首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Catalase is an antioxidant enzyme that plays a significant role in protection against oxidative stress by detoxification of hydrogen peroxide (H2O2). A gene coding for a putative catalase was isolated from the disk abalone (Haliotis discus discus) cDNA library and denoted as Ab-catalase. The full-length (2864 bp) Ab-catalase cDNA contained 1,503 bp open reading frame (ORF), encoding 501 amino acid residues with 56 kDa predicted molecular weight. The deduced amino acid sequence of Ab-catalase has characteristic features of catalase family such as catalytic site motif (61FNRERIPERVVHAKGAG77), heme-ligand signature motif (351RLYSYSDT358), NADPH and heme binding residues. Phylogenetic and pairwise identity results indicated that Ab-catalase is more similar to scallop (Chlamys farreri) catalase with 80% amino acid identity except for other reported disk abalone catalase sequences. Constitutive Ab-catalase expression was detected in gill, mantle, gonad, hemocytes, abductor muscle and digestive tract in tissue specific manner. Ab-catalase mRNA was up-regulated in gill and digestive tract tissues for the first 3h post injection of H2O2, showing the inducible ability of abalone catalase against oxidative stress generated by H2O2. The purified recombinant catalase showed 30,000 U/mg enzymatic activity against H2O2 and biochemical properties of higher thermal stability and broad spectrum of pH. Our results suggest that abalone catalase may play an important role in regulating oxidative stress by scavenging H2O2.  相似文献   

3.
The endothelium is a key site of injury from reactive oxygen species that can potentially be protected by the antioxidant enzymes superoxide dismutase and catalase. Large proteins, such as superoxide dismutase and catalase, do not readily penetrate cell membranes, which limits their efficacy in protecting cells from cellular reactions involving both intracellularly and extracellularly generated reactive oxygen species. Two methods are described that promote enzyme delivery to cultured endothelial cells and confer increased resistance to oxidative stress. The first method is to entrap the antioxidant enzymes within liposomes, which then become incorporated by endothelial cells and can increase enzyme specific activities by as much as 44-fold within 2 h. The second method involves covalent conjugation of polyethylene glycol (PEG) to superoxide dismutase and catalase, a technique that increases circulatory half-life and reduces protein immunogenicity. Conjugation of PEG to superoxide dismutase and catalase increased cellular-specific activities of these enzymes in cultured endothelial cells (but at a slower rate than for liposome entrapped enzymes) and rendered these cells more resistant to oxidative stress. Both liposome-mediated delivery and PEG conjugation offer an additional benefit over native superoxide dismutase and catalase because they can increase cellular antioxidant activities in a manner that can provide protection from both intracellular and extracellular superoxide and hydrogen peroxide.  相似文献   

4.
Insulin-producing cells show very low activity levels of the cytoprotective enzymes catalase, glutathione peroxidase, and superoxide dismutase. This weak antioxidative defense status has been considered a major feature of the poor resistance against oxidative stress. Therefore, we analyzed the protective effect of a combined overexpression of Cu,ZnSOD or MnSOD together with different levels of catalase. Catalase alone was able to increase the resistance of transfected RINm5F insulin-producing tissue culture cells against H(2)O(2) and HX/XO, but no protection was seen in the case of menadione. In combination with an increase of the MnSOD or Cu,ZnSOD expression, the protective action of catalase overexpression could be further increased and extended to the toxicity of menadione. Thus, optimal protection of insulin-producing cells against oxidative stress-mediated toxicity requires a combined overexpression of both superoxide- and hydrogen peroxide-inactivating enzymes. This treatment can compensate for the constitutively low level of antioxidant enzyme expression in insulin-producing cells and may provide an improved protection in situations of free radical-mediated destruction of pancreatic beta cells in the process of autoimmune diabetes development.  相似文献   

5.
6.
7.
Catalase (EC 1.11.1.6) is an important antioxidant enzyme that protects aerobic organisms against oxidative damage by degrading hydrogen peroxide to oxygen and water. Catalase mRNAs have been cloned from many species and employed as useful biomarkers of oxidative stress. In the present study, we cloned the cDNA from the catalase gene in Daphnia magna, analyzed its catalytic properties, and investigated mRNA expression patterns after the exposure to known oxidative stressors. The catalase proximal heme-ligand signature sequence, FDRERISERVVHAKGSGA, and the proximal active site signature, RLFSYTDTH, are highly conserved. The variation of catalase mRNA expression in D. magna was quantified by real-time PCR, and the results indicated that catalase expression was up-regulated after exposure to UV-B light or cadmium (Cd). The activity of catalase enzyme also showed a similar increasing pattern when exposed to these model stressors. The full-length catalase cDNA of D. magna was cloned using mixed primers by the method of 3′ and 5′ rapid amplification of cDNA ends PCR. The cDNA sequence consists of 1515 nucleotides, encoding 504 amino acids. Sequence comparison showed that the deduced amino acid sequence of D. magna shared 73%, 72%, 71% and 70% identity with that of Chlamys farreri, Fenneropenaeus chinensis, Litopenaeus vannamei and Anopheles gambiae, respectively. This study shows that the catalase mRNA from D. magna could be successfully employed as a biomarker of oxidative stress, which is a common mode of toxicity for many water contaminants.  相似文献   

