首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Receptor regulation of [Ca2+]i was monitored in individual BC3H-1 muscle cells with intracellularly trapped fura-2 using digital imaging analysis techniques. Activation of alpha 1-adrenergic or H1-histaminergic receptors resulted in multiple bursts, or oscillations, of elevated [Ca2+]i with an average interval frequency of approximately 1.8 min-1. The duration of oscillatory behavior was generally more prolonged in response to phenylephrine than in response to histamine. Additionally, a larger fraction of the cells responded with [Ca2+]i oscillations to phenylephrine (approximately 90%) than to histamine (approximately 60%), although the majority of cells produced oscillations in response to both agonists. In most cells, the receptor-mediated [Ca2+]i oscillations continued for several minutes in the absence of extracellular Ca2+, although the amplitude of the individual peaks gradually decreased. The activation of [Ca2+]i oscillations by H1-receptors was more dependent upon extracellular Ca2+ than those elicited by alpha 1-receptors, reflecting the greater dependency of the histaminergic response on Ca2+ influx. Readdition of Ca2+ to the incubation buffer resulted in the resumption of the [Ca2+]i oscillations. These results indicate that considerable cycling of Ca2+ between the cytoplasm and the endoplasmic reticulum must occur. Receptor-mediated [Ca2+]i oscillations were much more prevalent in subconfluent cells than in confluent cells, possibly due to increased coupling of the cells at higher densities. The cells were capable of responding independently of one another, since sister cells displayed unique temporal responses immediately following cell division. Thus, the linkage of receptor occupancy to [Ca2+]i elevation is a functionally unique property for each individual cell and can be influenced by epigenetic factors.  相似文献   

2.
We characterized ATP-induced changes in intracellular Ca2+ concentration ([Ca2+]i) and membrane current in cultured rat myenteric neurons using ratiometric Ca2+ imaging with fura-2 and the whole cell patch-clamp technique, respectively. Neuronal cells were functionally identified by [Ca2+]i responses to high K+ and nicotine, which occurred only in cells positive for neuron-specific protein gene product 9.5 immunoreactivity. ATP evoked a dose-dependent increase of [Ca2+]i that was greatly decreased by the removal of extracellular Ca2+ concentration ([Ca2+]o). The amplitude of the [Ca2+]i response to ATP was reduced by half in the presence of voltage-dependent Ca2+ channel blockers. In [Ca2+]o-free solution, ATP produced a small transient rise in [Ca2+]i similar to that induced by P2Y agonists. At -60 mV, ATP evoked a slowly inactivating inward current that was suppressed by the removal of extracellular Na+ concentration. The current-voltage relation for ATP showed an inward rectification with the reversal potential of about 0 mV. The apparent rank order of potency for the purinoceptor agonist-induced increases of [Ca2+]i was ATP > or = adenosine 5'-O-3-triphosphate > or = CTP > or = 2-methylthio-ATP > benzoylbenzoyl-ATP. A similar potency order was obtained with current responses to these agonists. P2 antagonists inhibited inward currents induced by ATP. Ca2+ and Mg2+ suppressed the ATP-induced current, and Zn2+, Cu2+, and protons potentiated it. RT-PCR and immunocytochemical studies showed the expression of P2X2 receptors in cultured rat myenteric neurons. These results suggest that ATP mainly activates ionotropic P2X2 receptors, resulting in a [Ca2+]i increase dependent on [Ca2+]o in rat myenteric neurons. A small part of the ATP-induced [Ca2+]i increase may be also mediated via a P2Y receptor-related mechanism.  相似文献   

