首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Summary The expression of cytokeratin- and vimentin-type intermediate filaments was studied by means of immunohistochemistry in Sertoli cells cultured on two types of reconstituted basement membrane in two-compartment culture chambers. In situ, the Sertoli cells of 17-day-old rats contained only vimentin intermediate filaments. During culture, a gradual reorganization of intermediate filaments accompanied by an increased cytokeratin immunoreactivity was observed. After 6 days, Sertoli cells contained both cytokeratin and vimentin, and the same cytokeratin type as in fetal and newborn testis was revealed by electrophoresis and immunoblotting. The present study shows that the isolation and culture of Sertoli cells causes, even in an improved culture system qualitative changes in the expression of intermediate filament proteins.  相似文献   

2.
The cytoplasmic structure of Sertoli cells of rat testes has been studied by electron microscopy of ultrathin sections. Sertoli cells contain numerous intermediate-sized (7-11 nm) filaments which form a meshwork extending throughout the whole cytoplasm. Often the frequency of such filaments appears especially high in juxtanuclear and cortical regions, including the apical recesses containing the spermatids. Examination of frozen sections of testes by indirect immunofluorescence microscopy using guinea pig antibodies to prekeratin and vimentin has shown the absence of intermediate-sized filaments of the cytokeratin type in all cells of the testes but the presence of filaments of the vimentin type in Sertoli cells as well as in cells of the interstitial space. These results show that the intermediate-sized filaments, abundant in Sertoli cells, are of the vimentin type. In addition we conclude that the "germ epithelium" differs from others true epithelia by the absence of cytokeratin filaments and typical desmosomes and, in Sertoli cells, the presence of vimentin filaments, suggestive of a mesenchymal character or derivation.  相似文献   

3.
Summary A light and electron microscope immunocytochemical study and Western blotting analysis has been performed on intermediate filaments (vimentin, desmin and cytokeratins) in the testis of the teleost fish Gambusia affinis holbrooki. An immunoreaction to vimentin was observed in the epithelium of the efferent ducts, testicular canal and their surrounding peritubular cells. Positive vimentin immunostaining was also observed in the cells located around seminiferous tubules (boundary cells), Leydig cells, interstitial fibroblasts, chromatophores, and blood vessel endothelial cells. In contrast to mammals, no vimentin immunoreactivity was found in the Sertoli cells. Immunoreactivity to desmin was weak in the epithelial cells of the efferent ducts and testicular canal and intense in the peritubular cells that surrounded these ducts. Desmin immunoreactivity was also observed in the seminiferous tubule boundary cells. The immunoreactivity was weak in the boundary cells that surrounded germ cell cysts containing spermatogonia or spermatocytes and intense in the boundary cells around cysts with elongated or mature spermatids. Immunoreactivity towards cytokeratins was observed only in testicular blood vessels. Cytokeratin immunolabelling was intense in the endothelium and weak in the vascular smooth muscle cells. No cytokeratin immunoreactivity was found in the Sertoli cells, germ cells, interstitial cells or in the efferent duct epithelium. The absence of intermediate filaments in the Sertoli cells, the absence of cytokeratins in the epithelium of the sperm excretory ducts, and the presence of desmin filaments in these epithelial cells are the most important differences with regards to the intermediate filament phenotype in mammalian testes.  相似文献   

4.
Cytoplasmic filaments in fetal and neonatal pig testis   总被引:1,自引:0,他引:1  
Leydig cells in developing fetal pig testis contained during the fetal regressive phase large accumulations of intermediate filaments. Before and after this period these filaments were arranged in a criss-cross fashion. In the pig as well as in the dog testis these filaments have been characterized as vimentin. Within the vimentin aggregates occasionally a weak positive actin reaction was seen in pig but not in dog Leydig cells. Microfilaments were hardly observed. Most Sertoli cells contained a layer of actin microfilaments close to the basal cell membrane. In the lower cell compartment and around the nucleus (intermediate) vimentin filaments could be observed in a criss-cross configuration.  相似文献   