8.
9.
Two Arabidopsis thaliana cDNAs (IPP1 and IPP2) encoding isopentenyl diphosphate isomerase (IPP isomerase) were isolated by complementation of an IPP isomerase mutant strain of Saccharomyces cerevisiae. Both cDNAs encode enzymes with an amino terminus that may function as a transit peptide for localization in plastids. At least 31 amino acids from the amino terminus of the IPP1 protein and 56 amino acids from the amino terminus of the IPP2 protein are not essential for enzymatic activity. Genomic DNA blot analysis confirmed that IPP1 and IPP2 are derived from a small gene family in A. thaliana. Based on northern analysis expression of both cDNAs occurs predominantly in roots of mature A. thaliana plants grown to the pre-flowering stage.  相似文献   

10.
The role of catalase in response of the yeast Saccharomyces cerevisiae to oxidative stress induced by hydrogen peroxide under starvation was investigated. It was shown that under conditions used in this study 0.5 mM H2O2 did not change the number of viable cells in the wild strain YPH250, but this parameter was decreased by 15% in the acatalsaemic strain YWT1. Cells treatment with 0.5 mM H2O2 for 30 min did not modify the levels of carbonyl proteins in the parental strain, but caused its 1.4-fold increase in the defective strain. The observed 1.5-fold activation of catalase in the wild strain cells in response to H2O2-stress suggests that under starvation conditions catalase can be involved in the yeast cell protection, particularly they can prevent oxidative modification of some antioxidant and associated enzymes.  相似文献   

11.
Baek YM  Hwang HJ  Kim SW  Hwang HS  Lee SH  Kim JA  Yun JW 《Proteomics》2008,8(22):4748-4767
The endogenous ROS levels were increased during HepG2 apoptosis, whereas they were decreased during SK-N-SH apoptosis in response to capsaicin treatments. We used 2-DE-based proteomics to analyze the altered protein levels in both cells, with special attention on oxidative stress proteins before and after capsaicin treatments. The 2-DE analysis demonstrated that 23 proteins were increased and 26 proteins were decreased significantly (fold change>1.4) in capsaicin-treated apoptotic HepG2 and SK-N-SH cells, respectively. The distinct effect of capsaicin-induced apoptosis on the expression pattern of HepG2 proteins includes the downregulation of some antioxidant enzymes including aldose reductase (AR), catalase, enolase 1, peroxiredoxin 1, but upregulation of peroxiredoxin 6, cytochrome c oxidase, and SOD2. In contrast, most antioxidant enzymes were increased in SK-N-SH cells in response to capsaicin, where catalase might play a pivotal role in maintenance of low ROS levels in the course of apoptosis. The global gene expression for oxidative stress and antioxidant defense genes revealed that 84 gene expressions were not significantly different in HepG2 cells between control and capsaicin-treated cells. In contrast, a number of oxidative genes were downregulated in SK-N-SH cells, supporting the evidence of low ROS environment in apoptotic SK-N-SH cells after capsaicin treatment. It was concluded that the different relationship between endogenous ROS levels and apoptosis of two cancer cells presumably resulted from complicated expression patterns of many oxidative stress and antioxidant genes, rather than the individual role of some classical antioxidant enzymes such as SOD and catalase.  相似文献   

