-marrow cells, superiority of S-phase cells in anti-Rauscher serum binding was found. Cell-surface gp70 antigen is suggested to be involved in this cell-cycle dependent binding of antibodies by normal cells.  相似文献   

4.
Host range studies of FLOPC-1 murine myeloma C particles.   总被引:2,自引:2,他引:0       下载免费PDF全文
The host range of the C particle produced by FLOPC-1 myeloma cells, FLOPC-1 murine myeloma-associated virus (FL-MuMAV), was assessed in terms of its ability to productively infect and/or induce new viral antigens in a variety of different cell lines. Production of C particle-like structures by cells exposed to FL-MuMAV) was determined by incorporation of [3H]uridine into particles with a density of 1.16 g/ml and/or measurement of RNA-dependent DNA polymerase activity in concentrated culture medium. to FL-MuMAV was capable of infecting NIH/3T3, normal rat kidney (NRK) cell, BALB/c 3T3, and the A31 clone of BALB/3T3 cells but not rabbit cell line, SIRC. Thus, it is an N, B-tropic murine virus as replication in NRK cells has been shown not to delineate a group of murine viruses with a separate host range (M. M. Lieber, C. J. Sherr, and G. J. Todero, 1974). Further neoantigens, reactive with anti-FL-MuMAV serum, were detected on infected cells. Production of the MuMAV-like particle and MuMAV-associated cell antigens in infected NIH/3T3 and NRK cells persisted for three subcultures. The limited production could not be explained by the lack of an RNA-dependent DNA polymerase or high-molecular-weight RNA as the particles possessed both of these properties. The particles produced by infected NIH/3T3 or NRK cells were antigenically and physicochemically similar to FL-MuMAV and not K-MuLV. The MuMAV-like particles produced by infected NIH/3T3 were capable of limited replication in NIH/3T3 and and BALB/3T3 cells, whereas NRK-MuMAV replicated for a limited period in NIH/3T3, NRK, and SIRC cells; i.e., they had a different host range than FL-MuMAV. The particles produced by infected BALB/3T3 and A31 cells had the same host range as FL-MuMAV. In certain situations, isotopically labeled particles with a density of 1.16 g/ml were produced which appeared to lack RNA-dependent DNA polymerase.  相似文献   

5.
Cloned 3T3FL cells were synchronized in G1 phase of the cell cycle by deprivation of multiplication stimulatory activity of serum and were then infected with Moloney leukemia virus. Eclipse period of virus could be made to vary from less than 10 to 34 h. All virus release was completely dependent and occurred immediately after the first mitosis following serum reconstitution. Virus yield was not affected by the time of virus inoculation as related to the cell DNA synthetic phase. Colchicine arrested the cells in mitosis and prevented the formation of infectious virus. Viral proteins p10, p30, and gp71 were assayed in cell lysates during the growth curve of virus in synchronized cells. The group-specific determinants of each protein were measured in a competition radioimmunoassay. None of the virus proteins appeared during the eclipse period of the virus. All three proteins appeared simultaneously, coincident with mitosis, and continued to rise during the G1 phase. The absolute quantities of each protein were proportional to the amount of Moloney leukemia virus produced. The relative amounts of some of the viral proteins in the cell did not correspond to their content in purified virions suggesting several possible mechanisms of control.  相似文献   

6.
The course of giardiavirus infection in the Giardia lamblia trophozoites   总被引:2,自引:0,他引:2  
The subcellular distribution of Giardia lamblia virus RNA in infected G. lamblia trophozoites was examined by in situ hybridization using biotinylated DNA probe and riboprobe. In G. lamblia Portland I strain, which is chronically infected by G. lamblia viruses, the viral RNA was detected in the cytoplasm as well as in the twin nuclei. When riboprobe was used to examine the course of virus infection in WB strain, accumulation of viral RNA was detected only in the cytoplasm prior to the first 72 hr of infection. Using DNA probe, further accumulation of viral RNA in increasing number of cells occurred after the 72nd hr of infection, with the RNA found in both the cytoplasm and nuclei. Eventually, the cell nuclei showed damaged morphology that deteriorated rapidly toward the final stage of infection. These observations indicate that early phase of viral RNA replication may take place in the cytoplasm of infected G. lamblia, but the nuclei are also involved during the late phase of viral replication.  相似文献   

