首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The phytopathogenic fungus Colletotrichum gloeosporioides produces one pectate lyase (PL) that is a key virulence factor in disease development. During growth of C. gloeosporioides, Colletotrichum acutatum, and Colletotrichum coccodes in acidified yeast extract medium, the fungus secreted ammonia and increased the medium pH. Ammonia accumulation and the consequent pH change increased as a function of initial pH and buffer capacity of the medium. PL secretion by C. gloeosporioides correspondingly increased as the pH of the medium increased. The C. gloeosporioides pelB gene-disrupted mutant was able to increase ammonia accumulation and pH of the media similarly to the wild-type isolate. C. gloeosporioides in avocado, C. coccodes in tomato, and C. acutatum in apple showed ammonia accumulation in the infected area where pH increased to 7.5 to 8 and PL activity is optima. In nonhost interactions where C. gloeosporioides was inoculated in apples, the addition of ammonia-releasing compounds significantly enhanced pathogenicity to levels similar to those caused by the compatible C. acutatum-apple interaction. The results therefore suggest the importance of ammonia secretion as a virulence factor, enhancing environmental pH and pathogenicity of the Colletotrichum species.  相似文献   

5.
6.
7.
Colletotrichum gloeosporioides is an important pathogen of tropical and subtropical fruits. The C. gloeosporioides pelB gene was disrupted in the fungus via homologous recombination. Three independent isolates, GD-14, GD-23, and GD-29, did not produce or secrete pectate lyase B (PLB) and exhibited 25% lower pectate lyase (PL) and pectin lyase (PNL) activities and 15% higher polygalacturonase (PG) activity than the wild type. The PLB mutants exhibited no growth reduction on glucose, Na polypectate, or pectin as the sole carbon source at pH 3.8 or 6.0, except for a 15% reduction on pectin at pH 6.0. When pelB mutants were inoculated onto avocado fruits, however, a 36 to 45% reduction in estimated decay diameter was observed compared with the two controls, the wild type and undisrupted transformed isolate. In addition, these pelB mutants induced a significantly higher host phenylalanine ammonia lyase activity as well as the antifungal diene, which is indicative of higher host resistance. These results suggest that PLB is an important factor in the attack of C. gloeosporioides on avocado fruit, probably as a result of its virulence factor and role in the induction of host defense mechanisms.  相似文献   

8.
9.
10.
Readily utilizable sugars down-regulate virulence gene expression in Listeria monocytogenes, which has led to the proposal that this regulation may be an aspect of global catabolite regulation (CR). We recently demonstrated that the metabolic enzyme α-glucosidase is under CR in L. monocytogenes. Here, we report the cloning and characterization from L. monocytogenes of an apparent ortholog of ccpA, which encodes an important mediator of CR in several low-G+C-content gram-positive bacteria. L. monocytogenes ccpA (ccpALm) is predicted to encode a 335-amino-acid protein with nearly 65% identity to the gene product of Bacillus subtilis ccpA (ccpABs). Southern blot analysis with a probe derived from ccpALm revealed a single strongly hybridizing band and also a second band of much lower intensity, suggesting that there may be other closely related sequences in the L. monocytogenes chromosome, as is the case in B. subtilis. Disruption of ccpALm resulted in the inability of the mutant to grow on glucose-containing minimal medium or increase its growth rate in the presence of preferred sugars, and it completely eliminated CR of α-glucosidase activity in liquid medium. However, α-glucosidase activity was only partially relieved from CR on solid medium. These results suggest that ccpA is an important element of carbon source regulation in L. monocytogenes. Nevertheless, utilizable sugars still down-regulate the expression of hly, which encodes the virulence factor hemolysin, in a ccpALm mutant, indicating that CcpA is not involved in carbon source regulation of virulence genes.  相似文献   