12.
Ferritin is a conserved iron-binding protein involved in cellular iron metabolism and host defense. In the present study, two distinct cDNAs for ferritins in the freshwater pearl mussel Hyriopsis schlegelii were identified (designated as HsFer-1 and HsFer-2) by SMART RACE approach and expressed sequence tag (EST) analysis. The full-length cDNAs of HsFer-1 and HsFer-2 were of 760 and 877 bp, respectively. Both of the two cDNAs contained an open reading frame (ORF) of 522 bp encoding for 174 amino acid residues. Sequence characterization and homology alignment indicated that HsFer-1 and HsFer-2 had higher similarity to H-type subunit of vertebrate ferritins than L-type subunit. Analysis of the HsFer-1 and HsFer-2 untranslated regions (UTR) showed that both of them had an iron response element (IRE) in the 5′-UTR, which was considered to be the binding site for iron regulatory protein (IRP). Quantitative real-time PCR (qPCR) assays were employed to examine the mRNA expression profiles. Under normal physiological conditions, the expression level of both HsFer-1 and HsFer-2 mRNA were the highest in hepatopancreas, moderate in gonad, axe foot, intestine, kidney, heart, gill, adductor muscle and mantle, the lowest in hemocytes. After stimulation with bacteria Aeromonas hydrophila, HsFer-1 mRNA experienced a different degree of increase in the tissues of hepatopancreas, gonad and hemocytes, the peak level was 2.47-fold, 9.59-fold and 1.37-fold, respectively. Comparatively, HsFer-2 showed up-regulation in gonad but down-regulation in hepatopancreas and hemocytes. Varying expression patterns indicate that two types of ferritins in H. schlegelii might play different roles in response to bacterial challenge. Further bacteriostatic analysis showed that both the purified recombinant ferritins inhibited the growth of A. hydrophila to a certain degree. Collectively, our results suggest that HsFer-1 and HsFer-2 are likely to be functional proteins involved in immune defense against bacterial infection.  相似文献   

13.
This study was undertaken to determine if 4-hydroxy-2-nonenal (HNE) could upregulate antioxidants and phase 2 enzymes in rat H9c2 myocardiac cells, and if the upregulated defenses led to cytoprotection against oxidative and electrophilic injury. Incubation of H9c2 cells with HNE at noncytotoxic concentrations resulted in significant induction of cellular catalase, glutathione (GSH), GSH S-transferase (GST), and NAD(P)H:quinone oxidoreductase 1 (NQO1), as determined by enzyme activity and/or protein expression. HNE treatment caused increased mRNA expression of catalase, γ-glutamylcysteine ligase, GST-A1, and NQO1. Pretreatment of H9c2 cells with HNE led to significant protection against cytotoxicity induced by reactive oxygen and nitrogen species. HNE-pretreated cells also exhibited increased resistance to injury elicited by subsequent cytotoxic concentrations of HNE. Taken together, this study demonstrates that several antioxidants and phase 2 enzymes in H9c2 cells are upregulated by HNE and that the increased defenses afford protection against overt oxidative and electrophilic cardiac cell injury.  相似文献   

14.
For improvement of tolerance to oxidative stress in Bifidobacterium longum 105-A, we introduced the Bacillus subtilis catalase gene (katE) into it. The transformant showed catalase activity (39 U/mg crude protein) in the intracellular fraction, which increased survival by ~100-fold after a 1-h exposure to 4.4 mM H(2)O(2), decreased de novo H(2)O(2) accumulation, and increased survival in aerated cultures by 10(5)-fold at 24 h. The protection level was better than that conferred by exogenously added catalase.  相似文献   

15.
Catalase is one of the central enzymes involved in scavenging the high level of reactive oxygen species (ROS) by degradation of hydrogen peroxide to oxygen and water. The full-length catalase cDNA of Zhikong scallop Chlamys farreri (denoted as CfCAT) was identified from hemocytes by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The nucleotide sequence of CfCAT cDNA consisted of 3146bp with a 5' UTR of 103bp, an unusually long 3' UTR of 1519bp with a canonical polyadenylation signal sequence AATAAA and a polyA tail, and an open reading frame (ORF) of 1521bp encoding a polypeptide of 507 amino acids with predicted molecular weight of 57.5kDa. The deduced amino acid sequence of CfCAT has significant homology to catalases from animals, plants and bacteria. Several highly conserved motifs including the proximal heme-ligand signature sequence RLFSYNDTH, the proximal active site signature FNRERIPERVVHAKGGGA, and the three catalytic amino acid residues of His(72), Asn(145) and Tyr(355) were identified in the deduced amino acid sequence of CfCAT. The CfCAT was demonstrated to be a peroxisomal glycoprotein with two potential glycosylation sites and a peroxisome targeting signal of ANL that was consistent with human, mouse and rat catalases. The time-course expression of CfCAT in hemocytes was measured by quantitative real-time PCR. The expression of CfCAT increased gradually and reached the highest point at 12h post-Vibrio infection, then recovered to the original level at 24h. All these results indicate that CfCAT, a constitutive and inducible protein, is a member of the catalase family and is involved in the process against ROS in scallop.  相似文献   

