首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cultured fibroblasts from patients with the lysosomal storage disease, mucolipidosis II, produce complex glycosylated lysosomal enzymes which are preferentially excreted presumably due to the absence of specific phosphomannosyl recognition residues needed for intracellular retention. Complex glycosylated hydrolases are also produced by fibroblasts from patients with mucolipidosis I but an abnormal excretion is not apparent in this disorder. Intra- and extracellular distribution, lectin binding, and specific endocytosis were criteria used to compare the properties of intra- and extracellular β-hexosaminidase derived from mucolipidosis I and normal fibroblast cultures. Mucolipidosis I fibroblasts did not hyperexcrete β-hexosaminidase when maintained in serum-free medium. Using the specifity of ricin binding to terminal galactosyl residues, the most galactosylated forms of the enzyme derived from mucolipidosis I cell extracts and culture fluids were found in the mucolipidosis I cell extracts (50% of total enzyme). Mucolipidosis I-excreted β-hexosaminidase which was eluted from ricin-120-Sepharose, was a high-uptake form in endocytosis experiments while unbound enzyme was a low-uptake form. These data suggest that β-hexosaminidase molecules contained phosphomanosyl residues necessary for receptor-mediated endocytosis as well as galactosyl residues on the same molecule. The co-existence of complex chains with high-mannose chains did not interfere with the phosphomannose-mediated endocytosis of β-hexosaminidase nor with the retention of endogenous enzyme. We can speculate that since complex oligosaccharide chains in the mucolipidosis I cellular enzyme persist due to a sialidase deficiency, more extensive sialylation of cellular enzyme in normal fibroblasts probably occurs at some point during post-translational processing. However, the presence of sialidase in normal cells initiates complex chain trimming in the lysosomes resulting in a less glycosylated end product.  相似文献   

2.
Immunocytochemical localization of 8-hexosaminidase in cultured human skin fibroblasts was performed in the presence or absence of the Na+/K+ ionophores monensin and nigericin. In the presence of monensin, -hexosaminidase accumulated in the periphery of swollen vesicles in the paranuclear region of fibroblasts from normaI individuals and from patients with mucolipidosis II. Nigericin-treated cells had more extensive vacuolization of the cytoplasm and the localization of the enzyme was more diffuse within these vacuoles. Morphological studies at the ultrastructral level indicated that a perturbation of the Golgi region occurred during ionophore treatment. These findings suggest that -hexosaminidase in ionophore-treated fibroblasts is trapped in a time- and dose-dependent manner in the paranuclear region presumed to be the swollen cisternae of the Golgi region, or adjacent vesicles derived from the Golgi region. Furthermore, fibrobiasts are more sensitive to perturbation by nigericin than by monensin at similar concentrations and exposure times. These data support biochemical findings that the two ionophores differentially inhibit the transport of lysosomal enzymes in the Golgi region.  相似文献   

3.
Long - lasting synchrony of the division of enteric bacteria   总被引:5,自引:0,他引:5  
Recent finding of α-N-acetylglucosamine(1)phospho(6)mannose diesters in lysosomal enzymes suggested that formation of mannose 6-phosphate residues involves transfer of N-acetylglucosamine 1-phosphate to mannose. Using dephosphorylated β-hexosaminidase as acceptor and [β-32P]UDP-N-acetylglucosamine as donor for the phosphate group, phosphorylation of β-hexosaminidase by microsomes from rat liver, human placenta and human skin fibroblasts was achieved. The reaction was not affected by tunicamycin. Acid hydrolysis released mannose 6-[32P]phosphate from the phosphorylated β-hexosaminidase. Our results suggest that lysosomal enzymes are phosphorylated by transfer of N-acetylglucosamine 1-phosphate from UDP-N-acetylglucosamine. The transferase activity was deficient in fibroblasts from patients affected with l-cell disease. This deficiency is proposed to be the primary enzyme defect in l-cell disease.  相似文献   

