首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have previously demonstrated (Diabetes 39:707–711, 1990) that in vitro glycation of the red cell Ca2+ pump diminishes the Ca2+-ATPase activity of the enzyme up to 50%. Such effect is due to the reaction of glucose with lysine residues of the Ca2+ pump (Biochem. J. 293:369–375, 1993). The aim of this work was to determine whether the effect of glucose is due to a full inactivation of a fraction of the total population of Ca2+ pump, or to a partial inactivation of all the molecules. Glycation decreased the V max for the ATPase activity leaving unaffected the apparent affinities for Ca2+, calmodulin or ATP. The apparent turnover was identical in both, the glycated and the native enzyme. Glycation decreased the V max for the ATP-dependent but not for the calmodulin-activated phosphatase activities. Concomitantly with the inhibition, up to 6.5% of the lysine residues were randomly glycated. The probabilistic analysis of the relation between the enzyme activity and the fraction of nonmodified residues indicates that only one Lys residue is responsible for the inhibition. We suggest that glucose decreases the Ca2+-ATPase activity by reacting with one essential Lys residue probably located in the vicinity of the catalytic site, which results in the full inactivation of the enzyme. Thus, Ca2+-ATPase activity measured in erythrocyte membranes or purified enzyme preparations preincubated with glucose depends on the remaining enzyme molecules in which the essential Lys residue stays unglycated. Received: 9 March 1999/Revised: 11 May 1999  相似文献   

2.
A fluorescence method was adapted to investigate active ion transport in membrane preparations of the SR-Ca-ATPase. The styryl dye RH421 previously used to investigate the Na,K-ATPase was replaced by an analogue, 2BITC, to obtain optimized fluorescence changes upon substrate-induced partial reactions. Assuming changes of the local electric field to be the source of fluorescence changes that are produced by uptake/release or by movement of ions inside the protein, 2BITC allowed the determination of electrogenic partial reactions in the pump cycle. It was found that Ca2+ binding on the cytoplasmic and on the lumenal side of the pump is electrogenic while phosphorylation and conformational transition showed only minor electrogenicity. Ca2+ equilibrium titration experiments at pH 7.2 in the two major conformations of the protein indicated cooperative binding of two Ca2+ ions in state E1 with an apparent half-saturation concentration, K M of 600 nm. In state P-E2 two K M values, 5 μm and 2.2 mM, were determined and are in fair agreement with published data. From Ca2+ titrations in buffers with various pH and from pH titrations in P-E2, it could be demonstrated that H+ binding is electrogenic and that Ca2+ and H+ compete for the same binding site(s). Tharpsigargin-induced inhibition of the Ca-ATPase led to a state with a specific fluorescence level comparable to that of state E1 with unoccupied ion sites, independent of the buffer composition. Received: 21 September 1998/Revised: 18 December 1998  相似文献   

3.
Chloride channels in the sarcoplasmic reticulum (SR) are thought to play an essential role in excitation-contraction (E-C) coupling by balancing charge movement during calcium release and uptake. In this study the nucleotide-sensitivity of Cl channels in the SR from rabbit skeletal muscle was investigated using the lipid bilayer technique. Two distinct ATP-sensitive Cl channels that differ in their conductance and kinetic properties and in the mechanism of ATP-induced channel inhibition were observed. The first, a nonfrequent 150 pS channel was inhibited by trans (luminal) ATP, and the second, a common 75 pS small chloride (SCl) channel was inhibited by cis (cytoplasmic) ATP. In the case of the SCl channel the ATP-induced reversible decline in the values of current (maximal current amplitude, I max and integral current, I′) and kinetic parameters (frequency of opening F O , probability of the channel being open P O , mean open T O and closed T c times) show a nonspecific block of the voltage- and Ca2+-dependent SCl channel. ATP was a more potent blocker from the cytoplasmic side than from the luminal side of the channel. The SCl channel block was not due to Ca2+ chelation by ATP, nor to phosphorylation of the channel protein. The inhibitory action of ATP was mimicked by the nonhydrolyzable analogue adenylylimidodiphosphate (AMP-PNP) in the absence of Mg2+. The inhibitory potency of the adenine nucleotides was charge dependent in the following order ATP4− > ADP3− > > > AMP2−. The data suggest that ATP-induced effects are mediated via an open channel block mechanism. Modulation of the SCl channel by [ATP] cis and [Ca2+] cis indicates that (i) this channel senses the bioenergetic state of the muscle fiber and (ii) it is linked to the ATP-dependent cycling of the Ca2+ between the SR and the sarcoplasm. Received: 4 September 1996/Revised: 6 December 1996  相似文献   