5.
The expression patterns of intermediate filament proteins in fetal and normal or nonpathological adult human lung tissues are described using (chain-specific) monoclonal antibodies. In early stages of development (9-10 weeks and 25 weeks of gestation) only so-called simple cytokeratins such as cytokeratins 7 (minor amounts). 8, 18 and 19 are detected in bronchial epithelial cells. At later stages of development, the cytokeratin expression patterns become more complex. The number of bronchial cells positive for cytokeratin 7 increases, but basal cells in the bronchial epithelium remain negative. These latter cells show, however, expression of cytokeratin 14 in the third trimester of gestation. Developing alveolar epithelial cells express cytokeratins 7, 8, 18 and 19. In adult human bronchial epithelium cytokeratins 4 (varying amounts), 7, 8, 13 (minor amounts), 14, 18 and 19 can be detected, with the main expression of cytokeratins 7, 8, and 18 in columnar cells and the main expression of cytokeratin 14 in basal cells. Vimentin is detected in all mesenchymal tissues. In addition, fetal lung expresses vimentin in bronchial epithelium, however, to a lesser extent with increasing age, resulting in the expression of vimentin in only few scattered bronchial cells at birth. Also in adult bronchial epithelium the expression of vimentin is noticed in part of the basal and columnar epithelial cells. Desmin filaments, present in smooth muscle cells of the lung, appear to alter their protein structure with age. In early stages of development smooth muscle cells surrounding blood vessels are partly reactive with some cytokeratin antibodies and with a polyclonal desmin antibody. At week 9-10 and week 25 of gestation a monoclonal antibody to desmin, however, is not reactive with blood vessel smooth muscle cells but is only reactive with smooth muscle cells surrounding bronchi. With increasing age the reactivity of cytokeratin antibodies with smooth muscle cells in blood vessels decreases, while the reactivity with the monoclonal desmin antibody increases. Our results show that during differentiation profound changes in the intermediate filament expression patterns occur in the different cell types of the developing lung.  相似文献   

6.
Coiled-coil domain containing 85c (Ccdc85c) is a causative gene for genetic hydrocephalus and subcortical heterotopia with frequent brain hemorrhage. In the present study, we examined the expression pattern of CCDC85C protein and intermediate filament proteins, such as nestin, vimentin, GFAP, and cytokeratin AE1/AE3, during lateral ventricle development in rats. CCDC85C was expressed in the neuroepithelial cells of the dorsal lateral ventricle wall, diminishing with development and almost disappearing at postnatal day 20. By immunoelectron microscopy, CCDC85C was localized in the cell-cell junction and apical membrane. The expression of nestin and vimentin was decreased in the wall of the lateral ventricle in manner similar to CCDC85C, but GFAP expression started immediately after birth and became stronger with age. Moreover, cytokeratin expression was found at postnatal day 13 and increased at postnatal day 20 in conjunction with the disappearance of CCDC85C expression. Taken together, CCDC85C is expressed in the cell-cell junctions lining the wall of the lateral ventricle and plays a role in neural development with other intermediate filaments in the embryonic and postnatal periods. Our chronological study will help to relate CCDC85C protein with intermediate filaments to elucidate the detailed role of CCDC85C protein during neurogenesis.  相似文献   

7.
Cultures of rete testis epithelial cell-enriched preparations from testes of adult rams have been investigated, and some of their properties have been determined. In monolayers, the cells form mosaic-like borders, and retain many ultrastructural features characteristic of rete epithelial cells in situ, including an indented nucleus with prominent heterochromatin clumps, short rod-shaped or round mitochondria that are easily distinguished from the elongated mitochondria of Sertoli cells, the presence of desmosomes, and few if any lipid droplets or vacuoles. Unlike Sertoli cell-enriched aggregates in culture, rete testis epithelial cell preparations do not form cytoplasmic extensions, and no associated germ cells are present. Rete cells in culture express cytokeratin and vimentin in the cytoskeleton, whereas Sertoli cells prepared from testes of adult rams contain vimentin but not cytokeratin. Both rete cells and Sertoli cells stain positively for laminin but not for fibronectin, Collagen Type I, or Collagen Type III. The rete cells synthesize and secrete several proteins into the culture medium, evident in gel electrophoresis patterns of radiolabeled proteins. This pattern is similar, but not identical, to that secreted by Sertoli cell-enriched preparations. Rete cells in culture in the presence of serum continue to undergo mitotic division, but Sertoli cells do not. A variety of criteria were employed to estimate the relative numbers of Sertoli cells present in the rete testis epithelial cell-enriched preparations from testes of adult rams, including morphological and ultrastructural differences between the two cell types, and the presence of desmosomal proteins and cytokeratin in rete cells but not in Sertoli cells. The relative number of fibroblast-like cells was determined by measuring the expression of fibronectin and Collagen Type I, and an immunocytochemical probe for the detection of Factor VIII was used to estimate the degree of contamination by vascular endothelial cells. Using these markers, we determined that the rete testis epithelial cell-enriched preparations were about 93% pure. Primary cultures under defined conditions contained relatively few Sertoli cells (0.4%), but were contaminated to a larger extent by fibroblast-like cells (approximately 4%) and by endothelial cells (about 3%). The possible functions of rete testis epithelial cells are discussed herein.  相似文献   