4.
Cultured fibroblasts from three unrelated patients with I-cell disease (mucolipidosis II) have a 3 to 4 fold increase in total sialic acid when compared to control fibroblasts. Sialic acid levels in a number of other lysosomal disorders, i.e., mucopolysaccharidosis I, II, III, VI, metachromatic leukodystrophy, GM1 gangliosidosis, mannosidosis, Gaucher's and Sandhoff's disease are within the normal range suggesting that this is a finding specific for I-cells. Additionally, sonicates of cultured fibroblasts from controls were shown to have an acid sialidase capable of removing sialic acid from added fetuin at pH 4.2 in 0.05M acetate buffer. In contrast, I-cell fibroblasts, within the limits of the assay, lack this enzyme activity.  相似文献   

5.
The biochemical abnormalities of I-cell disease (mucolipidosis II) and pseudo-Hurler polydystrophy (mucolipidosis III) can be explained by a deficiency of the enzyme UDP-N-acetylglucosamine:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase. We demonstrate here that obligate heterozygotes for these autosomal recessive diseases have intermediate levels of this enzymatic activity in homogenates of peripheral blood white cells and in extracts from cultured fibroblasts. This finding provides further evidence that the enzyme deficiency is the primary genetic defect in these diseases. In addition, the previous observation that obligate heterozygotes for mucolipidosis III have elevations of total serum beta-hexosaminidase outside the range of normal was confirmed. In studies of three pedigrees of patients with mucolipidosis III, these techniques were used to score individuals at risk for the carrier state.  相似文献   

6.
Normal N-acetylglucosamine 1-phosphotransferase activity toward mono- and oligosaccharide acceptor substrates was detected in cultured skin fibroblasts from mucolipidoses II and III patients who were designated as variants (one of four mucolipidosis II and three out of six mucolipidosis III patients examined). The activity toward natural lysosomal protein acceptors was absent or deficient in cell preparations from all patients with classical as well as variant forms of mucolipidoses II and III. Complementation analysis, using fused and cocultivated mutant fibroblast combinations, revealed that, while cell lines with variant mucolipidosis III constituted a complementation group distinct from that of classical forms of mucolipidoses II and III, the variant mucolipidosis II cell line belonged to the same complementation group as did the classical forms. In contrast to the mutant enzyme from variant mucolipidosis III patients that failed to recognize lysosomal proteins as the specific acceptor substrates, the activity toward alpha-methylmannoside in the variant mucolipidosis II patient could be inhibited by exogenous lysosomal enzyme preparations (bovine beta-glucuronidase and human hexosaminidase A). These findings suggest that N-acetylglucosamine 1-phosphotransferase is composed of at least two distinct polypeptides: (1) a recognition subunit that is defective in the mucolipidosis III variants and (2) a catalytic subunit that is deficient or altered in the classical forms of mucolipidoses II and III as well as in the mucolipidosis II variant.  相似文献   

7.
The pinocytosis of fibroblasts of β-hexosaminidase (EC 3.2.1.30) excreted by cultured skin fibroblasts from a patient with I-cell disease was not enhanced by neuraminidase treatment of the enzyme. The uptake of sialic acid-rich normal plasma β-hexosaminidase was minimal and neuraminidase treatment did not appreciably enhance uptake. In contrast, sialic acid-rich normal seminal fluid β-hexominidase was readily pinocytosed regardless of neuraminidase treatment. Thus the presence of sialic acid on β-hexosaminidase does not influence uptake and a neuraminidase deficiency in I-cell disease may not be directly responsible for excessive extracellular enzyme.  相似文献   