4.
We explored the relationship between nucleotide-evoked changes in intracellular free calcium ([Ca2+] i ) and anion secretion by measuring [Ca2+] i and I SC simultaneously in Fura-2-loaded, cultured equine sweat gland epithelia. Apical ATP, UTP or UDP elicited sustained increases in [Ca2+] i that were initiated by the mobilization of cytoplasmic Ca2+ but maintained by Ca2+ influx. However, although these nucleotides also increased I SC , this response was transient whereas the [Ca2+] i signals were sustained. Experiments in which external Ca2+ was removed/replaced showed that Ca2+ entering nucleotide-stimulated cells elicited very little change in I SC . Cross desensitization experiments showed that UTP-stimulated epithelia became insensitive to ATP but that UTP could increase both [Ca2+] i and I SC in ATP-stimulated cells by activating `pyrimidinoceptors' essentially insensitive to ATP. Thapsigargin evoked a sustained rise in [Ca2+] i that was accompanied by a maintained increase in I SC . However, this increase in I SC was dependent upon external Ca2+ and so the responses to nucleotides and thapsigargin have different properties. ATP increased I SC in thapsigargin-treated cells without causing any rise in [Ca2+] i while ionomycin increased both parameters. The data therefore show that apical P2Y receptors allow nucleotides to increase I SC via two mechanisms, one of which appears to be [Ca2+] i -independent control of anion channels. Received: 8 December 1998/Revised: 23 April 1999  相似文献   

5.
In cystic fibrosis, the mutation of the CFTR protein causes reduced transepithelial Cl secretion. As recently proposed, beside its role of Cl channel, CFTR may regulate the activity of other channels such as a Ca2+-activated Cl channel. Using a calcium imaging system, we show, in adenovirus-CFTR infected Chinese Hamster Ovary (CHO) cell monolayers, that CFTR can act as a regulator of intracellular [Ca2+] i ([Ca2+] i ), involving purino-receptors. Apical exposure to ATP or UTP produced an increase in ([Ca2+] i in noninfected CHO cell monolayers (CHO-WT), in CHO monolayers infected with an adenovirus-CFTR (CHO-CFTR) or infected with an adenovirus-LacZ (CHO-LacZ). The transient [Ca2+] i increase produced by ATP or UTP could be mimicked by activation of CFTR with forskolin (20 μm) in CHO-CFTR confluent monolayers. However, forskolin had no significant effect on [Ca2+] i in noninfected CHO-WT or in CHO-LacZ cells. Pretreatment with purino-receptor antagonists such as suramin (100 μm) or reactive blue-2. (100 μm), and with hexokinase (0.28 U/mg) inhibited the [Ca2+] i response to forskolin in CHO-CFTR infected cells. Taken together, our experiments provide evidence for purino-receptor activation by ATP released from the cell and regulation of [Ca2+] i by CFTR in CHO epithelial cell membranes. Received: 5 April 1999/Revised: 28 June 1999  相似文献   