3.
Messerli MA  Robinson KR 《Planta》2003,217(1):147-157
Two mechanisms have been proposed as the primary control of oscillating tip growth in Lilium longiflorum Thunb. pollen tubes: changes in cell wall strength (Holdaway-Clarke et al. 1997) or alternatively, changes in turgor pressure (Messerli et al. 2000). Here we have modified the ionic and osmotic concentrations of the growth medium to test predictions derived from both models. Raising the [Ca2+]o tenfold above normal reduced the amplitude of the [Ca2+]i oscillations and growth oscillations while it raised the basal [Ca2+]i and growth rate such that the average growth rate did not change. Raising the [H+] of the growth medium tenfold reversibly decreased and sometimes eliminated the [Ca2+]i and growth oscillations without changing the average growth rate. Lowering the [H+] tenfold led to irregular frequency and amplitude [Ca2+]i oscillations, reduced the average growth rate of tubes and led to cell bursting in 33% of tubes. Addition of 50 mM H+ buffer, MES, to prevent pH changes in the cell wall increased the period, amplitude and duration of both [Ca2+]i and growth oscillations. Changing the [K+]o did not markedly effect [Ca2+]i oscillations. Reducing the osmolarity of the medium led to transient large-amplitude [Ca2+]i and growth oscillations while reducing large-amplitude oscillations over long periods. In many different conditions under which growth still occurs, lily pollen tubes maintain growth oscillations, albeit with modified frequency, amplitude and duration. We conclude that modifications to both proposed models are necessary to explain oscillating growth in this system.  相似文献   

4.
Treatment of hepatocytes with agonists which act via the second messenger inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), results in increases of cytosolic free Ca2+ [( Ca2+]i) which are manifest as a series of discrete [Ca2+]i transients or oscillations. With increasing agonist dose [Ca2+]i oscillation frequency increases and the initial latent period decreases, but the amplitude of the [Ca2+]i oscillations remains constant. Studies of these [Ca2+]i oscillations at the subcellular level have indicated that the [Ca2+]i changes do not occur synchronously throughout the cell, but initiate at a specific subcellular domain, adjacent to a region of the plasma membrane, and then propagate through the cell as a [Ca2+]i wave. For a given ceil, the locus of [Ca2+]i wave initiation is constant for every oscillation in a series and is also identical when the cell is sequentially stimulated with different agonists or when the phospholipase C-linked G protein is activated directly using AIF4-. The kinetics of the [Ca2+]i waves indicate that a Ca(2+)-activated mechanism is involved in propagating the oscillatory [Ca2+]i increases throughout the cell, and the data appear to be most consistent with a process of Ca(2+)-induced Ca2+ release. It is proposed that the ability to propagate [Ca2+]i oscillations into regions of the cell distal to the region in which the signal transduction apparatus is localized could serve an important function in allowing all parts of the cell to respond to the stimulus.  相似文献   

5.
Recordings of [Ca2+]i in single AR42J cells loaded with Fura 2 were used to study regulation of [Ca2+]i oscillation. Continuous stimulation with the cholecystokinin analogue, (t-butyloxycarbonyl-Tyr-(SO3)-norleucine-Gly-Trp-Nle-Asp-2-phenylethyl ester) or carbachol evoked long lasting oscillation in [Ca2+]i. Removal of CCK-JMV-180 after brief stimulation did not abruptly stop the oscillation. Rather, removal of CCK-JMV-180 resulted in time-dependent reduction in amplitude with little change in frequency of oscillation. The patterns of [Ca2+]i oscillation were affected by activation of protein kinase C and protein kinase A. However, down-regulation of protein kinase C activity did not prevent stimulation of [Ca2+]i oscillation. Hence, we conclude that an active protein kinase C pathway is not crucial for [Ca2+]i oscillation in this cell line. Variation in extracellular Ca2+ concentration (Ca2+out) was used to further characterize the oscillation. Reducing Ca2+out to approximately 10 microM resulted in a time dependent inhibition of [Ca2+]i oscillation. Subsequent step increases in Ca2+out up to 2-3 mM resulted in increased amplitude and frequency of oscillation. Further increase in Ca2+out or an increase in plasma membrane permeability to Ca2+, brought about by an increase in pHo, resulted in increased amplitude, decreased frequency, and modified shape of the [Ca2+]i spikes. These observations point to the existence of regulatory mechanisms controlling the duration of Ca2+ release and entry during [Ca2+]i oscillation.  相似文献   

