共查询到20条相似文献,搜索用时 31 毫秒
1.
Kubin T Pöling J Kostin S Gajawada P Hein S Rees W Wietelmann A Tanaka M Lörchner H Schimanski S Szibor M Warnecke H Braun T 《Cell Stem Cell》2011,9(5):420-432
Cardiomyocyte remodeling, which includes partial dedifferentiation of cardiomyocytes, is a process that occurs during both acute and chronic disease processes. Here, we demonstrate that oncostatin M (OSM) is a major mediator of cardiomyocyte dedifferentiation and remodeling during acute myocardial infarction (MI) and in chronic dilated cardiomyopathy (DCM). Patients suffering from DCM show a strong and lasting increase of OSM expression and signaling. OSM treatment induces dedifferentiation of cardiomyocytes and upregulation of stem cell markers and improves cardiac function after MI. Conversely, inhibition of OSM signaling suppresses cardiomyocyte remodeling after MI and in a mouse model of DCM, resulting in deterioration of heart function after MI but improvement of cardiac performance in DCM. We postulate that dedifferentiation of cardiomyocytes initially protects stressed hearts but fails to support cardiac structure and function upon continued activation. Manipulation of OSM signaling provides a means to control the differentiation state of cardiomyocytes and cellular plasticity. 相似文献
2.
Chen X Sebastian BM Nagy LE 《American journal of physiology. Endocrinology and metabolism》2007,292(2):E621-E628
Chronic ethanol feeding to mice and rats decreases serum adiponectin concentration and adiponectin treatment attenuates chronic ethanol-induced liver injury. Although it is clear that lowered adiponectin has pathophysiological importance, the mechanisms by which chronic ethanol decreases adiponectin are not known. Here, we have investigated the impact of chronic ethanol feeding on adiponectin expression and secretion by adipose tissue. Rats were fed a 36% Lieber-DeCarli ethanol-containing liquid diet or pair-fed control diet for 4 wk. Chronic ethanol feeding decreased adiponectin mRNA but had no effect on adiponectin protein in subcutaneous adipose tissue. Chronic ethanol feeding also reduced adiponectin secretion by isolated subcutaneous and retroperitoneal adipocytes despite the maintenance of equivalent intracellular concentrations of adiponectin between subcutaneous adipocytes from ethanol- and pair-fed rats. Treatment with brefeldin A suppressed adiponectin secretion by subcutaneous adipocytes from pair-fed rats but had little effect after ethanol feeding. In subcutaneous adipocytes from pair-fed rats, adiponectin was enriched in endoplasmic reticulum (ER)/Golgi relative to plasma membrane; however, after chronic ethanol feeding, adiponectin was equally distributed between plasma membrane and ER/Golgi fractions. In conclusion, chronic ethanol feeding impaired adiponectin secretion by subcutaneous and retroperitoneal adipocytes; impaired secretion likely contributes to decreased adiponectin concentrations after chronic ethanol feeding. 相似文献
3.
In Duk Jung Kyung Tae Noh Chang-Min Lee Soo Kyung Jeong Won Sun Park Cheol-Heui Yun Yeong-Min Park 《Biochemical and biophysical research communications》2010,394(2):272-278
Oncostatin M (OSM) is a pleiotropic cytokine and a member of the gp130/IL-6 cytokine family that has been found to be involved in both pro- and anti-inflammatory responses in cell-mediated immunity. Maturation of dendritic cells (DCs) is crucial for initiation of primary immune responses and is regulated by several stimuli. In this study, the role of OSM in the phenotypic and functional maturation of DCs was evaluated in vitro. Stimulation with OSM upregulated the expression of CD80, CD86, MHC class I and MHC class II and reduced the endocytic capacity of immature DCs. Moreover, OSM induced the allogeneic immunostimulatory capacity of DCs by stimulating the production of the Th1-promoting cytokine IL-12. OSM also increased the production of IFN-γ by T cells in mixed-lymphocyte reactions, which would be expected to contribute to the Th1 polarization of the immune response. The expression of surface markers and cytokine production in DCs was mediated by both the MAPK and NF-κB pathways. Taken together, these results indicate that OSM may play a role in innate immunity and in acquired immunity by enhancing DCs maturation and promoting Th1 immune responses. 相似文献
4.