6.
Asn879 in the transmembrane segment M6 of the plasma membrane Ca2+ pump (PMCA human isoform 4xb) has been proposed to coordinate Ca2+ at the transport site through its carboxylate. This idea agrees with the fact that this Asn is conserved in other Ca2+-ATPases but is replaced by Asp, Glu, and other residues in closely related 2P-type ATPases of different ionic specificity. Previous mutagenesis studies have shown that the substitution of Ala for Asn abolishes the activity of the enzyme (Adebayo et al., 1995; Guerini et al., 1996). We have constructed a mutant PMCA in which the Asn879 was substituted by Asp. The mutant protein was expressed in Saccharomyces cerevisiae, solubilized and purified by calmodulin affinity chromatography. The Asn879Asp PMCA mutant exhibited about 30% of the wild type Ca2+-dependent ATPase activity and only a minor reduction of the apparent affinity for Ca2+. The decrease in the Ca2+-ATPase of the mutant enzyme was in parallel with the reduction in the amount of phosphoenzyme formed from Ca2+ plus ATP. Noteworthy, the mutation nearly eliminated the ability of the enzyme to hydrolyze pNPP which is maximal in the absence of Ca2+ revealing a major effect of the mutation on the Ca2+-independent reactions of the transport cycle. At a pH low enough to protonate the Asp carboxylate the pNPPase activity of Asn879Asp increased, suggesting that the binding of protons to Asn879 is essential for the activities catalyzed by E2-like forms of the enzyme.  相似文献   

7.
We examined the effects of pH, internal ionized Ca (Ca2+ i ), cellular ATP, external divalent cations and quinine on Cl-independent ouabain-resistant K+ efflux in volume-clamped sheep red blood cells (SRBCs) of normal high (HK) and low (LK) intracellular K+ phenotypes. In LK SRBCs the K+ efflux was higher at pH 9.0 (350%) than at pHs 7.4 and 6.5, and was inhibited by external divalent cations, quinine, and cellular ATP depletion. The above findings suggest that the increased K+ efflux at alkaline pH is due to the opening of ion channels or specific transporters in the cell membrane. In addition, K+ efflux was activated (100%) when Ca2+ i was increased (+A23187, +Ca2+ o ) into the μm range. However, in comparison to human red blood cells, the Ca2+ i -induced increase in K+ efflux in LK SRBCs was fourfold smaller and insensitive to quinine and charybdotoxin. The Na+ efflux was also higher at pH 9.0 than at pH 7.4, and activated (about 40%) by increasing Ca2+ i . In contrast, in HK SRBCs the K+ efflux at pH 9.0 was neither inhibited by quinine nor activated by Ca2+ i . These studies suggest the presence in LK SRBCs, of at least two pathways for Cl-independent K+ and Na+ transport, of which one is unmasked by alkalinization, and the other by a rise in Ca2+ i . Received: 23 May 1996/Revised: 6 December 1996  相似文献   

8.
The purified PMCA supplemented with phosphatidylcholine was able to hydrolyze pNPP in a reaction media containing only Mg2+ and K+. Micromolar concentrations of Ca2+ inhibited about 75% of the pNPPase activity while the inhibition of the remainder 25% required higher Ca2+ concentrations. Acidic lipids increased 5-10 fold the pNPPase activity either in the presence or in the absence of Ca2+. The activation by acidic lipids took place without a significant change in the apparent affinities for pNPP or K+ but the apparent affinity of the enzyme for Mg2+ increased about 10 fold. Thus, the stimulation of the pNPPase activity of the PMCA by acidic lipids was maximal at low concentrations of Mg2+. Although with differing apparent affinities vanadate, phosphate, ATP and ADP were all inhibitors of the pNPPase activity and their effects were not significantly affected by acidic lipids. These results indicate that (a) the phosphatase function of the PMCA is optimal when the enzyme is in its activated Ca2+ free conformation (E2) and (b) the PMCA can be activated by acidic lipids in the absence of Ca2+ and the activation improves the interaction of the enzyme with Mg2+.  相似文献   