6.
The effects of electrical stimulation, muscarinic and serotonergic agonists, and caffeine on [3H]inositol 1,4,5-trisphosphate ([3H]Ins(1,4,5)P3) content, intracellular free Ca2+ concentration ([Ca2+]i), and release of [3H]norepinephrine ([3H]NE) were studied in cultured sympathetic neurons. Neuronal cell body [Ca2+]i was unaffected by muscarinic or serotonergic receptor stimulation, which significantly increased [3H]Ins(1,4,5)P3 content. Stimulation at 2 Hz and caffeine had no effect on [3H]Ins(1,4,5)P3, but caused greater than two-fold increase in [Ca2+]i. Only 2-Hz stimulation released [3H]NE. Caffeine had no effect on the release. When [Ca2+]i was measured in growth cones, only electrical stimulation produced an increase in [Ca2+]i. The other agents had no effect on Ca2+ at the terminal regions of the neurons. We conclude that Ins(1,4,5)P3-insensitive, but caffeine-sensitive Ca2+ stores in sympathetic neurons are located only in the cell body and are not coupled to [3H]NE release.  相似文献   

7.
Temporal and spatial changes in the concentration of cytosolic free calcium ([Ca2+]i) in response to a variety of secretagogues have been examined in adrenal chromaffin cells using digital video imaging of fura-2-loaded cells. Depolarization of the cells with high K+ or challenge with nicotine resulted in a rapid and transient elevation of [Ca2+]i beneath the plasma membrane consistent with Ca2+ entry through channels. This was followed by a late phase in which [Ca2+]i rose within the cell interior. Agonists that act through mobilization of inositol phosphates produced an elevation in [Ca2+]i that was most marked in an internal region of the cell presumed to be the site of IP3-sensitive stores. When the same cells were challenged with nicotine or high K+, to trigger Ca2+ entry through voltage-dependent channels, the rise in [Ca2+]i was most prominent in the same localized region of the cells. These results suggest that Ca2+ entry through voltage-dependent channels results in release of Ca2+ from internal stores and that the bulk of the measured rise in [Ca2+]i is not close to the exocytotic sites on the plasma membrane. Analysis of the time courses of changes in [Ca2+]i in response to bradykinin, angiotensin II and muscarinic agonists showed that these agonists produced highly heterogeneous responses in the cell population. This heterogeneity was most marked with muscarinic agonists which in some cells elicited oscillatory changes in [Ca2+]i. Such heterogeneous changes in [Ca2+]i were relatively ineffective in eliciting catecholamine secretion from chromaffin cells. A single large Ca2+ transient, with a component of the rise in [Ca2+]i occurring beneath the plasma membrane, may be the most potent signal for secretion.  相似文献   

8.
F Okajima  Y Kondo 《FEBS letters》1992,301(2):223-226
Bradykinin (BK) induced a transient and pertussis toxin (PT)-insensitive increase in cytosolic Ca2+ ([Ca2+]i) in NG 108-15 neuroblastoma x glioma hybrid cells, whereas leucine-enkephalin (EK), somatostatin, norepinephrine or carbachol showed a weak but PT-sensitive action. When any one of the latter agonists was applied to the cells treated with low doses of BK, however, the level of [Ca2+]i rise caused by the agonist was remarkably increased in a PT-sensitive manner. The decreasing of extracellular Ca2+ only slightly influenced the actions of these agonists. Thus, synergism between a BK receptor and PT-sensitive G-protein-coupled receptors results in marked intracellular Ca2+ mobilization by the latter agonists.  相似文献   

9.
The relationship between Ca2+ influx (delta [Ca2+]i) and the formation of inositol 1,4,5-trisphosphate (IP3) was investigated in human platelets stimulated by various agonists. Both delta [Ca2+]i and IP3 were increased in proportion to the amount of the agonists (thrombin, ADP, PAF, STA2), the receptors of which were demonstrated in platelets, and were correlated with each other. However, the ratio of delta [Ca2+]i to IP3 was significantly varied among agonists. Furthermore, in thrombin stimulated platelets, IP3 was small at low temperature (20 degrees C) compared with that at high temperature (37 degrees C) in spite of the similar delta [Ca2+]i. Thus, Ca2+ influx in human platelets seems to be regulated directly through the receptor operated mechanism and IP3 may not be involved in it.  相似文献   