Several lines of evidence have supported a link between obesity and inflammation. The present study investigated the capacity of leptin and globular adiponectin to affect tumor necrosis factor alpha (TNF-alpha) production in murine peritoneal macrophages. Leptin stimulated TNF-alpha production at mRNA as well as protein levels in a dose- and time-dependent manner. Intracellular cAMP concentration was increased and protein kinase A (PKA) was activated with the treatment of leptin, subsequently downstream MAPK signal proteins, ERK1/2 and p38, were phosphorylated. Specific inhibitors for the signal proteins, Rp cAMPS, H89, PD98059, and U0126, or SB203580, suppressed the signaling pathway and TNF-alpha expression. Although gAd partially increased cAMP concentration and PKA activity, it directly reduced leptin-induced ERK1/2 and p38 MAPK phosphorylation thus inhibiting TNF-alpha production. In conclusion, leptin promotes inflammation by stimulating TNF-alpha production, which is mediated by cAMP-PKA-ERK1/2 and p38 MAPK pathways. gAd inhibited leptin-induced TNF-alpha production through suppressing phosphorylation of ERK1/2 and p38 pathways. 相似文献
5.
6.
7.
Oncostatin M induces proliferation of human adipose tissue-derived mesenchymal stem cells 总被引:3,自引:0,他引:3
Song HY Jeon ES Jung JS Kim JH 《The international journal of biochemistry & cell biology》2005,37(11):2357-2365
Interleukin-6 (IL-6) subfamily of cytokines, including oncostatin M (OSM), leukemia inhibitory factor (LIF), and IL-6, has been implicated in a variety of physiological responses, such as cell growth, differentiation, and inflammation. In the present study, we demonstrated that both OSM and LIF stimulated the proliferation of human adipose tissue-derived mesenchymal stem cells (hATSCs), however, IL-6 had no effect on cell proliferation. OSM treatment induced phosphorylation of ERK, and pretreatment with U0126, a MEK inhibitor, prevented the OSM-stimulated proliferation of hATSCs, suggesting that the MEK/ERK pathway is involved in the OSM-induced proliferation. Treatment with OSM also induced phosphorylation of JAK2 and JAK3, and pretreatment of the cells with WHI-P131, a JAK3 inhibitor, but not with AG490, a JAK2 inhibitor, attenuated the OSM-induced proliferation of hATSCs. Furthermore, OSM treatment elicited phosphorylation of STAT1 and STAT3, and pretreatment with WHI-P131 specifically prevented the OSM-induced phosphorylation of STAT1, without affecting the OSM-induced phosphorylation of ERK and STAT3. These results suggest that two separate signaling pathways, such as MEK/ERK and JAK3/STAT1, are independently involved in the OSM-stimulated proliferation of hATSCs. 相似文献
8.
Aldosterone is considered as a new cardiovascular risk factor that plays an important role in metabolic syndrome; however, the underlying mechanism of these effects is not clear. Hypoadiponectinemia and elevated circulating concentration of plasminogen activator inhibitor-1 (PAI-1) are causally associated with obesity-related insulin resistance and cardiovascular disease. The aim of the present study is to investigate the effect of aldosterone on the production of adiponectin and PAI-1 in 3T3-L1 adipocytes. Northern and Western blot analyses revealed that aldosterone treatment inhibited adiponectin mRNA expression and secretion and simultaneously enhanced PAI-1 mRNA expression and secretion in a time- and dose-dependent manner. Rosiglitazone did not prevent aldosterone's effect on adiponectin or PAI-1 expression. In contrast, tumor necrosis factor (TNF)-α produced dramatic synergistic effects on adiponectin and PAI-1 expression when added together with aldosterone. Furthermore, the effects of aldosterone on adiponectin and PAI-1 expression appear to be mediated through glucocorticoid receptor (GR) but not mineralocorticoid receptor (MR). These results suggest that the effects of aldosterone on adiponectin and PAI-1 production are one of the underlying mechanisms linking it to insulin resistance, metabolic syndrome and cardiovascular disease. 相似文献
9.
Wong KE Kong J Zhang W Szeto FL Ye H Deb DK Brady MJ Li YC 《The Journal of biological chemistry》2011,286(39):33804-33810
Our previous studies demonstrated a high fat diet-resistant lean phenotype of vitamin D receptor (VDR)-null mutant mice mainly due to increased energy expenditure, suggesting an involvement of the VDR in energy metabolism. Here, we took a transgenic approach to further define the role of VDR in adipocyte biology. We used the aP2 gene promoter to target the expression of the human (h) VDR in adipocytes in mice. In contrast to the VDR-null mice, the aP2-hVDR Tg mice developed obesity compared with the wild-type counterparts without changes in food intake. The increase in fat mass was mainly due to markedly reduced energy expenditure, which was correlated with decreased locomotive activity and reduced fatty acid β-oxidation and lipolysis in the adipose tissue in the transgenic mice. Consistently, the expression of genes involved in the regulation of fatty acid transport, thermogenesis, and lipolysis were suppressed in the transgenic mice. Taken together, these data confirm an important role of the VDR in the regulation of energy metabolism. 相似文献
10.