8.
Ceacam6 (carcinoembryonic antigen-related cell adhesion molecule 6 gene) has recently been isolated by differential display followed by RT-PCR and DNA sequence analyses. Ceacam6 is a member of an immunoglobulin superfamily and encodes a protein of 266 amino acid residues possessing one immunoglobulin (Ig)-like domain. RT-PCR analysis showed that Ceacam6 was dominantly expressed in rat testis and its expression level prominently increased after 6 wk of postnatal development in testis. Immunohistochemical analyses using the anti-CEACAM6 antibody revealed that CEACAM6 colocalized with intermediate filaments (vimentin) in Sertoli cells and interstitial cells. The association between CEACAM6 and vimentin was observed throughout postnatal development in rat testis. Transfection experiments performed in COS-7 cells suggested that overexpression of CEACAM6 brought about aggregation of vimentin filament around nuclei with which CEACAM6 colocalized and that the N-terminus region of CEACAM6, including the Ig-like domain, seemed to be required for association with vimentin filaments. Interaction between CEACAM6 and vimentin in rat testis and transfected COS-7 cells was confirmed by immunoprecipitation. Our observations strongly suggested that CEACAM6 might be a novel intermediate filament-associated protein involved in regulation of vimentin architecture in Sertoli cells.  相似文献   

9.
Anti-Müllerian hormone (AMH) induces regression of Müllerian ducts during male fetal development; in the human male, it is expressed in Sertoli cells during fetal development (and through puberty). The objective was to characterize expression of AMH in the fetal, neonatal, prepubertal, and adult equine testis, as well as in equine cryptorchid testes, in select testicular neoplasms, and in intersex gonads, based upon immunohistochemistry (IHC). Testes were removed from equine fetuses at 5.5, 10, and 11 months of gestation, at 12 months of age, and from adult stallions. In addition, cryptorchid testes, testis tumors (teratomas, seminomas, Sertoli cell tumors), and male intersex gonads were examined by IHC for expression of AMH using a goat polyclonal primary antibody (alpha-AMH) directed against a C-terminal peptide antigen from human AMH. Immunolabeling with alpha-AMH was localized to Sertoli cells within the developing seminiferous tubules of fetal, neonatal and prepubertal equine testes, with no expression detected in Sertoli cells from normal adult equine testes. Furthermore, expression was detected in cryptorchid testes (in animals up to 3-4 years of age) and in Sertoli cell tumors and male intersex gonads. In conclusion, AMH was strongly expressed by Sertoli cells in fetal, neonatal and prepubertal equine testes, but not in normal adult testes. That AMH was expressed in cryptorchid testes may provide a useful biomarker for detection of cryptorchid testes, as well as for immunohistochemical characterization of testicular tumors and intersex gonads in the horse.  相似文献   

10.
The presence and distribution of desmin, vimentin, cytokeratin, and laminin in the gonads of developing male rat embryos (11-17 days) were studied by immunocytochemistry. The findings were correlated with morphological changes of the cells and with the formation of basement membranes, as determined by electron microscopy. The surface epithelial and subepithelial cells of the meesonephros in the prospective gonadal region contained desmin. At the onset of gonadal development, vimentin appeared in the somatic cells of the thickening surface epithelium, which formed the gonadal ridge. Desmin disappeared and cytokeratins appeared in the Sertoli precursor cells at the inception of their epithelial differentiation. Simultaneously, the prospective Sertoli cells became polarized during their assembly into epithelial cell aggregates; the aggregates then fused and formed elongated testicular cords. The epithelial cell differentiation was accompanied by a deposition of basement membrane material around the cords and by an increase of desmin in the cells immediately around the cords. With further differentiation of the testicular cords, some cytokeratins from the Sertoli cells, but not from the cells of the rete cords, disappeared. On the other hand, other cytokeratin polypeptides and vimentin remained in the fetal Sertoli cells. The surface cell layer slowly differentiated towards a proper epithelium after the basic formation of the testicular cords and interstitium. Desmin and vimentin persisted in the interstitial cells throughout the entire study period. The early differentiation of the gonad is apparently under a general sex-independent initiation program. The developmental changes in intermediate filaments offer an opportunity for the further analysis of their general role in early organogenesis. In light of the genetic theory of testicular differentiation, the functions of the regulatory factor(s) include specific organization of cord cells, histological organization into looping cords rather than separated follicles, and male development of the interstitium, surface epithelium and tunica albuginea.  相似文献   