9.
Extracellular nucleotides modulate renal ion transport. Our previous results in M-1 cortical collecting duct cells indicate that luminal and basolateral ATP via P2Y2 receptors stimulate luminal Ca2+-activated Cl channels and inhibit Na+ transport. Here we address the mechanism of ATP-mediated inhibition of Na+ transport. M-1 cells had a transepithelial voltage (V te ) of −31.4 ± 1.3 mV and a transepithelial resistance (R te ) of 1151 ± 28 Ωcm2. The amiloride-sensitive short circuit current (I sc ) was −28.0 ± 1.1 μA/cm2. The ATP-mediated activation of Cl channels was inhibited when cytosolic Ca2+ increases were blocked with cyclopiazonic acid (CPA). Without CPA the ATP-induced [Ca2+]i increase was paralleled by a rapid and transient R te decrease (297 ± 51 Ωcm2). In the presence of CPA, basolateral ATP led to an R te increase by 144 ± 17 Ωcm2 and decreased V te from −31 ± 2.6 to −26.6 ± 2.5 mV. I sc dropped from −28.6 ± 2.4 to −21.6 ± 1.9 μA/cm2. Similar effects were observed with luminal ATP. In the presence of amiloride, ATP was without effect. This reflects ATP-mediated inhibition of Na+ absorption. Lowering [Ca2+]i by removal of extracellular Ca2+ did not alter the ATP effect. PKC inhibition or activation were without effect. Na+ absorption was activated by pHi alkalinization and inhibited by pHi acidification. ATP slightly acidified M-1 cells by 0.05 ± 0.005 pH units, quantitatively not explaining the ATP-induced effect. In summary this indicates that extracellular ATP via luminal and basolateral P2Y2 receptors inhibits Na+ absorption. This effect is not mediated via [Ca2+]i, does not involve PKC and is to a small part mediated via intracellular acidification. Received: 9 February 2001/Revised: 17 May 2001  相似文献   

10.
In cystic fibrosis airway epithelia, mutation of the CFTR protein causes a reduced response of Cl secretion to secretagogues acting via cAMP. Using a Ca2+ imaging system, the hypothesis that CFTR activation may permit ATP release and regulate [Ca2+] i via a receptor-mediated mechanism, is tested in this study. Application of external nucleotides produced a significant increase in [Ca2+] i in normal (16HBE14o cell line and primary lung culture) and in cystic fibrosis (CFTE29o cell line) human airway epithelia. The potency order of nucleotides on [Ca2+] i variation was UTP ≫ ATP > UDP > ADP > AMP > adenosine in both cell types. The nucleotide [Ca2+] i response could be mimicked by activation of CFTR with forskolin (20 μm) in a temperature-dependent manner. In 16HBE14o cells, the forskolin-induced [Ca2+] i response increased with increasing temperature. In CFTE29o cells, forskolin had no effect on [Ca2+] i at body temperature-forskolin-induced [Ca2+] i response in CF cells could only be observed at low experimental temperature (14°C) or when cells were cultured at 26°C instead of 37°C. Pretreatment with CFTR channel blockers glibenclamide (100 μm) and DPC (100 μm), with hexokinase (0.5 U/mg), and with the purinoceptor antagonist suramin (100 μm), inhibited the forskolin [Ca2+] i response. Together, these results demonstrate that once activated, CFTR regulates [Ca2+] i by mediating nucleotide release and activating cell surface purinoceptors in normal and CF human airway epithelia. Received: 3 April 2000/Revised: 30 June 2000  相似文献   

11.
Apical plasma membrane vesicles were isolated from cultures of immortalized thick ascending limb of Henle's loop (TALH) cells and sorbitol uptake was investigated using a rapid filtration technique. In the presence of Mg2+, Ca2+, ATP, and GTP sorbitol equilibrated within three minutes with the intravesicular space; this uptake was reduced by 75% when the incubation temperature was decreased from 37°C to 4°C. A lower level of uptake was also observed in the presence of 100 μm quinidine and when Ca2+ or ATP were omitted from the medium. Membranes preincubated with Mg2+, Ca2+, ATP, and GTP showed, however, a high sorbitol uptake in ATP-free medium. Staurosporine, but only at high concentrations of 200 nm, inhibited sorbitol uptake when present during the transport experiments or during the preincubation with ATP. Similar results were obtained with 1 μm trifluoperazine. Protein kinase C inhibitory peptide was ineffective whereas 20 nm KT 5926, at low concentrations a specific inhibitor of Ca2+/calmodulin-dependent kinase, attenuated the activation. On the basis of these data we suggest that a Ca2+/calmodulin-dependent kinase is a mediator of regulation of sorbitol plasma membrane permeability in renal medullary cells. Received: 31 March 1997/Revised: 11 June 1997  相似文献   

