首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.

Background  

During mouse development, the precursor cells that give rise to the auditory sensory organ, the organ of Corti, are specified prior to embryonic day 14.5 (E14.5). Subsequently, the sensory domain is patterned precisely into one row of inner and three rows of outer sensory hair cells interdigitated with supporting cells. Both the restriction of the sensory domain and the patterning of the sensory mosaic of the organ of Corti involve Notch-mediated lateral inhibition and cellular rearrangement characteristic of convergent extension. This study explores the expression and function of a putative Notch target gene.  相似文献   

2.
In mammals, six separate sensory regions in the inner ear are essential for hearing and balance function. Each sensory region is made up of hair cells, which are the sensory cells, and their associated supporting cells, both arising from a common progenitor. Little is known about the molecular mechanisms that govern the development of these sensory organs. Notch signaling plays a pivotal role in the differentiation of hair cells and supporting cells by mediating lateral inhibition via the ligands Delta-like 1 and Jagged (JAG) 2. However, another Notch ligand, JAG1, is expressed early in the sensory patches prior to cell differentiation, indicating that there may be an earlier role for Notch signaling in sensory development in the ear. Here, using conditional gene targeting, we show that the Jag1 gene is required for the normal development of all six sensory organs within the inner ear. Cristae are completely lacking in Jag1-conditional knockout (cko) mutant inner ears, whereas the cochlea and utricle show partial sensory development. The saccular macula is present but malformed. Using SOX2 and p27kip1 as molecular markers of the prosensory domain, we show that JAG1 is initially expressed in all the prosensory regions of the ear, but becomes down-regulated in the nascent organ of Corti by embryonic day 14.5, when the cells exit the cell cycle and differentiate. We also show that both SOX2 and p27kip1 are down-regulated in Jag1-cko inner ears. Taken together, these data demonstrate that JAG1 is expressed early in the prosensory domains of both the cochlear and vestibular regions, and is required to maintain the normal expression levels of both SOX2 and p27kip1. These data demonstrate that JAG1-mediated Notch signaling is essential during early development for establishing the prosensory regions of the inner ear.  相似文献   

3.
The development of the mammalian cochlea is an example of patterning in the peripheral nervous system. Sensory hair cells and supporting cells in the cochlea differentiate via regional and cell fate specification. The Notch signaling components shows both distinct and overlapping expression patterns of Notch1 receptor and its ligands Jagged1 (Jag1) and Jagged2 (Jag2) in the developing auditory epithelium of the rat. On embryonic day 16 (E16), many precursor cells within the K?lliker's organ immunostained for the presence of both Notch1 and Jag1, while the area of hair cell precursors did not express either Notch1 and Jag1. During initial events of hair cell differentiation between E18 and birth, Notch1 and Jag1 expression predominated in supporting cells and Jag2 in nascent hair cells. Early after birth, Jag2 expression decreased in hair cells while the pattern of Notch1 expression now included both supporting cells and hair cells. We show that the normal pattern of hair cell differentiation is disrupted by alteration of Notch signaling. A decrease of either Notch1 or Jag1 expression by antisense oligonucleotides in cultures of the developing sensory epithelium resulted in an increase in the number of hair cells. Our data suggest that the Notch1 signaling pathway is involved in a complex interplay between the consequences of different ligand-Notch1 combinations during cochlear morphogenesis and the phases of hair cell differentiation.  相似文献   

4.
Recent studies have demonstrated that the Notch signaling pathway regulates the differentiation of sensory hair cells in the vertebrate inner ear [1] [2] [3] [4] [5] [6] [7] [8] [9]. We have shown previously that in mice homozygous for a targeted null mutation of the Jagged2 (Jag2) gene, which encodes a Notch ligand, supernumerary hair cells differentiate in the cochlea of the inner ear [7]. Other components of the Notch pathway, including the Lunatic fringe (Lfng) gene, are also expressed during differentiation of the inner ear in mice [6] [7] [8] [9] [10]. In contrast to the Jag2 gene, which is expressed in hair cells, the Lfng gene is expressed in non-sensory supporting cells in the mouse cochlea [10]. Here we demonstrate that a mutation in the Lfng gene partially suppresses the effects of the Jag2 mutation on hair cell development. In mice homozygous for targeted mutations of both Jag2 and Lfng, the generation of supernumerary hair cells in the inner hair cell row is suppressed, while supernumerary hair cells in the outer hair cell rows are unaffected. We also demonstrate that supernumerary hair cells are generated in mice heterozygous for a Notch1 mutation. We suggest a model for the action of the Notch signaling pathway in regulating hair cell differentiation in the cochlear sensory epithelium.  相似文献   