10.
The action of alpha 1-adrenergic agonists (noradrenaline in the presence of propranolol), vasopressin and angiotensin on the intracellular free Ca2+ concentration, [Ca2+]i, was determined by using the fluorescent dye quin2 in isolated rat liver cells. In the presence of external Ca2+ (1.8 mM), 1 microM-noradrenaline induced an increase in [Ca2+]i up to about 800 nM without apparent delay, whereas 10 nM-vasopressin and 1 nM-angiotensin increased [Ca2+]i to values higher than 1500 nM with a lag period of about 6s. The successive addition of the hormones and of their specific antagonists indicated that the actions of the three Ca2+-mobilizing hormones occurred without apparent desensitization (over 6 min) and via independent receptors. The relative contributions of internal and external Ca2+ pools to the cell response were determined by studying the hormone-mediated [Ca2+]i increase and glycogen phosphorylase activation in low-Ca2+ media (22 microM). In this medium: (1) [Ca2+]i was lowered and the hormones initiated a transient instead of a sustained increase in [Ca2+]i; subsequent addition (2 min) of a second hormone promoted a lesser increase in [Ca2+]i; in contrast, the subsequent addition (2 min) of Ca2+ (1.8 mM) caused [Ca2+]i to increase to a value close to that initiated by the hormone in control conditions, the amplitude of the latter response being dependent on the concentration of Ca2+ added to the medium; (2) returning to normal Ca2+ (1.8 mM) restored the resting [Ca2+]i and allowed the hormone added 2 min later to promote a large increase in [Ca2+]i whose final amplitude was also dependent on the concentration of Ca2+ added beforehand. Similar results were found when the same protocol was applied to the glycogen phosphorylase activation. It is concluded that Ca2+ influx is required for a maximal and sustained response and to reload the hormone-sensitive stores.  相似文献   

11.
Basal and receptor-regulated changes in cytoplasmic calcium concentration ([Ca2+]i) were monitored by fluorescence analysis in individual rat pituitary gonadotrophs loaded with the calcium-sensitive dye indo-1. Most gonadotrophs exhibited low amplitude spontaneous oscillations in basal [Ca2+]i that were interspersed by quiescent periods and abolished by removal of extracellular Ca2+ or addition of calcium channel blockers. Such random fluctuations in [Ca2+]i, which reflect the operation of a plasma membrane oscillator, were not coupled to basal gonadotropin secretion. The physiological agonist GnRH induced high amplitude [Ca2+]i oscillations; when a threshold [Ca2+]i level was reached, a cytoplasmic oscillator began to generate extremely regular Ca2+ transients. The time required to reach the threshold [Ca2+]i level was inversely correlated with agonist dose; the frequency, but not the amplitude, of agonist-induced Ca2+ spiking increased with agonist concentration. The duration of the latent period decreased and the frequency of Ca2+ spiking increased with the increase in ambient temperature. At high GnRH concentrations, the calcium transients merged into biphasic responses similar to those observed in cell suspensions at all GnRH concentrations. The presence of spontaneous fluctuations in basal [Ca2+]i did not significantly change the patterns of agonist-induced [Ca2+]i responses. Also, removal of extracellular Ca2+ did not interfere with the frequency or amplitude of Ca2+ spikes, but caused the loss of the plateau phase. Blockade of intracellular Ca(2+)-ATPase pumps by thapsigargin was usually accompanied by a subthreshold increase in [Ca2+]i. In such cells the agonist-induced oscillatory pattern was transformed into the biphasic response. In about 10% of the cells, however, high thapsigargin concentrations induced coarse [Ca2+]i oscillations; subsequent stimulation of such cells with GnRH was ineffective. The cytoplasmic oscillatory and biphasic responses may represent a mechanism for differential activation of Ca(2+)-dependent enzymes and their dependent cellular processes, including hormone secretion. The membrane oscillator is probably responsible for refilling of agonist-sensitive pools during and after agonist stimulation.  相似文献   

12.
The intracellular free Ca2+ ion concentration [( Ca2+]i) was measured in individual rat pancreatic B-cells loaded with fura-2. The cells were prepared by enzymatic digestion and fluorescence-activated cell sorting. The resting concentration of [Ca2+]i in B-cells was 126.3 +/- 3.1 nM in the presence of 4.4 mM glucose. Addition of cholecystokinin-8 (CCK-8) resulted in rapid and transient rises in [Ca2+]i. Perifusion of B-cells with galanin attenuated the amplitude and duration of CCK-8-induced [Ca2+]i changes and this inhibitory effect was concentration-dependent and reversible. Perifusion of B-cells with nifedipine, a voltage-sensitive Ca2+ channel blocker, reduced the duration of the [Ca2+]i increase induced by CCK-8, indicating that the Ca2+ entry from the extracellular space was, at least in part, involved in CCK-8-induced increases in [Ca2+]i.  相似文献   