11.
Summary An immunohistochemical study of the production of the intermediate filaments [vimentin, cytokeratin, and glial filament acidic protein (GFAP)] during development of the pituitary gland was made by use of fetal and adult human pituitary tissue. Among these intermediate filament proteins in the anterior and intermediate lobes of the pituitary, cytokeratin is the first to appear, followed by GFAP and vimentin. However, only cytokeratin is seen during the period of morphogenesis of the pituitary gland, with the type-II subfamily cytokeratin 8 being the earliest to appear. Among the simple-epithelial-type cytokeratins, cytokeratins 8 and 19 were observed within the pituitary primordium during morphogenesis. Cells immunoreactive for cytokeratins 8 and 19 showed a heterogeneous three-dimensional distribution pattern in Rathke's pouch. Both cytokeratins 8 and 19 tended to be strongly positive at sites in the pituitary primordium where cells had become more loosely arranged (i.e., areas far from the diencephalon) but were only weakly positive in areas in which the epithelial cells were densely packed (i.e., areas closely associated with the diencephalon). It is concluded that, during the period of morphogenesis, Rathke's pouch has the intermediate filaments characteristic of simple epithelium and shows different immunoreactivity for simple-epithelial-type cytokeratins from place to place according to the extent of cellular differentiation.  相似文献   

12.
Reaggregates prepared from newborn rat testis cells in Moscona-type rotation cultures were analyzed and compared with normal fetal (12-21 days) and newborn testes at the light and electron microscope level. After 25 h of culture, the aggregates resembled normal testicular tissue. The cells of the surface layer were spindle-shaped and connected by adherent junctions. The epithelial cords were composed exclusively of Sertoli cells and were surrounded by elongated cells resembling the developing myoid cells in newborn testes. The basal aspect of the cords was covered by a layer of flocculent material which, in places, was organized like an ordinary basement membrane. Individual spermatogonia with pseudopodes were observed in the interstitial tissue. Some Leydig cells were organized into small clusters like those typical in newborn testes. The present observations indicate that, histologically, the reaggregation of separated testicular cells resembles the differentiation of embryonic male gonads.  相似文献   

13.
14.
Mesonephric and paramesonephric ducts develop in different ways in male and female fetuses. We have analyzed the changes in the expression of cytokeratin and vimentin type of intermediate filaments and desmosomal plaque proteins in progressing and regressing genital ducts of rat fetuses. The concomitant changes in the basement membranes were detected by laminin antibody. Epithelial cells of the indifferent (Day 15) male and female mesonephric and paramesonephric ducts contained faint vimentin positivity which, however, later disappeared. Indifferent mesonephric duct epithelium stained strongly for cytokeratin, whereas in the corresponding paramesonephric duct only a weak and spotty positivity was seen. Immunocytochemical localization of cytokeratin filaments and desmosomal plaque proteins correlated with the ultrastructural differences in the apical junctional complexes of the mesonephric and paramesonephric ducts. Regardless of the ongoing regression of the male paramesonephric duct, cytokeratin positivity increased in the disorganizing epithelium; the most weak and a granular immunoreaction was seen in the cells found in the intensively vimentin-positive periductal mesenchyme. In the regressing female mesonephric duct cytokeratin positivity was lost before the final dissolution of the basement membrane. Immunoblotting analysis of cytokeratin and vimentin polypeptides of the individual genital ducts were in agreement with the immunocytochemical results obtained in 15- and 16-day-old fetuses. The results suggest that the expression of vimentin type intermediate filaments is an indication of the mesothelial origin of the genital ducts. The increase in cytokeratin positivity of the regressing paramesonephric duct epithelium suggests that the degenerative changes are initiated by the mesenchyme. Cytokeratin-positive cells found in the periductal mesenchyme of the male paramesonephric duct may be epithelial cells transforming into mesenchyme. The results emphasize a close relationship between the changes of the intermediate filament system and extracellular matrix upon differentiation of the fetal genital ducts.  相似文献   