12.
The interactions of divalent cations with the adenosine triphosphatase (ATPase) and para-nitrophenyl phosphatase (pNPPase) activity of the purified dog kidney Na pump and the fluorescence of fluorescein isothiocyanate (FITC)-labeled pump were determined. Sr2+ and Ba2+ did not compete with K+ for ATPase (an extracellular K+ effect). Sr2+ and Ba2+ did compete with Na+ for ATPase (an intracellular Na+ effect) and with K+ for pNPPase (an intracellular K+ effect). These results suggest that Ba2+ or Sr2+ can bind to the intracellular transport site, yet neither Ba2+ nor Sr2+ was able to activate pNPPase activity; we confirmed that Ca2+ and Mn2+ did activate. As another measure of cation binding, we observed that Ca2+ and Mn2+, but not Ba2+, decreased the fluorescence of the FITC-labeled pump; we confirmed that K+ substantially decreased the fluorescence. Interestingly, Ba2+ did shift the K+ dose-response curve. Ethane diamine inhibited Mn2+ stimulation of pNPPase (as well as K+ and Mg2+ stimulation) but did not shift the 50% inhibitory concentration (IC50) for the Mn2+-induced fluorescence change of FITC, though it did shift the IC50 for the K+-induced change. These results suggest that the Mn2+-induced fluorescence change is not due to Mn2+ binding at the transport site. The drawbacks of models in which Mn2+ stimulates pNPPase by binding solely to the catalytic site vs. those in which Mn2+ stimulates by binding to both the catalytic and transport sites are presented. Our results provide new insights into the pNPPase kinetic mechanism as well as how divalent cations interact with the Na pump.  相似文献   

13.
We had previously shown that an influx of extracellular Ca2+ (Ca2+ e ), though it occurs, is not strictly required for aminoethyldextran (AED)-triggered exocytotic membrane fusion in Paramecium. We now analyze, by quenched-flow/freeze-fracture, to what extent Ca2+ e contributes to exocytotic and exocytosis-coupled endocytotic membrane fusion, as well as to detachment of ``ghosts' — a process difficult to analyze by any other method or in any other system. Maximal exocytotic membrane fusion (analyzed within 80 msec) occurs readily in the presence of [Ca2+] e ≥ 5 × 10−6 m, while normally a [Ca2+] e = 0.5 mm is in the medium. A new finding is that exocytosis and endocytosis is significantly stimulated by increasing [Ca2+] e even beyond levels usually available to cells. Quenching of [Ca2+] e by EGTA application to levels of resting [Ca2+] i or slightly below does reduce (by ∼50%) but not block AED-triggered exocytosis (again tested with 80 msec AED application). This effect can be overridden either by increasing stimulation time or by readdition of an excess of Ca2+ e . Our data are compatible with the assumption that normally exocytotic membrane fusion will include a step of rapid Ca2+-mobilization from subplasmalemmal pools (``alveolar sacs') and, as a superimposed step, a Ca2+-influx, since exocytotic membrane fusion can occur at [Ca2+] e even slightly below resting [Ca2+] i . The other important conclusion is that increasing [Ca2+] e facilitates exocytotic and endocytotic membrane fusion, i.e., membrane resealing. In addition, we show for the first time that increasing [Ca2+] e also drives detachment of ``ghosts' — a novel aspect not analyzed so far in any other system. According to our pilot calculations, a flush of Ca2+, orders of magnitude larger than stationary values assumed to drive membrane dynamics, from internal and external sources, drives the different steps of the exo-endocytosis cycle. Received: 27 September 1996/Revised: 11 February 1997  相似文献   