11.
12.
Oncostatin M and hepatocyte growth factor induce hepatic maturation via distinct signaling pathways 总被引:12,自引:0,他引:12
Liver development is regulated by soluble factors as well as cell-cell contacts. We previously reported that oncostatin M (OSM) induced hepatic maturation in a primary culture of embryonic day 14 liver cells. While OSM expression in the liver starts in mid gestation and decreases in postnatal stages, hepatocyte growth factor (HGF) is mainly expressed in the liver in the first few days after birth. In this study, we compared the effect of OSM and HGF on the differentiation of fetal hepatic cells in vitro. Like OSM, HGF in the presence of dexamethasone induced expression of glucose-6-phosphatase, tyrosine amino transferase and carbamoyl-phosphate synthase, and accumulation of glycogen in fetal hepatic cells, although to a lesser extent than OSM. Interestingly, while both OSM and HGF up-regulated production of albumin, secretion of albumin occurred only in response to OSM. In addition, although hepatic maturation induced by OSM depends on STAT3, HGF failed to activate STAT3 and HGF-induced differentiation was independent of STAT3. These results indicate that OSM and HGF induce hepatic maturation through different signaling pathways. 相似文献
13.
c-Jun N-terminal kinase is involved in the suppression of adiponectin expression by TNF-alpha in 3T3-L1 adipocytes 总被引:5,自引:0,他引:5
Kim KY Kim JK Jeon JH Yoon SR Choi I Yang Y 《Biochemical and biophysical research communications》2005,327(2):460-467
Adiponectin, one of adipokines that is secreted from adipocytes, plays an important role in the regulation of glucose and lipid metabolism. Paradoxically, serum concentrations of adiponectin are decreased in obese and type 2 diabetic patients, although it is produced in adipose tissue. On the other hand, plasma TNF-alpha levels are increased in such subjects. In the present study, the mechanism by which adiponectin is regulated by TNF-alpha was investigated. The decreased adiponectin mRNA levels by TNF-alpha were partially recovered by treatment with a c-Jun N-terminal kinase (JNK) inhibitor or the PPAR-gamma agonist rosiglitazone in 3T3-L1 adipocytes. Interestingly, however, cotreatment with the JNK inhibitor and rosiglitazone led to a recovery of TNF-alpha-mediated adiponectin suppression to the control level. The JNK inhibitor regulated the expression of adiponectin by the increase of PPAR-gamma DNA binding activity and the recovery of its mRNA expression while rosiglitazone acted via a PPAR-gamma independent pathway which remains to be elucidated. These findings suggest that the JNK signaling pathway, activated by TNF-alpha, is involved in the regulation of adiponectin expression. 相似文献
14.
15.
Objectives: Tristetraprolin (TTP) family proteins (TTP/ZFP36; ZFP36L1, ZFP36L2, ZFP36L3) destabilize adenylate uridylate‐rich element‐containing mRNAs encoding cytokines, such as tumor necrosis factor (TNF) and vascular endothelial growth factor (VEGF). Little is known about the expression and insulin regulation of TTP and related genes in adipocytes. We analyzed the relative abundance of TTP family mRNAs in 3T3‐L1 adipocytes compared to RAW264.7 macrophages and investigated insulin effects on the expression of 43 genes in 3T3‐L1 adipocytes. Methods and Procedures: Insulin was added to mouse 3T3‐L1 adipocytes. Relative abundance of mRNA levels was determined by quantitative real‐time PCR. TTP and ZFP36L1 proteins were detected by immunoblotting. Results: Zfp36l1 and Zfp36l2 genes were expressed at eight‐ to tenfold higher than Ttp in adipocytes. Zfp36l3 mRNA was detected at ~1% of Ttp mRNA levels in adipocytes and its low level expression was confirmed in RAW cells. Insulin at 10 and 100 nmol/l increased Ttp mRNA levels by five‐ to sevenfold, but decreased those of Zfp36l3 by 40% in adipocytes after a 30‐min treatment. Immunoblotting showed that insulin induced TTP but did not affect ZFP36L1 protein levels in adipocytes. Insulin decreased mRNA levels of Vegf and a number of other genes in adipocytes. Discussion: Insulin induced Ttp mRNA and protein expression and decreased Vegf mRNA levels in adipocytes. Zfp36l3 mRNA was detected, for the first time, in cells other than mouse placenta and extraembryonic tissues. This study established a basis for the investigation of TTP and VEGF genes in the regulation of obesity and suggested that Vegf mRNA may be a target of TTP in fat cells. 相似文献
16.