11.
12.
KdgR has been reported to negatively regulate the genes involved in degradation and metabolization of pectic acid and other extracellular enzymes in soft-rotting Erwinia spp. through direct binding to their promoters. The possible involvement of a KdgR orthologue in virulence by affecting the expression of extracellular enzymes in Xanthomonas oryzae pv. oryzae, the causal agent of rice blight disease, was examined by comparing virulence and regulation of extracellular enzymes between the wild type (WT) and a strain carrying a mutation in putative kdgR (ΔXoo0310 mutant). This putative kdgR mutant of X. oryzae pv. oryzae showed increased pathogenicity on rice without affecting the regulation of extracellular enzymes, such as amylase, cellulase, xylanase, and protease. However, the mutant carrying a mutation in an ortholog of xpsL, which encodes the functional secretion machinery for the extracellular enzymes, showed a dramatic decrease in pathogenicity on rice. Both mutants of kdgR and of xpsL orthologs showed higher expression of two major hrp regulatory genes, hrpG and hrpX, and the genes in the hrp operons when grown in hrp-inducing medium. Thus, both genes were shown to be involved in repression of hrp genes. The kdgR ortholog was thought to suppress virulence mainly by repressing the expression of hrp genes without affecting the expression of extracellular enzymes, unlike findings for the kdgR gene in soft-rotting Erwinia spp. On the other hand, xpsL was confirmed to be involved in virulence by promoting the secretion of extracellular enzymes in spite of repressing the expression of the hrp genes.  相似文献   

13.
14.
15.
Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) causes bacterial speck disease on tomato. The pathogenicity of Pst DC3000 depends on both the type III secretion system that delivers virulence effector proteins into host cells and the phytotoxin coronatine (COR), which is thought to mimic the action of the plant hormone jasmonic acid (JA). We found that a JA-insensitive mutant (jai1) of tomato was unresponsive to COR and highly resistant to Pst DC3000, whereas host genotypes that are defective in JA biosynthesis were as susceptible to Pst DC3000 as wild-type (WT) plants. Treatment of WT plants with exogenous methyl-JA (MeJA) complemented the virulence defect of a bacterial mutant deficient in COR production, but not a mutant defective in the type III secretion system. Analysis of host gene expression using cDNA microarrays revealed that COR works through Jai1 to induce the massive expression of JA and wound response genes that have been implicated in defense against herbivores. Concomitant with the induction of JA and wound response genes, the type III secretion system and COR repressed the expression of pathogenesis-related (PR) genes in Pst DC3000-infected WT plants. Resistance of jai1 plants to Pst DC3000 was correlated with a high level of PR gene expression and reduced expression of JA/wound response genes. These results indicate that COR promotes bacterial virulence by activating the host's JA signaling pathway, and further suggest that the type III secretion system might also modify host defense by targeting the JA signaling pathway in susceptible tomato plants.  相似文献   

16.
17.
The Hgt4 protein of Candida albicans (orf19.5962) is orthologous to the Snf3 and Rgt2 glucose sensors of Saccharomyces cerevisiae that govern sugar acquisition by regulating the expression of genes encoding hexose transporters. We found that HGT4 is required for glucose induction of the expression of HGT12, HXT10, and HGT7, which encode apparent hexose transporters in C. albicans. An hgt4Delta mutant is defective for growth on fermentable sugars, which is consistent with the idea that Hgt4 is a sensor of glucose and similar sugars. Hgt4 appears to be sensitive to glucose levels similar to those in human serum ( approximately 5 mM). HGT4 expression is repressed by high levels of glucose, which is consistent with the idea that it encodes a high-affinity sugar sensor. Glucose sensing through Hgt4 affects the yeast-to-hyphal morphological switch of C. albicans cells: hgt4Delta mutants are hypofilamented, and a constitutively signaling form of Hgt4 confers hyperfilamentation of cells. The hgt4Delta mutant is less virulent than wild-type cells in a mouse model of disseminated candidiasis. These results suggest that Hgt4 is a high-affinity glucose sensor that contributes to the virulence of C. albicans.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号