14.
To investigate Na+ binding to the ion-binding sites presented on the cytoplasmic side of the Na,K-ATPase, equilibrium Na+-titration experiments were performed using two fluorescent dyes, RH421 and FITC, to detect protein-specific actions. Fluorescence changes upon addition of Na+ in the presence of various Mg2+ concentrations were similar and could be fitted with a Hill function. The half-saturating concentrations and Hill coefficients determined were almost identical. As RH421 responds to binding of a Na+ ion to the third neutral site whereas FITC monitors conformational changes in the ATP-binding site or its environment, this result implies that electrogenic binding of the third Na+ ion is the trigger for a structural rearrangement of the ATP-binding moiety. This enables enzyme phosphorylation, which is accompanied by a fast occlusion of the Na+ ions and followed by the conformational transition E1/E2 of the protein. The coordinated action both at the ion and the nucleotide binding sites allows for the first time a detailed formulation of the mechanism of enzyme phosphorylation that occurs only when three Na+ ions are bound. Received: 8 October 1998/Revised: 29 December 1998  相似文献   

15.
A Ca2+-activated Cl conductance in rat submandibular acinar cells was identified and characterized using whole-cell patch-clamp technique. When the cells were dialyzed with Cs-glutamate-rich pipette solutions containing 2 mm ATP and 1 μm free Ca2+ and bathed in N-methyl-d-glucamine chloride (NMDG-Cl) or Choline-Cl-rich solutions, they mainly exhibited slowly activating currents. Dialysis of the cells with pipette solutions containing 300 nm or less than 1 nm free Ca2+ strongly reduced the Cl currents, indicating the currents were Ca2+-dependent. Relaxation analysis of the ``on' currents of slowly activating currents suggested that the channels were voltage-dependent. The anion permeability sequence of the Cl channels was: NO 3 (2.00) > I (1.85) ≥ Br (1.69) > Cl (1.00) > bicarbonate (0.77) ≥ acetate (0.70) > propionate (0.41) ≫ glutamate (0.09). When the ATP concentration in the pipette solutions was increased from 0 to 10 mm, the Ca2+-dependency of the Cl current amplitude shifted to lower free Ca2+ concentrations by about two orders of magnitude. Cells dialyzed with a pipette solution (pCa = 6) containing ATP-γS (2 mm) exhibited currents of similar magnitude to those observed with the solution containing ATP (2 mm). The addition of the calmodulin inhibitors trifluoperazine (100 μm) or calmidazolium (25 μm) to the bath solution and the inclusion of KN-62 (1 μm), a specific inhibitor of calmodulin kinase, or staurosporin (10 nm), an inhibitor of protein kinase C to the pipette solution had little, if any, effect on the Ca2+-activated Cl currents. This suggests that Ca2+/Calmodulin or calmodulin kinase II and protein kinase C are not involved in Ca2+-activated Cl currents. The outward Cl currents at +69 mV were inhibited by NPPB (100 μm), IAA-94 (100 μm), DIDS (0.03–1 mm), 9-AC (300 μm and 1 mm) and DPC (1 mm), whereas the inward currents at −101 mV were not. These results demonstrate the presence of a bicarbonate- and weak acid-permeable Cl conductance controlled by cytosolic Ca2+ and ATP levels in rat submandibular acinar cells. Received: 9 January 1996/Revised: 20 May 1996  相似文献   