8.
Electrophoretic properties of eight lysosomal hydrolases and 36 nonlysosomal enzymes were investigated in cultured fibroblasts from children with the inherited storage disease mucolipidosis II (ML II); fibroblasts from a child with a related disorder, mucolipidosis III (ML III); and two obligate heterozygous cell lines from parents of a ML II child. Cell homogenates of ML II fibroblast lines showed altered mobilities for lysosomal beta-hexosaminidase, acid phosphatase2, and alpha-mannosidase and deficient activity for the esterase-A4 and lysosomal alpha-mannosidase-B electrophoretic phenotypes. Altered mobility was also detected for the nonlysosomal enzyme adenosine deaminase-d. Deficient activities of other lysosomal enzymes were observed as previously reported. In a single ML III fibroblast line, only beta-hexosaminidase showed an abnormal electrophoretic pattern suggesting a difference between these cells and ML II fibroblasts. Thirty-five nonlysosomal enzymes associated with other cellular organelles and metabolic pathways were electrophoretically normal in all mucolipidosis cell lines. Heterozygous ML II cells showed normal expression for all enzymes. Two major patterns of altered lysosomal enzymes and adenosine deaminase were demonstrated in ML II cell lines, suggesting that at least two genetic forms of this disorder may exist. Neuraminidase treatment of ML II homogenates converted altered forms of acid phosphatase2 and adenosine deaminase-d and in two ML II lines, recovered the previously undetected lysosomal alpha-mannosidase band. These results are consistent with the mucolipidosis defect(s) being associated with abnormal post-translatinal processing of multiple lysosomal enzymes and adenosine deaminase-d.  相似文献   

9.
Incorporation of 32P from [gamma 32P]ATP into mannan could not be detected in homogenates of cultivated skin fibroblasts from patients with mucolipidosis II, and accounted for only up to 10% of normal control activity in cell lysates from patients with mucolipidosis III. Parents of patients with mucolipidosis II demonstrated 60-70% of normal control activity. On high-voltage electrophoresis, the hydrolysed mannan from reactions performed with normal cells, over the pH range 5.5-7.5, yielded a radioactive band migrating with the same mobility as mannose 6-phosphate, whereas no such product could be demonstrated in fibroblasts of patients with mucolipidosis II.  相似文献   

10.
UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase is an α2β2γ2 hexameric enzyme that catalyzes the synthesis of the mannose 6-phosphate targeting signal on lysosomal hydrolases. Mutations in the α/β subunit precursor gene cause the severe lysosomal storage disorder mucolipidosis II (ML II) or the more moderate mucolipidosis III alpha/beta (ML III α/β), while mutations in the γ subunit gene cause the mildest disorder, mucolipidosis III gamma (ML III γ). Here we report neurologic consequences of mouse models of ML II and ML III γ. The ML II mice have a total loss of acid hydrolase phosphorylation, which results in depletion of acid hydrolases in mesenchymal-derived cells. The ML III γ mice retain partial phosphorylation. However, in both cases, total brain extracts have normal or near normal activity of many acid hydrolases reflecting mannose 6-phosphate-independent lysosomal targeting pathways. While behavioral deficits occur in both models, the onset of these changes occurs sooner and the severity is greater in the ML II mice. The ML II mice undergo progressive neurodegeneration with neuronal loss, astrocytosis, microgliosis and Purkinje cell depletion which was evident at 4 months whereas ML III γ mice have only mild to moderate astrocytosis and microgliosis at 12 months. Both models accumulate the ganglioside GM2, but only ML II mice accumulate fucosylated glycans. We conclude that in spite of active mannose 6-phosphate-independent targeting pathways in the brain, there are cell types that require at least partial phosphorylation function to avoid lysosomal dysfunction and the associated neurodegeneration and behavioral impairments.  相似文献   

11.
Cultured skin fibroblasts from a patient with I-Cell disease (mucolipidosis II) were assayed for a number of lysosomal enzymes using both natural and synthetic substrates. The cells from this patient were found to have very low activity for galactosylceramide β-galactosidase, lactosylceramide β-galactosidases (using two assay methods that measure different enzymes), GM1 ganglioside β-galactosidase and sphingomyelinase. Glucosylceramide β-glucosidase activity was found to be normal. Acid hydrolase activities toward many synthetic substrate were measured and all except β-glucosidase and acid phosphatase were found to be extremely low (as has been reported by others). Acid phosphatase and β-glucosidase were in the low normal range. These studies expand on previously published reports on I-Cell disease that only present data from synthetic substrates, and also report the fibroblast culture deficiencies of galactosyl-ceramide β-galactosidase (the Krabbe disease enzyme) and sphingomyelinase (the Niemann-Pick disease enzyme) activities for the first time. Those two enzymes do not have a readily available synthetic analog to assay. Acid β-galactosidase activity measured with both the 4-methylumbelliferyl derivative and GM1 ganglioside was partially deficient in leukocytes prepared from this patient. New methods for measuring 4-methylumbelliferyl-β-D-glucoside and glucosylceramide β-glucosidase activities are also presented.  相似文献   