7.
By indirect immunoelectron microscopy we tested for the presence of H-2 antigens on murine mammary tumor virus (MMTV) and murine leukemia virus (MuLV) particles. The association of H-2 antigens and viral antigens on the virus-infected cell surface was investigated with antibody-induced redistribution. Mammary tumor cells and leukemia cell lines with different H-2 genotypes and carrying different MuMTV or MuLV were used. No H-2 antigens could be demonstrated on the envelope of MMTV and MuLV particles, even after the permeabilization of their envelopes with saponin. On the surface of virus-infected cells antibody-induced patching or capping of the viral antigens did not result in copatching or cocapping of the H-2 antigens. In the reciprocal tests no co-redistribution of viral antigens with H-2 antigens was seen. Our experiments failed to show any physical association between H-2 antigens and MMTV or MuLV antigens on the cell surface.Abbreviations used in this paper MMTV mammary tumor virus - MuLV murine leukemia virus - MHC major histocompatibility complex - IEM immunelectron microscopy  相似文献   

8.
Cytoplasmic viral DNA synthesis can be followed efficiently by [3H]thymidine labeling of cells exogenously infected with Moloney murine leukemia virus. Both the negative and the positive strands of viral DNA reached their maximal level in the cytoplasm at 3.5 h postinfection. Interferon treatment before infection markedly reduced the amount of viral DNA formed during the first 3.5 h, but led to a second major wave of viral DNA synthesis, peaking at 7.5 h postinfection. No such late cytoplasmic DNA synthesis occurred in the untreated control. Inhibition of protein synthesis by cycloheximide, on the other hand, stimulated cytoplasmic viral DNA synthesis during the first 3.5 h.  相似文献   

9.
Ecotropic murine leukemia viruses, both N-tropic FN-2 (purified helper component of Friend leukemia virus) and B-tropic WNB-2 (purified WN1802B BALB/c-derived endogenous virus), were partially restricted in rat NRK cells. In NRK cells, they produced obscure small plaques at reduced efficiencies relative to their plaque-producing efficiencies in mouse SC-1 cells (10-fold for FN-2 and 100-fold for WNB-2). After three or four passages in NRK cells, the plaquing efficiencies of the viruses in NRK cells increased to levels close to their efficiencies in mouse cells, and the plaques in NRK cells became larger and clearer. The adaptation was more complete with FN-2 than with WNB-2. The adaptation was not due to simple selection of a virus in the FN-2 stock, but was host induced, as the viruses had been submitted to successive limiting dilutions in SC-1 cells before propagation in NRK cells. Possible commitment of xenotropic virus in the adaptation was excluded. The change was stable, even if the adapted viruses were propagated back into SC-1 cells. The NRK-adapted viruses were restricted in other rat cell lines of different origins, and the virus adapted in another rat cell line, RFL, was still restricted in NRK cells. The adaptation was mainly brought about by increased viral growth within the rat cells and not by an increased efficiency of viral penetration into the rat cells. This inversely suggests that the restriction of the ecotropic murine leukemia viruses in NRK cells was a mainly intracellular event. The mobilities of gp69/71 and p30 in sodium dodecyl sulfatepolyacrylamide gel electrophoresis remained unchanged after adaptation of FN-2 in NRK cells.  相似文献   

10.
11.
Goat and rabbit antisera prepared against a purified Rauscher murine leukemia virus glycoprotein (gp69/71) rapidly neutralized spleen focus-forming virus in Rauscher and Friend virus preparations. Absorption studies revealed that most of the neutralizing activity of goat anti-Rauscher virus gp69/71 serum was directed against type- and group-specific determinants.  相似文献   

12.
2-Deoxy-D-glucose (2-DG) inhibited the release of transforming Kirsten murine sarcoma-leukemia virus [KiMSV(KiMuLV)] from transformed rat kidney (NRK-K) cells. At a concentration of 30 mM 2-DG, RNA synthesis in NRK-K cells was inhibited by approximately 30 percent and protein synthesis was inhibited by as much as 80 percent of control levels. RNA synthesis was not inhibited in nontransformed normal rat kidney (NRK) cells, although protein synthesis was equally suppressed in NRK and NRK-K cells. After treatment with 2-DG, the release of physical particles of KiMSV(KiMuLV) from NRK-K cels was not reduced as determined by equilibrium density gradient centrifugation and assays for RNA-dependent DNA polymerase of culture fluids. The ability to detect virion-associated radioactivity in equilibrium density gradients was dependent on the conditions of labeling. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of KiMSV(KiMulLV) proteins revealed marked structural alterations after propagation of the virus in 30 mM 2-DG. These alterations may account for the observed loss of transforming ability of KiMSV(KiMuLV).  相似文献   