13.
Single rat hepatocytes, microinjected with the Ca(2+)-sensitive photoprotein aequorin, respond to agonists acting through the phosphoinositide signalling pathway by the generation of oscillations in cytosolic free Ca2+ concentration ([Ca2+]i). The duration of [Ca2+]i transients generated is characteristic of the stimulating agonist; the differences lie in the rate of fall of [Ca2+]i from its peak. We considered that differential sensitivity of the InsP3 receptor may underlie agonist specificity. The thiol reagent, thimerosal, is known to increase the sensitivity of the Ca2+ stores to InsP3 by increasing the affinity of the InsP3 receptor for InsP3 in rat hepatocytes. We show here that a low dose of thimerosal (1 microM), insufficient alone to elevate [Ca2+]i, potentiates [Ca2+]i oscillations induced by phenylephrine or ATP in single, aequorin-injected, rat hepatocytes. Moreover, thimerosal enhances both the frequency and amplitude of phenylephrine-induced oscillations, whereas, in contrast, ATP-induced oscillations undergo an increase in the duration of the falling phase of individual [Ca2+]i transients. Thimerosal, therefore, enhances, rather than eliminates, agonist-specific differences in the hepatocyte [Ca2+]i oscillator.  相似文献   

14.
Gonadotropin-releasing hormone (GnRH) receptors are expressed in hypothalamic tissues from adult rats, cultured fetal hypothalamic cells, and immortalized GnRH-secreting neurons (GT1 cells). Their activation by GnRH agonists leads to an overall increase in the extracellular Ca2+-dependent pulsatile release of GnRH. Electrophysiological studies showed that GT1 cells exhibit spontaneous, extracellular Ca2+-dependent action potentials, and that their inward currents include Na+, T-type and L-type Ca2+ components. Several types of potassium channels, including apamin-sensitive Ca2+-controlled potassium (SK) channels, are also expressed in GT1 cells. Activation of GnRH receptors leads to biphasic changes in intracellular Ca2+ concentration ([Ca2+]i), with an early and extracellular Ca2+-independent peak and a sustained and extracellular Ca2+-dependent plateau phase. During the peak [Ca2+]i response, electrical activity is abolished due to transient hyperpolarization that is mediated by SK channels. This is followed by sustained depolarization and resumption of firing with increased spike frequency and duration. The agonist-induced depolarization and increased firing are independent of [Ca2+]i and are not mediated by inhibition of K+ currents, but by facilitation of a voltage-insensitive and store depletion-activated Ca2+-conducting inward current. The dual control of pacemaker activity by SK and store depletion-activated Ca2+ channels facilitates voltage-gated Ca2+ influx at elevated [Ca2+]i levels, but also protects cells from Ca2+ overload. This process accounts for the autoregulatory action of GnRH on its release from hypothalamic neurons.  相似文献   

15.
Intrinsic cardiac adrenergic (ICA) cells in developing rat heart constitute a novel adrenergic signaling system involved in cardiac regulation. Regulatory mechanisms of ICA cells remain to be defined. Immunohistochemical study of fetal rat hearts demonstrated ICA cells with catecholamine biosynthetic enzyme tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT). The mRNA of TH and PNMP was also detected in fetal rat hearts before sympathetic innervation. Immunoreactivity of norepinephrine transporter (NET) was localized to ICA cells in rat heart tissue and primary cell culture. For the functional study, the activity of intracellular Ca2+ concentration ([Ca2+]i) transients was quantified by a ratio fluorescent spectrometer in cultured ICA cells and myocytes. ICA cells generated spontaneous [Ca2+]i transients that were eliminated by tetrodotoxin or Ca(2+)-free solutions and showed greatly reduced amplitude with the addition of L-type Ca2+ channel blocker nifedipine. [3H]norepinephrine studies demonstrate release and uptake of norepinephrine. Functional interaction between catecholamines produced by the ICA cells and cocultured myocytes was evident by the effect of the beta-adrenergic blocker atenolol eliciting a dose-dependent reduction in the amplitude and frequency of [Ca2+]i transients of beating myocytes. Hypoxia inhibited [Ca2+]i transient activity of ICA cells, which subsequently produced a reoxygenation-mediated rebound augmentation of [Ca2+]i transients. We conclude that ICA cells are capable of catecholamine synthesis, release, and uptake. They generate spontaneous [Ca2+]i transient activity that can be regulated by oxygen tension. ICA cells may provide an alternative adrenergic supply to maintain cardiac contractile and pacemaker function at rest and during stress in the absence of sympathetic innervation.  相似文献   