Background
The secreted liver protein fetuin-A (AHSG) is up-regulated in hepatic steatosis and the metabolic syndrome. These states are strongly associated with low-grade inflammation and hypoadiponectinemia. We, therefore, hypothesized that fetuin-A may play a role in the regulation of cytokine expression, the modulation of adipose tissue expression and plasma concentration of the insulin-sensitizing and atheroprotective adipokine adiponectin.Methodology and Principal Findings
Human monocytic THP1 cells and human in vitro differenttiated adipocytes as well as C57BL/6 mice were treated with fetuin-A. mRNA expression of the genes encoding inflammatory cytokines and the adipokine adiponectin (ADIPOQ) was assessed by real-time RT-PCR. In 122 subjects, plasma levels of fetuin-A, adiponectin and, in a subgroup, the multimeric forms of adiponectin were determined. Fetuin-A treatment induced TNF and IL1B mRNA expression in THP1 cells (p<0.05). Treatment of mice with fetuin-A, analogously, resulted in a marked increase in adipose tissue Tnf mRNA as well as Il6 expression (27- and 174-fold, respectively). These effects were accompanied by a decrease in adipose tissue Adipoq mRNA expression and lower circulating adiponectin levels (p<0.05, both). Furthermore, fetuin-A repressed ADIPOQ mRNA expression of human in vitro differentiated adipocytes (p<0.02) and induced inflammatory cytokine expression. In humans in plasma, fetuin-A correlated positively with high-sensitivity C-reactive protein, a marker of subclinical inflammation (r = 0.26, p = 0.01), and negatively with total- (r = −0.28, p = 0.02) and, particularly, high molecular weight adiponectin (r = −0.36, p = 0.01).Conclusions and Significance
We provide novel evidence that the secreted liver protein fetuin-A induces low-grade inflammation and represses adiponectin production in animals and in humans. These data suggest an important role of fatty liver in the pathophysiology of insulin resistance and atherosclerosis. 相似文献17.
18.
19.
Adiponectin is intimately involved in the regulation of insulin sensitivity, carbohydrate and lipid metabolism, and cardiovascular functions. The circulating concentration of adiponectin is decreased in obesity and Type 2 diabetes. The present study attempts to elucidate the mechanisms underlying the regulation of adiponectin secretion and expression in rat primary adipocytes. The beta-agonist, isoprenaline, decreased adiponectin secretion and expression in a dose-dependent manner in primary adipocytes. Importantly, such an inhibitory effect could be blocked by insulin. The opposing effects of isoprenaline and insulin could be explained by differential regulation of intracellular cAMP levels, since cAMP analogues suppressed adiponectin secretion and expression in a fashion similar to isoprenaline, and insulin blocked the inhibitory effects of the cAMP analogue hydrolysable by PDE (phosphodiesterase). A specific PDE3 inhibitor, milrinone, and PI3K (phosphoinositide 3-kinase) inhibitors abolished the effects of insulin on adiponectin secretion and expression. In the same studies, leptin secretion and expression displayed a similar pattern of regulation to adiponectin. We conclude that insulin and beta-agonists act directly at the adipocytes in opposing fashions to regulate the production of adiponectin and leptin, and that a PI3K-PDE3B-cAMP pathway mediates the effects of insulin to restore beta-agonist/cAMP-suppressed secretion and expression of these two adipokines. 相似文献
20.
Yuki Nakayama Akiko Yamamoto Masaki Tanaka Atsunori Fukuhara Iichiro Shimomura 《Biochemical and biophysical research communications》2009,379(2):288-292
Rho GTPase regulates actin cytoskeleton organization and assembly in many cell types, however, its significance in adipose tissue is not well characterized. Here, we demonstrate high RhoA activity in adipose tissues of C57BL/6J mice. To determine the effect of RhoA activation on 3T3-L1 cells, stable cell lines overexpressing G14VRhoA fused to destabilizing domain of FKBP12 (DD-G14VRhoA-L1) were generated. Treatment of DD-G14VRhoA-L1 cells with Shield1 following their differentiation into adipocytes, resulted in the appearance of thick cortical actin filaments, and increased the mRNA expression levels of plasminogen activator inhibitor type-1 (PAI-1) and monocyte chemoattractant protein-1 (MCP-1). The induction of PAI-1 and MCP-1 was inhibited by treatment with a Rho-associated kinase (ROCK) inhibitor, Y-27632. In 3T3-L1 adipocytes, tumor necrosis factor-α activated RhoA and increased mRNA expression of PAI-1 and MCP-1, and their treatment with Y-27632 partially inhibited these changes. The results indicate that RhoA-ROCK pathway induces inflammatory cytokine expression in adipocytes. 相似文献