5.
Each of the sensory patches in the epithelium of the inner ear is a mosaic of hair cells and supporting cells. Notch signalling is thought to govern this pattern of differentiation through lateral inhibition. Recent experiments in the chick suggest, however, that Notch signalling also has a prior function - inductive rather than inhibitory - in defining the prosensory patches from which the differentiated cells arise. Several Notch ligands are expressed in each patch, but their individual roles in relation to the two functions of Notch signalling are unclear. We have used a Cre-LoxP approach to knock out two of these ligands, Delta1 (Dll1) and Jagged1 (Jag1), in the mouse ear. In the absence of Dll1, auditory hair cells develop early and in excess, in agreement with the lateral inhibition hypothesis. In the absence of Jag1, by contrast, the total number of these cells is strongly reduced, with complete loss of cochlear outer hair cells and some groups of vestibular hair cells, indicating that Jag1 is required for the prosensory inductive function of Notch. The number of cochlear inner hair cells, however, is almost doubled. This correlates with loss of expression of the cell cycle inhibitor p27(Kip1) (Cdkn1b), suggesting that signalling by Jag1 is also needed to limit proliferation of prosensory cells, and that there is a core part of this population whose prosensory character is established independently of Jag1-Notch signalling. Our findings confirm that Notch signalling in the ear has distinct prosensory and lateral-inhibitory functions, for which different ligands are primarily responsible.  相似文献   

6.
The mammalian organ of Corti is a highly specialized sensory organ of the cochlea with a fine-grained pattern that is essential for auditory function. The sensory epithelium, the organ of Corti consists of a single row of inner hair cells and three rows of outer hair cells that are intercalated by support cells in a mosaic pattern. Previous studies show that the Wnt pathway regulates proliferation, promotes medial compartment formation in the cochlea, differentiation of the mechanosensory hair cells and axon guidance of Type II afferent neurons. WNT ligand expressions are highly dynamic throughout development but are insufficient to explain the roles of the Wnt pathway. We address a potential way for how WNTs specify the medial compartment by characterizing the expression of Porcupine (PORCN), an O-acyltransferase that is required for WNT secretion. We show PORCN expression across embryonic ages (E)12.5 - E14.5, E16.5, and postnatal day (P)1. Our results showed enriched PORCN in the medial domains during early stages of development, indicating that WNTs have a stronger influence on patterning of the medial compartment. PORCN was rapidly downregulated after E14.5, following the onset of sensory cell differentiation; residual expression remained in some hair cells and supporting cells. On E14.5 and E16.5, we also examined the spatial expression of Gsk3β, an inhibitor of canonical Wnt signaling to determine its potential role in radial patterning of the cochlea. Gsk3β was broadly expressed across the radial axis of the epithelium; therefore, unlikely to control WNT-mediated medial specification. In conclusion, the spatial expression of PORCN enriches WNT secretion from the medial domains of the cochlea to influence the specification of cell fates in the medial sensory domain.  相似文献   

7.
Cellular commitment and differentiation in the organ of Corti   总被引:2,自引:0,他引:2  
The organ of Corti, the sensory epithelium of the mammalian cochlea, develops from a subset of cells located along the dorsal side (referred to as the floor) of the cochlear duct. Over the course of embryonic development, cells within the developing organ of Corti become committed to develop as each of the unique cell types within the organ, including inner and outer hair cells, and at least four different types of supporting cells. Moreover, these different cell types are subsequently arranged into a highly rigorous cellular mosaic that includes the formation of ordered rows of both hair cells and supporting cells. The events that regulate both the location of the organ of Corti within the cochlear duct, the specification of each cell type and cellular patterning remain poorly understood. However, recent results have significantly improved our understanding of the molecular, genetic and cellular factors that mediate some of the decisions required for the development of this structure. In this review I will present an overview of cochlear development and then discuss some of the most recent and enlightening results regarding the molecular mechanism underlying the formation of this remarkable structure.  相似文献   