16.
Digital imaging fluorescence microscopy of fura-2-loaded hepatocytes in primary culture has been used to examine the changes of cytosolic free Ca2+ ([Ca2+]i) in response to receptor activation by alpha 1-adrenergic agonists and vasopressin at the subcellular level. Agonist-induced Ca2+ oscillations did not occur synchronously within the cell but originated from a specific region adjacent to the cell membrane and then propagated throughout the rest of the cell, with each oscillation within a series originating from the same locus. Furthermore, hormones acting through different receptors produced Ca2+ waves with similar rates of progress (20-25 microns.s-1) which originated from the same subcellular locus. For a given cell, the rate of progress and amplitude of the Ca2+ waves were independent of applied agonist concentration and were unaffected by depletion of extracellular Ca2+. The kinetics of Ca2+ increase at different points within the cell indicated that the Ca2+ waves were not driven by diffusion but were characteristic of a self-propagating mechanism. Significantly, when cells were treated with A1F-4 to directly activate the G-protein which couples receptor occupancy to [Ca2+]i mobilization, the origin and kinetics of the Ca2+ waves were identical to those observed with hormonal stimulation. It is proposed that the spatial organization of the intracellular Ca2+ release mechanisms may have significance in the regulation of the asymmetric metabolic functions of hepatocytes and other functionally polarized cells.  相似文献   

17.
The regulation of free cytoplasmic calcium concentration ([Ca2+]i) was studied in bovine pulmonary artery endothelial cells (BPAEC). The cells were seeded on the inner surface of glass cuvettes, grown to confluency and loaded with INDO-1. Using a multiwavelength method for estimation of [Ca2+]i it was shown that in Ca2+ containing medium a rapid rise of [Ca2+]i occurs in response to bradykinin, ATP or thrombin followed by a much slower decrease in free cytoplasmic calcium. Binding of extracellular Ca2+ by EGTA lowered basal [Ca2+]i but had no effect on the rate of agonist-induced [Ca2+]i increase or its absolute amount. In contrast, the kinetics of [Ca2+]i decrease were entirely different. A rapid (less than 0.5 min) decrease in [Ca2+]i to the basal level was observed immediately after the maximum had been achieved. If excess Ca2+ was added to the medium after EGTA, a second [Ca2+]i rise in response to the agonists occurred. The decrease in [Ca2+]i after the second peak was several times slower than the decrease in Ca2+ free medium. It is concluded that Ca2+ entry from the external medium had no effect on the maximal increase in [Ca2+]i but provides a severalfold increase in the duration the endothelial cell responses to the agonists.  相似文献   