13.
FMR antigens are found on the surface of cells infected with Friend, Moloney, and Rauscher murine leukemia viruses (MuLV). These antigens are serologically distinct from the G cell surface antigens that are found on cells infected with endogenous MuLV (AKR and Gross virus). Cell surface antigens of both virus groups are immunogenic in mice, and immunization with appropriate virus-infected cells leads to the production of cytotoxic antisera. The cytotoxic activity of FMR antisera can be absorbed by disrupted preparations of Rauscher MuLV, but not by AKR MuLV. FMR antisera precipitate the viral envelope proteins gp70, pl5(E), and p12(E) from detergent-disrupted preparations of [3H]leucine-labeled MuLV. The reaction of these antisera with p15(E) and p12(E) proteins is directed against group-specific antigens and can be absorbed with AKR MuLV; in contrast, the reaction of these antisera with gp70 is directed against type-specific antigens and is absorbed only by viruses of the FMR group. In immune precipitation assays with detergent-disrupted 125I surface-labeled cells, FMR antisera react only with type-specific antigens of the viral envelpe protein. On the basis of these findings we conclude that the FMR cell surface antigen is a determinant on the MuLV env gene product.  相似文献   

14.
Wild-Type Gross Leukemia Virus: Classification of Soluble Antigens (GSA)   总被引:9,自引:5,他引:4  
By inhibiting techniques using indirect immunofluorescence tests and indirect immunoelectron microscopy, the G(Gross) soluble antigens (GSA) in the body fluids of AKR and C58 mice, which have a high incidence of spontaneous leukemia, were classified according to the known specificity of G antigens in the murine Gross leukemia system. GSA existing in the plasma of nonleukemic and leukemic AKR mice and in the ascitic fluid of transplanted AKR spontaneous leukemia K36 showed the several specificities corresponding to G cell surface antigens, GCSAa, b, and c, and type-specific and group-specific viral envelope antigens, tsVEA and gsVEA, respectively. However, the plasma of nonleukemic C58 mice lacks GSAc, which can be recognized by the G-typing mouse serum. GSA corresponding to G(IX) antigen was not detected in the body fluids.  相似文献   

15.
L R Rohrschneider 《Cell》1979,16(1):11-24
The localization of the avian sarcoma virus src gene product (termed p60src) was examined by indirect immunofluorescence in cells transformed by the Schmidt-Ruppin strain of Rous sarcoma virus, subgroup D (SR-RSV-D). Antiserum to p60src was obtained from rabbits bearing SR-RSV-D-induced tumors, and immunofluorescence was performed on chicken embryo fibroblasts (CEF) transformed with SR-RSV-D, as well as normal rat kidney (NRK) cells transformed by the same virus (termed SR-RK cells). Both acetone and formaldehyde fixation were used for the immunofluorescence tests. The specificity of the anti-tumor serum was first demonstrated in both cell systems by gel electrophoresis of immunoprecipitates prepared from 35S--methionine-labeled cells. Anti-tumor serum precipitated p60src from SR-RSV-D-transformed CEF but not from CEF infected with a transformation-defective mutant of SR-RSV-D. All viral structural proteins and precursors contained in these immunoprecipitates could be eliminated by competition with unlabeled virus. Similar experiments on SR-RK cells indicated that no viral proteins other than p60src were expressed in these cells, and this observation was supported by immunofluorescence tests using antiserum to whole virus. For immunofluorescence localization of p60src, reactions with viral structural proteins were blocked with unlabeled virus. This presaturation step, obligatory for p60src detection in the SR-RSV-D-transformed CEF, was unnecessary when antitumor serum was tested on SR-RK cells, since p60src was the only viral protein detectable in these cells. With acetone-fixed cells, p60src-specific immunofluorescence revealed a characteristic fluorescence pattern which was similar in both cell systems. The principal pattern was diffuse and situated in the cytoplasm. A clear nuclear fluorescence was never observed. Immunofluorescence on formaldehyde-fixed cells also indicated the cytoplasmic location of p60src and revealed a specific subcytoplasmic concentration of the fluorescence. With both fixation methods, an additional fluorescence pattern was seen between cells in contact, and was also found in both SR-RK cells and SR-RSV-D-transformed CEF. Immunofluorescence on viable cells suggested that p60src was not on the surface of these transformed cells. The fluorescence patterns were specific for avian sarcoma virus-transformed cells and were not found in uninfected cells, cells infected with a transformation-defective mutant of SR-RSV-D or cells transformed by an antigenically unrelated murine sarcoma virus. Furthermore, anti-tumor serum did not contain antibodies to proteins of the microtubules or intermediate filaments.  相似文献   