8.
9.
The cellular mosaic of the mammalian organ of Corti represents one of the most highly ordered structures in any vertebrate system. A single row of inner hair cells and three or four rows of outer hair cells extend along the basal-to-apical axis of the cochlea. The factors that play a role in the development of specific cell types within the cochlea are largely unknown; however, the results of previous studies have strongly suggested that retinoic acid plays a role in the development of cells as hair cells. To determine whether cochlear progenitor cells can respond directly to retinoic acid, the expression patterns for each of the RAR and RXR receptors within the embryonic cochlear duct were determined by in situ hybridization. Results indicate that RARalpha, RXRalpha, and RXRgamma are initially expressed throughout the cochlear duct. As development continues, the expression of each receptor becomes more intense in cells that will develop as hair cells. At the same time, receptor expression is down-regulated in cells that will develop as nonsensory cell types. To determine the effects of retinoic acid signaling during the development of the organ of Corti, activation of retinoid receptors was blocked in cultures of the embryonic cochlea through receptor-specific antagonism or inhibition of retinoic acid synthesis. Results indicate that inhibition of retinoic acid signaling induces a significant decrease in the number of cells that develop as hair cells and a disruption in the development of the organ of Corti. These results demonstrate that cells within the developing cochlea can respond to retinoic acid and that signaling by retinoic acid is necessary for the normal development of the organ of Corti.  相似文献   

10.
Strict control of cellular proliferation is required to shape the complex structures of the developing embryo. The organ of Corti, the auditory neuroepithelium of the inner ear in mammals, consists of two types of terminally differentiated mechanosensory hair cells and at least four types of supporting cells arrayed precisely along the length of the spiral cochlea. In mice, the progenitors of greater than 80% of both hair cells and supporting cells undergo their terminal division between embryonic day 13 (E13) and E14. As in humans, these cells persist in a non-proliferative state throughout the adult life of the animal. Here we report that the correct timing of cell cycle withdrawal in the developing organ of Corti requires p27(Kip1), a cyclin-dependent kinase inhibitor that functions as an inhibitor of cell cycle progression. p27(Kip1) expression is induced in the primordial organ of Corti between E12 and E14, correlating with the cessation of cell division of the progenitors of the hair cells and supporting cells. In wild-type animals, p27(Kip1) expression is downregulated during subsequent hair cell differentiation, but it persists at high levels in differentiated supporting cells of the mature organ of Corti. In mice with a targeted deletion of the p27(Kip1) gene, proliferation of the sensory cell progenitors continues after E14, leading to the appearance of supernumerary hair cells and supporting cells. In the absence of p27(Kip1), mitotically active cells are still observed in the organ of Corti of postnatal day 6 animals, suggesting that the persistence of p27(Kip1) expression in mature supporting cells may contribute to the maintenance of quiescence in this tissue and, possibly, to its inability to regenerate. Homozygous mutant mice are severely hearing impaired. Thus, p27(Kip1) provides a link between developmental control of cell proliferation and the morphological development of the inner ear.  相似文献   

11.
Hair cells of the inner ear sensory organs originate from progenitor cells located at specific domains of the otic vesicle: the prosensory patches. Notch signalling is necessary for sensory development and loss of function of the Notch ligand jagged 1 (Jag1, also known as serrate 1) results in impaired sensory organs. However, the underlying mechanism of Notch function is unknown. Our results show that in the chicken otic vesicle, the Sox2 expression domain initially contains the nascent patches of Jag1 expression but, later on, Sox2 is only maintained in the Jag1-positive domains. Ectopic human JAG1 (hJag1) is able to induce Sox2 expression and enlarged sensory organs. The competence to respond to hJag1, however, is confined to the regions that expressed Sox2 early in development, suggesting that hJag1 maintains Sox2 expression rather than inducing it de novo. The effect is non-cell-autonomous and requires Notch signalling. hJag1 activates Notch, induces Hes/Hey genes and endogenous Jag1 in a non-cell-autonomous manner, which is consistent with lateral induction. The effects of hJag1 are mimicked by Jag2 but not by Dl1. Sox2 is sufficient to activate the Atoh1 enhancer and to ectopically induce sensory cell fate outside neurosensory-competent domains. We suggest that the prosensory function of Jag1 resides in its ability to generate discrete domains of Notch activity that maintain Sox2 expression within restricted areas of an extended neurosensory-competent domain. This provides a mechanism to couple patterning and cell fate specification during the development of sensory organs.  相似文献   