18.
Mihai R  Lai T  Schofield G  Farndon JR 《Cell calcium》1999,26(3-4):95-101
Parathyroid cells express a plasma membrane calcium receptor (CaR), which is stimulated by a rise in extracellular calcium concentration ([Ca2+]ext). A decreased sensitivity to [Ca2+]ext occurs in adenomatous parathyroid cells in patients with primary hyperparathyroidism, but the underlying functional mechanism is not yet fully understood. This study explored whether CaR responsiveness is influenced by increasing the affinity of IP3 receptors--a major signalling component of other G-protein-coupled receptors. The sulphydryl reagent thimerosal was used to increase the responsiveness of IP3-receptors. Quantitative fluorescence microscopy in Fura-2-loaded cells was used to investigate the effects of thimerosal on the cytoplasmic calcium concentrations ([Ca2+]i) in human parathyroid cells and to compare its effects in a rat medullary thyroid carcinoma cell line (rMTC6-23) also expressing CaR. During incubation in Ca(2+)-free medium, thimerosal 5 microM induced a rapid sustained rise in [Ca2+]i in human parathyroid cells and no further [Ca2+]i increase appeared in response to the CaR agonist Gd3+ (100 microM). Thimerosal 1 microM induced only slow and minimal changes of basal [Ca2+]i and allowed a rapid response to Gd3+ 20 nM (a concentration without effect in control cells). The slope of the thimerosal-induced [Ca2+]i responses was steeper following exposure to CaR agonists. In the presence of 1 mM [Ca2+]ext, thimerosal (0.5 microM) induced a sharp increase in [Ca2+]i to a peak (within 60 s), followed either by return to basal [Ca2+]i or by a plateau of slightly higher amplitude. Similar results were obtained using rMTC6-23 cells. Thimerosal increases the responsiveness to CaR agonists through modulation of the sensitivity of the IP3 receptor in both parathyroid and rMTC6-23 cells.  相似文献   

19.
The fluorescent intracellular Ca2+ indicator, fura2/AM, was used to determine the effects of carbachol, cholecystokinin octapeptide (CCK-8), gastrin and histamine on intracellular Ca2+ ([Ca2+]i) in parietal cells from rabbit gastric mucosa enriched to more than 95% purity by a new Nycodenz gradient/centrifugal elutriation technique. Changes in [Ca2+]i in response to the same agonists were also measured in enriched chief cells. Carbachol, histamine, gastrin and CCK-8 increased parietal cell [Ca2+]i with the response to carbachol greater than CCK -8 = histamine = gastrin. Prestimulation with msximal doses of carbachol blocked histamine-induced increases in [Ca2+]i. In chief cells, carbachol increased [Ca2+]i but to a lesser degree than CCK-8, while histamine had no significant effect on [Ca2+]i. Neither removal of extracellular Ca2+ coupled with acute addition of 1 mM EGTA nor addition of the Ca2+-channel blocker nicardipine prevented agonist-induced changes in [Ca2+]i in either cell type. In the presence and absence of 10 mM LiCl2, carbachol and CCK-8 were found to increase inositol trisphosphate (IP3) content in both parietal and chief cells while histamine had no significant effect on this phosphoinositide hydrolysis product. From these results and previous observations with gastric glands (Chew, C.S. (1986) Am. J. Physiol. 13, G814-G823) we conclude that: carbachol, CCK-8, gastrin and histamine increase parietal cell [Ca2+]i initially by release of Ca2+ from the same intracellular store(s); the release of [Ca2+]i in response to carbachol and CCK-8 in both chief and parietal cells appear to be mediated by IP3; however, other mechanisms may be involved in histamine-induced release of parietal cell Ca2+.  相似文献   

20.
The plasma membrane Ca2+ ATPase (PMCA) plays a major role in clearing Ca2+ from the neuronal cytoplasm. Calmodulin stimulates PMCA activity and for some isoforms this activation persists following clearance of Ca2+ owing to the slow dissociation of calmodulin. We tested the hypothesis that PMCA-mediated Ca2+ efflux from rat dorsal root ganglion (DRG) neurons in culture would remain stimulated following increases in intracellular Ca2+ concentration ([Ca2+]i). PMCA-mediated Ca2+ extrusion was recorded following brief trains of action potentials using indo-1-based photometry in the presence of cyclopiazonic acid. A priming stimulus that increased [Ca2+]i to 506 +/- 28 nm (>15 min) increased the rate constant for [Ca2+]i recovery by 47 +/- 3%. Ca2+ clearance from subsequent test stimuli remained accelerated for up to an hour despite removal of the priming stimulus and a return to basal [Ca2+]i. The acceleration depended on the magnitude and duration of the priming [Ca2+]i increase, but was independent of the source of Ca2+. Increases in [Ca2+]i evoked by prolonged depolarization, sustained trains of action potentials or activation of vanilloid receptors all accelerated Ca2+ efflux. We conclude that PMCA-mediated Ca2+ efflux in DRG neurons is a dynamic process in which intense stimuli prime the pump for the next Ca2+ challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号