16.
Immunization of rats with syngeneic cells infected with spleen focus-forming virus (SFFV) but not with its helper, Friend murine leukemia virus (FMuLV), produces antisera which specifically neutralize SFFV, and not FMuLV, in the Friend virus complex. To determine which SFFV-encoded protein molecule bears the antigen recognized by these neutralizing antibodies, we studied different lots of rat anti-SFFV antiserum by immunoprecipitation and virus neutralization assays. The ability of these sera to neutralize SFFV correlated with the titer of antibodies to p45gag and not with the titer of those to gp52, suggesting that the neutralizing antibodies recognize the p45gag molecule. To verify this specificity for p45gag, we tested antisera to various MuLV gag gene-encoded proteins for neutralization of SFFV. Goat anti-Rauscher murine leukemia virus (RMuLV) p30 and goat anti-RMuLV p10 sera neither precipitated p45gag from SFFV-infected nonproducer cells nor neutralized SFFV. In contrast, goat anti-RMuLV Pr65gag and goat anti-RMuLV p12 sera precipitated p45gag from SFFV-infected cells and also specifically neutralized SFFV in the Friend virus complex. These findings suggest that, unlike the gag proteins coded for by FMuLV, the proteins coded for by defective SFFV are incorporated into the envelope of virions carrying the SFFV genome, but not into the envelope of those carrying the helper FMuLV genome.  相似文献   

17.
M C Willingham  G Jay  I Pastan 《Cell》1979,18(1):125-134
The cellular location of the src gene product (p60src) of the Schmidt-Ruppin strain of avian sarcoma virus has been determined by electron microscopic immunocytochemistry in Schmidt-Ruppin ASV-transformed NRK cells, and the amount of the protein in different regions of the cell has been quantified. The protein is concentrated on the inner surface of the plasma membrane, particularly under ruffles, and it is highly concentrated on the inner surface of the membrane near junctions connecting adjacent cells. Small amounts of p60src were detected in the cytoplasm and in the perinuclear Golgi region of the cell. No significant localization was detected in control NRK cells or in NRK cells transformed by the Kirsten strain of murine sarcoma virus. The presence of p60src on the inner surface of the plasma membrane indicates that the changes in cell growth, cell shape and cell membrane structure noted in ASV-transformed cells are due to an initial action of p60src at the cell membrane.  相似文献   

18.
Entry of Vesicular Stomatitis Virus into L Cells   总被引:13,自引:10,他引:3       下载免费PDF全文
Early stages of the entry of vesicular stomatitis (VS) virus into L cells were followed by electron microscopy with the aid of ferritin antibody labeling. Cells which were infected at 0 C and incubated for 10 min at 37 C were reacted first with antiviral-antiferritin hybrid antibody and then with ferritin or fluorescein-labeled apoferritin. Extensive ferritin labeling of the cell surface was detected by both electron and fluorescence microscopy. The labeled regions of the cell surface were continuous with and indistinguishable from the rest of the host cell membrane, suggesting incorporation of viral antigens into the cell surface during viral penetration. Fusion of parental viral membrane with host cell membrane was further demonstrated by examining the localization of (3)H-labeled viral structural proteins in cells infected at 0 C and incubated for short periods at 37 C. Viral nucleoprotein was found in a soluble fraction of the cells which was derived primarily from the cytoplasm, whereas a particulate fraction from the cells was enriched in viral envelope proteins. Cytoplasmic membrane was isolated from these cells, and this membrane contained viral envelope proteins. These results suggest that penetration by VS virus occurs by fusion of the viral and cellular membranes followed by release of nucleo-protein into the cytoplasm.  相似文献   

19.
Measles virus infection of unstimulated B lymphocytes suppresses both proliferation and differentiation into immunoglobulin-secreting cells. However, mitogenic stimulation of these infected cells results in cell volume enlargement, rapid RNA synthesis, and the expression of cell surface activation antigens 4F2, HLA-DS, and transferrin receptor. The cellular genes c-myc and histone 2B are induced during early G1 and S phase of the cell cycle, respectively, and viral RNA synthesis can be detected during this interval. However, total RNA synthesis is decreased at 48 h after stimulation, and the histone 2B RNA steady-state level at 48 h is fivefold less than that in uninfected cells. This sequence of events defines an arrest in the G1 phase of the cell cycle in measles virus-infected B cells.  相似文献   

20.
Immunochemical analysis was employed to investigate the cell cycle-dependent protein-DNA crosslinking by cis-diamminedichloroplatinum II (cis-DDP), in HeLa-S3 cells. Cells synchronized by double thymidine block or hydroxyurea were released into S phase and incubated at 2-h intervals with cis-DDP as they progressed through S1, G2, M, and then into G1 and S phases of the subsequent cycle. Immunoblots of the DNA-crosslinked antigens reacted with antisera to 0.35 M NaCl extract or residue of HeLa S-phase nuclei revealed that several antigens changed their DNA-crosslinking pattern during the progression of HeLa cells through their reproductive cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号