12.
In cold-blooded animals, lost sensory hair cells can be replaced via a process of regenerative cell proliferation of epithelial supporting cells. In contrast, in mammalian cochlea, receptor (hair) cells are believed to be produced only during embryogenesis; after maturity, sensory or supporting cell proliferation or regeneration are thought to occur neither under normal conditions nor after trauma. Using bromodeoxyuridine (BrdU) as a proliferation marker, we have assessed cell proliferation activity in the mature organ of Corti in the cochlea of young guinea pigs following severe damage to the outer hair cells induced by kanamycin sulfate and ethacrynic acid. Although limited, we have found BrdU-labeled nuclei in the regions of Deiters cells when BrdU is given for 3 days or longer. When BrdU is given for 10 days, at least one labeled nucleus can be observed in the organ of Corti in approximately half of the ears; proliferating cells typically appear as paired daughters, with one nucleus being displaced away from the basement membrane to the position expected of the hair cells. Double-staining with antibodies to cytokeratin, vimentin, and p27 have shown that the BrdU-labeled nuclei are located in cells phenotypically similar to Deiters cells. Most of the uptake of BrdU occurs 3–5 days following ototoxic insult, and the number of BrdU-labeled cells does not decrease until 30 days following insult. These findings indicate that Deiters cells in the mature mammalian cochlea maintain a limited competence to re-enter the cell cycle and proliferate after hair cell injury, and that they can survive at least for 1 month.This work was supported by the Ministry of Health, Labour, and Welfare, Japan (grants 12120101, 15110201) and by the Ministry of Education, Culture, Sports, Science, and Technology, Japan (grant 13470357) to T.Y.  相似文献   

13.
The human ear is capable of processing sound with a remarkable resolution over a wide range of intensity and frequency. This ability depends largely on the extraordinary feats of the hearing organ, the organ of Corti and its sensory hair cells. The organ of Corti consists of precisely patterned rows of sensory hair cells and supporting cells along the length of the snail-shaped cochlear duct. On the apical surface of each hair cell, several rows of actin-containing protrusions, known as stereocilia, form a "V"-shaped staircase. The vertices of all the "V"-shaped stereocilia point away from the center of the cochlea. The uniform orientation of stereocilia in the organ of Corti manifests a distinctive form of polarity known as planar cell polarity (PCP). Functionally, the direction of stereociliary bundle deflection controls the mechanical channels located in the stereocilia for auditory transduction. In addition, hair cells are tonotopically organized along the length of the cochlea. Thus, the uniform orientation of stereociliary bundles along the length of the cochlea is critical for effective mechanotransduction and for frequency selection. Here we summarize the morphological and molecular events that bestow the structural characteristics of the mammalian hearing organ, the growth of the snail-shaped cochlear duct and the establishment of PCP in the organ of Corti. The PCP of the sensory organs in the vestibule of the inner ear will also be described briefly.  相似文献   

14.
The Notch signaling pathway is thought to regulate multiple stages of inner ear development. Mutations in the Notch signaling pathway cause disruptions in the number and arrangement of hair cells and supporting cells in sensory regions of the ear. In this study we identify an insertional mutation in the mouse Sfswap gene, a putative splicing factor, that results in mice with vestibular and cochlear defects that are consistent with disrupted Notch signaling. Homozygous Sfswap mutants display hyperactivity and circling behavior consistent with vestibular defects, and significantly impaired hearing. The cochlea of newborn Sfswap mutant mice shows a significant reduction in outer hair cells and supporting cells and ectopic inner hair cells. This phenotype most closely resembles that seen in hypomorphic alleles of the Notch ligand Jagged1 (Jag1). We show that Jag1; Sfswap compound mutants have inner ear defects that are more severe than expected from simple additive effects of the single mutants, indicating a genetic interaction between Sfswap and Jag1. In addition, expression of genes involved in Notch signaling in the inner ear are reduced in Sfswap mutants. There is increased interest in how splicing affects inner ear development and function. Our work is one of the first studies to suggest that a putative splicing factor has specific effects on Notch signaling pathway members and inner ear development.  相似文献   