12.
Summary Cell hybridizations between fibroblasts of four variants (B, O, AB, and B1) of infantile GM2 gangliosidosis were performed. Cocultivated as well as hybrid cells were analyzed for their capability to degrade exogenously added [3H]-GM2. Hybridization of variant AB fibroblasts with fibroblasts of variant O, variant B, or variant B1 resulted in an enhanced rate of GM2 hydrolysis, showing intergenic complementation. Similar restoration of GM2 catabolism was observed after hybridization of variant B1 cells with variant O, but not with variant B cells. These results indicate that B1 cells carry a mutation in the gene locus for the α-subunit of β-hexosaminidase. Studies of the processing of immature enzyme in variant B1 cells showed the presence of α-precursors and mature α-chains, but at a lower level as compared to normal cells.  相似文献   

13.
The incorporation of [3H]leucine and [32P]phosphate into three lysosomal enzymes, cathepsin D, beta-hexosaminidase and arylsulfatase A by fibroblasts from six patients affected with mucolipidosis III was determined. In the mutant cells the incorporation of 32P in the enzymes was reduced by 70-97% as compared to controls. The residual phosphorylation of lysosomal enzymes is definitely higher than in fibroblasts from patients with mucolipidosis II, where apparently non-phosphorylated enzymes are formed. In mucolipidosis III the major part of the newly formed enzymes accumulated extracellularly and the cellular enzymes were recovered mainly in their processed forms. In mucolipidosis III arylsulfatase A and the processed forms of cathepsin D exhibited a heterogeneity that was not observed in controls. beta-Hexosaminidase and cathepsin D secreted by mucolipidosis III fibroblasts contained only a small amount of phosphorylated oligosaccharides with either one or two phosphate groups per oligosaccharide. As in controls the major fraction of phosphate was present as acid-labile phosphodiester resistant to alkaline phosphatase. The residual phosphorylation of lysosomal enzymes may be related to the partial intracellular retention and processing of these enzymes in fibroblasts from patients with mucolipidosis III.  相似文献   

14.
This report describes the preparation of a sodium (4-methylumbelliferyl-α-d-N-acetylneuraminate) substrate and its use in a sensitive fluorometric assay of neuraminidase (EC 3.2.1.18) from Vibrio cholerae, cultured fibroblasts, and human leucocytes. V. cholerae neuraminidase showed maximum activity at pH 4.6 and an apparent Km of 1.5 mm and was activated by CaCl2 and inhibited by ethylenediaminetetraacetate, NaCl, and N-acetylneuraminic acid. The inhibition by N-acetylneuraminic acid was competitive (Ki = 6.1 mm). Cultured fibroblast and leucocyte neuraminidases showed maximum activity between pH 4.2 and 4.4 and apparent Km values of 0.13 and 0.22 mm, respectively. Neuraminidase activity was considerably reduced in cultured fibroblasts of patients with mucolipidosis types I, II, and III.  相似文献   

15.
Commercially available sodium heparinate has been sequentially treated with methanolic 0.06M hydrogen chloride and nitrous acid. The nondegraded material was separated by gel filtration from the nonsulfated and monosulfated disaccharides produced. The latter ones, obtained in 10% yield, have been used as a substrate for the direct measurement of the enzyme L-iduronic acid 2-sulfate sulfatase present in human plasma and fibroblast homogenates. Studies of the kinetics and pH optimum of the enzyme, by use of plasma of a patient with mucolipidosis II, indicated an apparent Km of 2.5mM and a pH optimum of 4.6-4.8. The levels of activity in normal plasma and plasma of a patient with Hunter's disease were found to be 20.4 ± 1.22 units (μmol sulfate/24 h/g protein) and 3.25 ± 0.35 units, respectively. In homogenates of cultured skin fibroblasts, the levels were 137.6 ± 10.7 units for normal controls and 6.4 ± 5.1 for patients with Hunter's disease. The plasma of two obligated heterozygotes gave intermediate levels of activity, whereas the plasma of two possible heterozygotes gave either intermediate levels or entirely normal levels of activity.  相似文献   