16.
Catalases are known to detoxify H2O2, a major component of oxidative stress imposed on a cell. An Agrobacterium tumefaciens catalase encoded by a chromosomal gene katA has been implicated as an important virulence factor as it is involved in detoxification of H2O2 released during Agrobacterium-plant interaction. In this paper, we report a feedback regulation pathway that controls the expression of katA in A. tumefaciens cells. We observed that katA could be induced by plant tissue sections and by acidic pH on a minimal medium, which resembles the plant environment that the bacteria encounter during the course of infection. This represents a new regulatory factor for catalase induction in bacteria. More importantly, a feedback regulation was observed when the katA-gfp expression was studied in different genetic backgrounds. We found that introduction of a wild-type katA gene encoding a functional catalase into A. tumefaciens cells could repress the katA-gfp expression over 60-fold. The katA gene could be induced by H2O2 and the encoded catalase could detoxify H2O2. In addition, the katA-gfp expression of one bacterial cell could be repressed by other surrounding catalase-proficient bacterial cells. Furthermore, mutation at katA caused a 10-fold increase of the intracellular H2O2 concentration in the bacteria grown on an acidic pH medium. These results suggest that the endogenous H2O2 generated during A. tumefaciens cell growth could serve as the intracellular and intercellular inducer for the katA gene expression and that the acidic pH could pose an oxidative stress on the bacteria. Surprisingly, one mutated KatA protein, exhibiting no significant catalase activity as a result of the alteration of two important residues at the putative active site, could partially repress the katA-gfp expression. The feedback regulation of the katA gene by both catalase activity and KatA protein could presumably maintain an appropriated level of catalase activity and H2O2 inside A. tumefaciens cells.  相似文献   

17.
18.
Nucleotide sequence analysis of cDNAs for asparagine synthetase (AS) of Pisum sativum has uncovered two distinct AS mRNAs (AS1 and AS2) encoding polypeptides that are highly homologous to the human AS enzyme. The amino-terminal residues of both AS1 and AS2 polypeptides are identical to the glutamine-binding domain of the human AS enzyme, indicating that the full-length AS1 and AS2 cDNAs encode glutamine-dependent AS enzymes. Analysis of nuclear DNA shows that AS1 and AS2 are each encoded by single genes in P.sativum. Gene-specific Northern blot analysis reveals that dark treatment induces high-level accumulation of AS1 mRNA in leaves, while light treatment represses this effect as much as 30-fold. Moreover, the dark-induced accumulation of AS1 mRNA was shown to be a phytochrome-mediated response. Both AS1 and AS2 mRNAs also accumulate to high levels in cotyledons of germinating seedlings and in nitrogen-fixing root nodules. These patterns of AS gene expression correlate well with the physiological role of asparagine as a nitrogen transport amino acid during plant development.  相似文献   

19.
During plant-microbe interactions and in the environment, Xanthomonas campestris pv. phaseoli is likely to be exposed to high concentrations of multiple oxidants. Here, we show that simultaneous exposures of the bacteria to multiple oxidants affects cell survival in a complex manner. A superoxide generator (menadione) enhanced the lethal effect of an organic peroxide (tert-butyl hydroperoxide) by 1, 000-fold; conversely, treatment of cells with menadione plus H(2)O(2) resulted in 100-fold protection compared to that for cells treated with the individual oxidants. Treatment of X. campestris with a combination of H(2)O(2) and tert-butyl hydroperoxide elicited no additive or protective effect. High levels of catalase alone are sufficient to protect cells against the lethal effect of menadione plus H(2)O(2) and tert-butyl hydroperoxide plus H(2)O(2). These data suggest that H(2)O(2) is the lethal agent responsible for killing the bacteria as a result of these treatments. However, increased expression of individual genes for peroxide (alkyl hydroperoxide reductase, catalase)- and superoxide (superoxide dismutase)-scavenging enzymes or concerted induction of oxidative stress-protective genes by menadione gave no protection against killing by a combination of menadione plus tert-butyl hydroperoxide. However, X. campestris cells in the stationary phase and a spontaneous H(2)O(2)-resistant mutant (X. campestris pv. phaseoli HR) were more resistant to killing by menadione plus tert-butyl hydroperoxide. These findings give new insight into oxidant killing of Xanthomonas spp. that could be generally applied to other bacteria.  相似文献   

20.
As a safeguard against oxidative stress, the balance between the main antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) was believed to be more important than any single one, for example, dual-functional SOD/CAT enzyme has been proved to have better antioxidant ability than either single enzyme. By combining traditional fusion protein technology with amino acid auxotrophic expression system, we generated a bifunctional enzyme with both GPx and SOD activities. It displayed better antioxidant ability than GPx or SOD. Such dual-functional enzymes could facilitate further studies of the cooperation of GPx and SOD and generation of better therapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号