15.
Lateral inhibition mediated by Notch is thought to generate the mosaic of hair cells and supporting cells in the inner ear, but the effects of the activated Notch protein itself have never been directly tested. We have explored the role of Notch signalling by transiently overexpressing activated Notch (NICD) in the chick otocyst. We saw two contrasting consequences, depending on the time and site of gene misexpression: (1) inhibition of hair-cell differentiation within a sensory patch; and (2) induction of ectopic sensory patches. We infer that Notch signalling has at least two functions during inner ear development. Initially, Notch activity can drive cells to adopt a prosensory character, defining future sensory patches. Subsequently, Notch signalling within each such patch mediates lateral inhibition, restricting the proportion of cells that differentiate as hair cells so as to generate the fine-grained mixture of hair cells and supporting cells.  相似文献   

16.
The orphan nuclear receptor COUP-TFI (Nr2f1) regulates many aspects of mammalian development, but little is known about its role in cochlear hair cell and Deiter's support cell development. The COUP-TFI knockout (COUP-TFI(-/-)) has a significant increase in hair cell (HC) number in the mid-to-apical turns. The total number of hair cells is not increased over wild type, perhaps because of displaced hair cells and a shortened cochlear duct. This implicates a defect of convergent-extension in the COUP-TFI(-/-) duct. In addition, excess proliferation in the COUP-TFI(-/-) sensory epithelium indicates that the origin of the extra HCs in the apex is complex. Because loss-of-function studies of Notch signaling components have similar phenotypes, we investigated Notch regulation of hair cell differentiation in COUP-TFI(-/-) mice and confirmed misregulation of Notch signaling components, including Jag1, Hes5 and in a manner consistent with reduced Notch signaling, and correlated with increases in hair cell and support cell differentiation. The disruption of Notch signaling by a gamma-secretase inhibitor in an in vitro organ culture system of wild-type cochleae resulted in a reduction in expression of the Notch target gene Hes5 and an increase in hair cell differentiation. Importantly, inhibition of Notch activity resulted in a greater increase in hair cell differentiation in COUP-TFI(-/-) cochlear cultures than in wild-type cultures, suggesting a hypersensitivity to Notch inactivation in COUP-TFI(-/-) cochlea, particularly at the apical turn. Thus, we present evidence that reduced Notch signaling contributes to increases in hair cell and support cell differentiation in COUP-TFI(-/-) mice, and suggest that COUP-TFI is required for Notch regulation of hair cell and support cell differentiation.  相似文献   

17.
Notch signalling is well-known to mediate lateral inhibition in inner ear sensory patches, so as to generate a balanced mixture of sensory hair cells and supporting cells. Recently, however, we have found that ectopic Notch activity at an early stage can induce the formation of ectopic sensory patches. This suggests that Notch activity may have two different functions in normal ear development, acting first to promote the formation of the prosensory patches, and then later to regulate hair-cell production within the patches. The Notch ligand Serrate1 (Jag1 in mouse and humans) is expressed in the patches from an early stage and may provide Notch activation during the prosensory phase. Here, we test whether Notch signalling is actually required for prosensory patch development. When we block Notch activation in the chick embryo using the gamma-secretase inhibitor DAPT, we see a complete loss of prosensory epithelial cells in the anterior otocyst, where they are diverted into a neuroblast fate via failure of Delta1-dependent lateral inhibition. The cells of the posterior prosensory patch remain epithelial, but expression of Sox2 and Bmp4 is drastically reduced. Expression of Serrate1 here is initially almost normal, but subsequently regresses. The patches of sensory hair cells that eventually develop are few and small. We suggest that, in normal development, factors other than Notch activity initiate Serrate1 expression. Serrate1, by activating Notch, then drives the expression of Sox2 and Bmp4, as well as expression of the Serrate1 gene itself. The positive feedback maintains Notch activation and thereby preserves and perhaps extends the prosensory state, leading eventually to the development of normal sensory patches.  相似文献   