15.
Ten nephroblastomas were investigated by antibodies to intermediate filaments. In seven cases, which in light microscopy were characterized by the presence of blastema and tubules, immunofluorescence microscopy with IF-specific antibodies reveals expression of cytokeratin and vimentin in blastema cells, while tubules were only labelled by the cytokeratin antibodies. This result was independent of whether the conventional cytokeratin antibody or monoclonal antibodies specific for cytokeratin 18 were used. Stroma cells were vimentin-positive. In two cases nephroblastomas were undifferentiated and also lacked tubuli formation. In both these tumors blastema cells were vimentin-positive and cytokeratin-negative. Finally one case of clear cell sarcoma of the kidney could only be labelled by the vimentin antibody. Thus antibodies to intermediate filaments seem to be useful tools to distinguish nephroblastomas from neuroblastomas or rhabdomyosarcomas, especially in cases of metastasis.  相似文献   

16.
The aim of the present study was to evaluate the morphology and intermediate filaments cytokeratin, desmin and vimentin expression in the kidneys of the polar fox (Alopex lagopus). Routine morphological, histochemical and immunohistochemical techniques of examinations of the kidneys of adult male and female polar foxes were used. We found different localizations and different levels of immunoexpression of cytokeratin in epithelia of calyxes, distal tubules and Henle's loops, and also in endothelial cells. We also noted immunolocalization and immunoexpression of vimentin in mesangial cells, interstitial tissue and distal tubules. Desmin reactivity was revealed for muscle cells of arteries and mesangial cells. Our study is the first attempt to localize cytoskeletal intermediate filaments performed on polar fox kidneys. It is worth noting that our observations concerning the distribution of vimentin in the polar fox kidney may suggest that protein as being useful as a marker of distal tubules in the polar fox kidney.  相似文献   

17.
The metanephric mesenchyme becomes converted into epithelial tubules if cultured in transfilter contact with an inductor tissue. The expression of intermediate filaments (IFs), used as cell-type-specific markers has been studied in this model system for differentiation and organogenesis. In immunofluorescence microscopy of frozen sections, the undifferentiated cells of isolated metanephric mesenchymes uniformly showed IFs of vimentin type only. Also, when cultured as a monolayer, cells from the uninduced mesenchymes showed only vimentin filaments. In frozen sections of transfilter explants, epithelial tubules apparently negative for vimentin could be seen after 3 days in culture, but expression of cytokeratin could not be demonstrated in the developing tubules until the fourth day of culture. Sections of explants cultured further showed tubule cells with distinct fibrillar cytokeratin positivity. The appearance of cytokeratin in the explants was also demonstrated with immunoblotting experiments, using two different cytokeratin antibodies. Expression of IFs was further examined in monolayer cultures of metanephric mesenchymes which had been initially exposed to a short transfilter induction pulse. In these experiments, cytokeratin-positive cells could be demonstrated after a total of 4 days in culture. Double immunofluorescence experiments showed varying amounts of vimentin in the cytokeratin-positive cells: after 4 days in culture, most cytokeratin-positive cells still showed vimentin-positivity although often in a nonfibrillar form. During further culture, gradual disappearance of vimentin-specific fluorescence was observed in cytokeratin-positive cells. The results suggest that the vimentin-positive metanephric mesenchyme cells lose their fibrillar vimentin organization upon induction that leads to kidney tubule formation. This change may be essential for the transformation from an undifferentiated mesenchymal cell into a specialized epithelial cell. Cytokeratin filaments, regarded as a marker for epithelial cells, seem to appear simultaneously with or soon after the change in vimentin organization. These changes in IF expression also occur in monolayer cultures of mesenchyme cells initially exposed to a short transfilter induction pulse. This suggests that epithelial differentiation, as revealed by the emergence of cytokeratin positivity, may occur even in the absence of a clear morphological differentiation and three-dimensional organization of the cells.  相似文献   