16.
The lipophilic fluorescent dye, FM1-43, as now frequently used to stain cell membranes and to monitor exo-endocytosis and membrane recycling, induces a cortical [Ca2+] i transient and exocytosis of dense core vesicles (``trichocysts') in Paramecium cells, when applied at usual concentrations (≤10 μm) in presence of extracellular Ca2+ ([Ca2+] o = 50 μm). When [Ca2+] o is kept at 30 nm (<[Ca2+]rest i ), in about one third of the population of extrudable trichocysts docked at the cell membrane, FM1-43 induces membrane fusion, visible by FM1-43 fluorescence of the vesicle membrane. However, in this system extrusion of secretory contents cannot occur in absence of any sufficient Ca2+ o . Upon readdition of Ca2+ o or some other appropriate Me2+ o at 90 μm, secretory contents can be released (complete exocytosis). Resulting ghosts formed in presence of Ca2+, Sr2+ or Mn2+ are vesicular, but when formed in presence of Mg2+, for reasons to be elucidated, they are tubular, though both types are endocytosed and lose their FM1-43 stain. In contrast, in presence of [Mg2+] o = 3 mm (which inhibits contents release), the exocytotic openings reseal and intact trichocysts with labeled membranes and with still condensed contents are detached from the cell surface (``frustrated exocytosis') within ∼15 min. They undergo cytoplasmic streaming and saltatory redocking, with a half-time of ∼35 min. During this time, the population of redocked trichocysts amenable to exocytosis upon a second stimulus increases with a half-time of ∼35 min. Therefore, acquirement of competence for exocytotic membrane fusion may occur with only a small delay after docking, and this maturation process may last only a short time. A similar number of trichocysts can be detached by merely increasing [Mg2+] o to 3 mm, or by application of the anti-calmodulin drug, R21547 (calmidazolium). Essentially we show (i) requirement of calmodulin and appropriate [Me2+] to maintain docking sites in a functional state, (ii) requirement of Ca2+ o or of some other Me2+ o to drive membrane resealing during exo-endocytosis, (iii) requirement of an ``empty' signal to go to the regular endocytotic pathway (with fading fluorescence), and (iv) occurrence of a ``filled' signal for trichocysts to undergo detachment and redocking (with fluorescence) after ``frustrated exocytosis'. Received: 20 January 2000/Revised: 5 May 2000  相似文献   

17.
The spinach (Spinacia oleracea L.) leaf plasma membrane Ca2+-ATPase is regulated by calmodulin (3-fold stimulation) and limited proteolysis (trypsin; 4-fold stimulation). The plasma membrane Ca2+-ATPase was identified as a 120-kDa polypeptide on western immunoblots using two different antibodies. During trypsin treatment the 120-kDa band diminished and a new band appeared at 109 kDa. The appearance of the 109-kDa band correlated with the increase in enzyme activity following trypsin treatment. The stimulations by calmodulin and trypsin were not additive, suggesting that the 109-kDa polypeptide represents a Ca2+-ATPase lackin a terminal fragment involved in calmodulin regulation. This was confirmed by 125I-calmodulin overlay studies where calmodulin labeled the 120-kDa band in the presence of Ca2+, while the 109-kDa band did not bind calmodulin. The effects of calmodulin and limited proteolysis on ATP-dependent accumulation of 45Ca2+ in isolated inside-out plasma membrane vesicles were studied, and kinetical analyses performed with respect to Ca2+ and ATP. Calmodulin increased the Vmax. for Ca2+ pumping 3-fold, and reduced Km for Ca2+ from 1.6 to 0.9 µM. The Km for ATP (11 µM) was not affected by calmodulin. The effects of limited proteolysis on the affinities for Ca2+ and ATP were similar to those obtained with calmodulin. Notably, however, limited proteolysis increased the Vmax. for Ca2+ pumping to a higher extent than calmodulin, indicating incomplete calmodulin activation, or removal of an additional inhibitory site by trypsin.  相似文献   