16.
Neuraminidase substrates of high specific activity (>300 μCi/μmol) were prepared by reduction of sialyllactose with NaB3H4, followed by separation of the 2 → 3 and 2 → 6 isomers of [3H]sialyllactitol by paper chromatography. Hydrolysis of sialyllactitol by neuraminidase was monitored by measuring the radioactivity in the neutral reaction product, which was separated from the charged substrate by passage over a small anion exchange column. The assay was applied to the neuraminidase activity of cultured human skin fibroblasts. The Km was found to be 1.1 mm for both substrates; the pH optimum, 4.0; the 2 → 3 isomer was hydrolyzed twice as fast as the 2 → 6. In several genetic disorders associated with neuraminidase deficiency, the activity toward both isomers was reduced almost completely (mucolipidoses I and II; Goldberg syndrome), or only partially (mucolipidosis III; adult myoclonus syndrome); however, the relative activity towards the two isomers remained approximately the same in all cases.  相似文献   

17.
18.
Investigation of the binding characteristics of acid beta-D-galactosidase, N-acetyl-beta-D-glucosaminidase, alpha-D-galactosidase and alpha-L-fucosidase from patients with mucolipidosis II and mucolipidosis III to concanavalin A--Sepharose 4B revealed a 2--10-fold decrease in the proportion of enzyme activities from patients with mucolipidoses II and III that adsorbed on the lectin. Neuraminidase treatment of the unadsorbed enzyme fraction did not significantly increased the proportion of enzyme activities that bound to the concanavalin A--Sepharose 4B. Characterization of acid beta-D-galactosidase from the adsorbed and unadsorbed enzyme fractions of mucolipidosis II and mucolipidosis III patients demonstrated identical apparent Km values of 0.22 mM with respect to 4-methylumbelliferyl beta-D-galactopyranoside, altered pH--activity profiles and heterogeneous isoelectric-focusing patterns. The results of this study support the suggestion of an alteration of a post-translational modification (possibly glycosylation) occurring in mucolipidosis II and mucolipidosis III common to the lysosomal hydrolases that affects the mannoserelated properties of these enzymes.  相似文献   

19.
The N-Acetylglucosaminyl-1-phosphotransferase plays a key role in the generation of mannose 6-phosphate (M6P) recognition markers essential for efficient transport of lysosomal hydrolases to lysosomes. The phosphotransferase is composed of six subunits (α2, β2, γ2). The α- and β-subunits are catalytically active and encoded by a single gene, GNPTAB, whereas the γ-subunit encoded by GNPTG is proposed to recognize conformational structures common to lysosomal enzymes. Defects in GNPTG cause mucolipidosis type III gamma, which is characterized by missorting and cellular loss of lysosomal enzymes leading to lysosomal accumulation of storage material. Using plasmon resonance spectrometry, we showed that recombinant γ-subunit failed to bind the lysosomal enzyme arylsulfatase A. Additionally, the overexpression of the γ-subunit in COS7 cells did not result in hypersecretion of newly synthesized lysosomal enzymes expected for competition for binding sites of the endogenous phosphotransferase complex. Analysis of fibroblasts exhibiting a novel mutation in GNPTG (c.619insT, p.K207IfsX7) revealed that the expression of GNPTAB was increased whereas in γ-subunit overexpressing cells the GNPTAB mRNA was reduced. The data suggest that the γ-subunit is important for the balance of phosphotransferase subunits rather for general binding of lysosomal enzymes.  相似文献   

20.
A rapid procedure for the isolation of β-N-acetyl-d -hexosaminidase from lupin seed meal is described. This involves affinity chromatography of a seed extract on concanavalin A, followed by chromatography on DEAE-Sepharose. The purified enzyme was obtained in three forms, hexosaminidases A, B and B1, capable of hydrolysing both p-nitrophenyl β-2-acetamido-2-deoxy-d-glucopyranoside and p-nitrophenyl β-2-acetamido-2-deoxy-d-galactopyranoside. Enzyme A was relatively less active towards the galactosaminide substrate, than were the B forms of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号