18.
Gonadal sex differentiation is temperature-dependent in Alligator mississippiensis; testis differentiation occurs in embryos incubated at 33°C and ovary differentiation occurs in embryos incubated at 30°C. Laminin and cytokeratin were examined immunohistochemically in the gonads of alligator embryos incubated at these temperatures. The aim of this study was to determine whether these structural proteins show the same sex-specific expression patterns reported for mammalian embryos, and to assess their usefulness as early markers of gonadal differentiation in species with temperature-dependent sex determination. Laminin delineated enlarged seminiferous cords in differentiating testes from developmental stage 23 to hatching. Laminin distribution was more diffuse and revealed smaller cords of cells in differentiating ovaries. Cytokeratin was also detected in developing gonads of both sexes. Cytokeratin became concentrated in the basal cytoplasm of differentiating Sertoli cells in developing testes. In developing ovaries, prefollicular cells of the ovarian cortex and cell cords in the medulla stained strongly for cytokeratin. Cytokeratin did not show the same basal distribution in female medullary cord cells as seen in the Sertoli cells of testes, however. These sex-specific patterns of laminin and cytokeratin distribution in embryonic alligator gonads may serve as early markers of sexual differentiation.  相似文献   

19.
Merkel cells are special neurosecretory cells which, in adult human skin, are usually very scarce. By immunofluorescence microscopy using antibodies to human cytokeratin polypeptide no. 18, we localized distinct non-keratinocyte cells in the glandular ridges of human fetal and adult plantar epidermis. Using electron and immunofluorescence microscopy, these cells were identified as Merkel cells containing typical neurosecretory granules as well as bundles of intermediate-sized filaments and desmosomes. Two-dimensional gel electrophoresis of the cytoskeletal fractions of microdissected epidermal preparations highly enriched in Merkel cells indicated the presence of cytokeratin polypeptides nos. 8, 18 and 19 which are typical of diverse simple epithelia of the human body. Double immunofluorescence microscopy showed that these human Merkel cells contain neither neurofilaments nor vimentin filaments. In human fetuses of 18-24 weeks of age, conspicuously high concentrations of Merkel cells, reaching a density of approximately 1,700 Merkel cells/mm2 skin, were found in the glandular ridges of plantar skin. The concentration decreased considerably at newborn and adult stages. Thin cell processes (up to 20 microns long) were observed in many fetal epidermal Merkel cells. In addition, we detected isolated Merkel cells deeper in the dermis (i.e. at distances of, at most, 100 microns from the epidermis) in fetal and newborn plantar skin. Our results show that Merkel cells are true epithelial cells which, however, differ profoundly from epidermal keratinocytes in their cytokeratin expression. The findings are discussed in relation to the much disputed question of the origin of Merkel cells. The present data speak against the immigration of Merkel cells from the neural crest, but rather suggest that they originate from epithelial cells of the skin, although most probably not from differentiated keratinocytes.  相似文献   

20.
Abstract. The development and sexual differentiation of gonads in female rat embryos and fetuses between the ages of 11 and 17 days was studied by immunocytochemical analysis of intermediate filament proteins and laminin by light and electron microscopy. In the 11-day-old pregonadal embryo, the surface epithelial cells in the ventral cortex of the mesonephros contained desmin but not cytokeratin or vimentin. The development of the gonad began on the following day by proliferative growth of the mesonephric surface cells, which like the subepithelial cells soon expressed vimentin in addition to desmin. The differentiation continued by formation of separate epithelial cell clusters, which joined into cords, irregular in shape and size. Desmin disappeared from the cord cells and cytokeratins appeared while vimentin remained in all somatic cell types. Desmin was especially abundant in some stromal cells adjacent to the epithelial tissues. After the segration of the basic ovarian tissues, vimentin and desmin decreased and cytokeratins appeared in the surface epithelial cells. New changes in cytokeratin expression appeared with the differentiation of the embryonic cords in a sex-specific manner with gradual decrease of reactivity for cytokeratin 18. No immunoreaction to the neurofilament proteins was found at the present ages, and the germ cells were negative for intermediate filaments. The results show that desmin is expressed in several primitive ovarian and mesonephric cells even though they are not myogenic. The sexual differences emerge after the incipient formation of the genetically female gonad, as different organization of the internal epithelial tissue with different timing of changes in intermediate filament proteins when compared with the male gonad.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号