18.
Notch-mediated lateral inhibition has been reported to regulate auditory hair cell and supporting cell development from common precursors. While the Notch effector genes Hes1, Hes5 and Hey1 are expressed in the developing cochlea, inactivation of either of them causes only mild abnormality, suggesting their functional redundancy. To explore the roles of Hes/Hey genes in cochlear development, we examined compound heterozygous or homozygous mutant mice that lacked Hes1, Hes5 and Hey1 alleles. We found that a reduction in Hes/Hey gene dosage led to graded increase of hair cell formation. However, if at least one allele of Hes1, Hes5 or Hey1 was intact, excessive hair cells were accompanied by overproduction of supporting cells, suggesting that the hair cell increase does not occur at the expense of supporting cells, and that each Hes/Hey gene functions to induce supporting cells. By contrast, when all alleles of Hes1, Hes5 and Hey1 were inactivated, the number of hair cells increased more drastically, whereas that of supporting cells was unchanged compared with control, suggesting that supporting cell formation was balanced by their overproduction and fate conversion into hair cells. The increase of the cell numbers seemed to occur after the prosensory domain formation in the mutants because the proliferation state and the size of the prosensory domain were not affected. Thus, Hes1, Hes5 and Hey1 cooperatively inhibit hair cell formation, and one allele of Hes1, Hes5 or Hey1 is sufficient for supporting cell production probably by lateral inhibition in the sensory epithelium. Strikingly, Hes/Hey mutations lead to disorganized cell alignment and polarity and to hearing loss despite hair cell overproduction. These results suggest that Hes/Hey gene dosage is essential not only for generation of appropriate numbers of hair cells and supporting cells by controlling cell proliferation and lateral inhibition but also for the hearing ability by regulating the cell alignment and polarity.  相似文献   

19.
In mammals, auditory hair cells are generated only during embryonic development and loss or damage to hair cells is permanent. However, in non-mammalian vertebrate species, such as birds, neighboring glia-like supporting cells regenerate auditory hair cells by both mitotic and non-mitotic mechanisms. Based on work in intact cochlear tissue, it is thought that Notch signaling might restrict supporting cell plasticity in the mammalian cochlea. However, it is unresolved how Notch signaling functions in the hair cell-damaged cochlea and the molecular and cellular changes induced in supporting cells in response to hair cell trauma are poorly understood. Here we show that gentamicin-induced hair cell loss in early postnatal mouse cochlear tissue induces rapid morphological changes in supporting cells, which facilitate the sealing of gaps left by dying hair cells. Moreover, we provide evidence that Notch signaling is active in the hair cell damaged cochlea and identify Hes1, Hey1, Hey2, HeyL, and Sox2 as targets and potential Notch effectors of this hair cell-independent mechanism of Notch signaling. Using Cre/loxP based labeling system we demonstrate that inhibition of Notch signaling with a γ- secretase inhibitor (GSI) results in the trans-differentiation of supporting cells into hair cell-like cells. Moreover, we show that these hair cell-like cells, generated by supporting cells have molecular, cellular, and basic electrophysiological properties similar to immature hair cells rather than supporting cells. Lastly, we show that the vast majority of these newly generated hair cell-like cells express the outer hair cell specific motor protein prestin.  相似文献   

20.
From the apical end of the inner hair cell of the organ of Corti in the guinea pig cochlea protrude four to five rows of stereocilia shaped in a pattern not unlike the wings of a bird. In the area devoid of cuticular substance facing toward the tunnel of Corti lies a consistently present centriole. The ultrastructure of this centriole is similar to that of the basal body of the kinocilium located in the periphery of the sensory hair bundles in the vestibular and lateral line organ sensory cells and to that of the centrioles of other cells. The physiological implications of the anatomical orientation of this centriole are discussed in terms of directional sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号