18.
Properties of large conductance Ca2+-activated K+ channels were studied in the soma of motoneurones visually identified in thin slices of neonatal rat spinal cord. The channels had a conductance of 82 ± 5 pS in external Ringer solution (5.6 mm K+ o //155 mm K+ i ) and 231 ± 4 pS in external high-K o solution (155 mm K+ o //155 mm K+ i ). The channels were activated by depolarization and by an increase in internal Ca2+ concentration. Potentials of half-maximum channel activation (E50) were −13, −34, −64 and −85 mV in the presence of 10−6, 10−5, 10−4 and 10−3 m internal Ca2+, respectively. Using an internal solution containing 10−4 m Ca2+, averaged KCa currents showed fast activation within 2–3 msec after a voltage step to +50 mV. Averaged KCa currents did not inactivate during 400 msec voltage pulses. External TEA reduced the apparent single-channel amplitude with a 50% blocking concentration (IC50) of 0.17 ± 0.02 mm. KCa channels were completely suppressed by externally applied 100 mm charybdotoxin. It is concluded that KCa channels activated by Ca2+ entry during the action potential play an important role in the excitability of motoneurones. Received: 7 November 1996/Revised: 29 October 1997  相似文献   

19.
Glucagon is known to increase intracellular cAMP levels and enhance glucose-induced electrical activity and insulin secretion in pancreatic β-cell perfused with Krebs-Ringer bicarbonate solution. The present experiments were aimed at evaluation of the hypothesis that changes in β-cells ATP-sensitive K+ (K(ATP)) channel activity are involved in the glucagon-induced enhancement of electrical activity. Channel activity was recorded using the cell-attached configuration of the patch-clamp technique. Addition of glucagon (2.9 × 10−7 m) in the presence of 11.1 mm glucose caused closure of K(ATP) channels followed by an increase in the frequency of biphasic current transients (action currents) due to action potential generation in the cell. Three calmodulin-antagonists (W-7, chlorpromazine, and trifluoperazine) restored with similar efficacy K(ATP) channel activity in cells being exposed to glucagon. At 2.8 mm glucose, glucagon did not affect K(ATP) channel activity until Ca2+ was released from Nitr-5 by flash photolysis, at which point channel activity was transiently suppressed. Similar effects were seen when db-cAMP was used instead of glucagon.These results support the view that glucagon and other cAMP-generating agonists enhance glucose-induced β-cell electrical activity through a Ca2+/calmodulin dependent-closure of K(ATP) channels. Received: 26 May 1998/Revised: 18 September 1998  相似文献   

20.
Dephosphorylation of Ca2+ channels by the Ca2+-activated phosphatase 2B (calcineurin) has been previously suggested as a mechanism of Ca2+-dependent inactivation of Ca2+ current in rat pituitary tumor (GH3) cells. Although recent evidence favors an inactivation mechanism involving direct binding of Ca2+ to the channel protein, the alternative ``calcineurin hypothesis' has not been critically tested using the specific calcineurin inhibitors cyclosporine A (CsA) or FK506 in GH3 cells. To determine if calcineurin plays a part in the voltage- and/or Ca2+-dependent components of dihydropyridine-sensitive Ca2+ current decay, we rapidly altered the intracellular Ca2+ buffering capacity of GH3 cells by flash photolysis of DM-nitrophen, a high affinity Ca2+ chelator. Flash photolysis induced a highly reproducible increase in the extent of Ca2+ current inactivation in a two-pulse voltage protocol with Ca2+ as the charge carrier, but had no effect when Ba2+ was substituted for Ca2+. Despite confirmation of the abundance of calcineurin in the GH3 cells by biochemical assays, acute application of CsA or FK506 after photolysis had no effect on Ca2+-dependent inactivation of Ca2+ current, even when excess cyclophilin or FK binding protein were included in the internal solution. Prolonged preincubation of the cells with FK506 or CsA did not inhibit Ca2+-dependent inactivation. Similarly, blocking calmodulin activation with calmidazolium or blocking calcineurin with fenvalerate did not influence the extent of Ca2+-dependent inactivation after photolysis. The results provide strong evidence against Ca2+-dependent dephosphorylation as the mechanism of Ca2+ current inactivation in GH3 cells, but support the alternative idea that Ca2+-dependent inactivation reflects a direct effect of intracellular Ca2+ on channel gating. Received: 12 August 1996/Revised: 21 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号