首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Lymphedema is the clinical manifestation of defects in lymphatic structure or function. Mutations identified in genes regulating lymphatic development result in inherited lymphedema. No mutations have yet been identified in genes mediating lymphatic function that result in inherited lymphedema. Survey microarray studies comparing lymphatic and blood endothelial cells identified expression of several connexins in lymphatic endothelial cells. Additionally, gap junctions are implicated in maintaining lymphatic flow. By sequencing GJA1, GJA4, and GJC2 in a group of families with dominantly inherited lymphedema, we identified six probands with unique missense mutations in GJC2 (encoding connexin [Cx] 47). Two larger families cosegregate lymphedema and GJC2 mutation (LOD score = 6.5). We hypothesize that missense mutations in GJC2 alter gap junction function and disrupt lymphatic flow. Until now, GJC2 mutations were only thought to cause dysmyelination, with primary expression of Cx47 limited to the central nervous system. The identification of GJC2 mutations as a cause of primary lymphedema raises the possibility of novel gap-junction-modifying agents as potential therapy for some forms of lymphedema.  相似文献   

2.
Loss of connexin expression and/or gap junctional communication (GJC) has been correlated with increased rates of cell growth in tumor cells compared to their normal communication-competent counterparts. Conversely, reduced rates of cell growth have been observed in tumor cells that are induced to express exogenous connexins and re-establish GJC. It is not clear how this putative growth-suppressive effect of the connexin proteins is mediated and some data has suggested that this function may be independent of GJC. In mammalian cells that express v-Src, connexin43 (Cx43) is phosphorylated on Tyr247 and Tyr265 and this results in a dramatic disruption of GJC. Cells that express a Cx43 mutant with phenylalanine mutations at these tyrosine sites form functional gap junctions that, unlike junctions formed by wild type Cx43, remain functional in cells that co-express v-Src. These cells still appear transformed; however, it is not known whether their ability to maintain GJC prevents the loss of growth restraints that confine “normal” cells, such as the inability to grow in an anchorage-independent manner or to form foci. In these studies, we have examined some of the growth properties of cells with Cx43 gap junctions that remain communication-competent in the presence of the co-expressed v-Src oncoprotein.  相似文献   

3.
Loss of connexin expression and/or gap junctional communication (GJC) has been correlated with increased rates of cell growth in tumor cells compared to their normal communication-competent counterparts. Conversely, reduced rates of cell growth have been observed in tumor cells that are induced to express exogenous connexins and re-establish GJC. It is not clear how this putative growth-suppressive effect of the connexin proteins is mediated and some data has suggested that this function may be independent of GJC. In mammalian cells that express v-Src, connexin43 (Cx43) is phosphorylated on Tyr247 and Tyr265 and this results in a dramatic disruption of GJC. Cells that express a Cx43 mutant with phenylalanine mutations at these tyrosine sites form functional gap junctions that, unlike junctions formed by wild type Cx43, remain functional in cells that co-express v-Src. These cells still appear transformed; however, it is not known whether their ability to maintain GJC prevents the loss of growth restraints that confine "normal" cells, such as the inability to grow in an anchorage-independent manner or to form foci. In these studies, we have examined some of the growth properties of cells with Cx43 gap junctions that remain communication-competent in the presence of the co-expressed v-Src oncoprotein.  相似文献   

4.
《Epigenetics》2013,8(5):602-609
Gap junctions are specialized plasma membrane domains consisting of channels formed by members of the connexin protein family. Gap junctional intercellular communication is often lost in cancers due to aberrant localization or downregulation of connexins, and connexins are therefore suggested to act as tumor suppressor genes in various tissues. The aim of this study was to investigate the expression pattern and DNA promoter methylation status of connexins in colorectal cancer. Expression of six (GJA1, GJA9, GJB1, GJB2, GJC1 and GJD3) connexin genes was detected in normal colonic tissue samples. GJC1 expression was reduced in colorectal carcinomas compared to normal tissue samples. All analyzed connexins were hypermethylated in colon cancer cell lines, although at various frequencies. GJA4, GJB6 and GJD2 were hypermethylated in 60% (29/48), 25% (12/48) and 96% (46/48) of primary colorectal carcinomas, respectively. However, the methylation status was not associated with gene expression. GJC1 has two alternative promoters, which were methylated in 42% (32/76) and 38% (25/65) of colorectal tumors, and in none of the normal mucosa samples. Expression of GJC1 was significantly lower in methylated compared with unmethylated samples (p < 0.01) and was restored in cell lines treated with the demethylating drug 5-aza-2'deoxycytidine. Taken together, DNA hypermethylation of the promoter region of GJC1, encoding connexin45, is an important mechanism in silencing gene expression in colorectal cancer.  相似文献   

5.
Gap junctions are important structures in cell-to-cell communication. Connexins, the protein units of gap junctions, are involved in several human disorders. Mutations in beta-connexin genes cause hearing, dermatological and peripheral nerve disorders. Recessive mutations in the gene encoding connexin 26 (GJB2) are the most common cause of childhood-onset deafness. The combination of mutations in the GJB2 and GJB6 (Cx30) genes also cause childhood hearing impairment. Although both recessive and dominant connexin mutants are functionally impaired, dominant mutations might have in addition a dominant-negative effect on wild-type connexins. Some dominant mutations in beta-connexin genes have a pleiotropic effect at the level of the skin, the auditory system and the peripheral nerves. Understanding the genotype-phenotype correlations in diseases caused by mutations in connexin genes might provide important insight into the mechanisms that lead to these disorders.  相似文献   

6.
7.
Dominant mutations in GJA1, the gene encoding the gap junction protein connexin43 (Cx43), cause oculodentodigital dysplasia (ODDD), a syndrome affecting multiple tissues, including the central nervous system (CNS). We investigated the effects of the G60S mutant, which causes a similar, dominant phenotype in mice (Gja1(Jrt/+)). Astrocytes in acute brain slices from Gja1(Jrt/+) mice transfer sulforhodamine-B comparably to that in their wild-type (WT) littermates. Further, astrocytes and cardiomyocytes cultured from Gja1(Jrt/+) mice showed a comparable transfer of lucifer yellow to those from WT mice. In transfected cells, the G60S mutant formed gap junction (GJ) plaques but not functional channels. In co-transfected cells, the G60S mutant co-immunoprecipitated with WT Cx43, but did not diminish GJ coupling as measured by dual patch clamp. Thus, whereas G60S has dominant effects, it did not appreciably reduce GJ coupling.  相似文献   

8.
Oculodentodigital dysplasia (ODDD) is an autosomal dominant disorder characterized by pleiotropic developmental anomalies of the limbs, teeth, face and eyes that was shown recently to be caused by mutations in the gap junction protein alpha 1 gene (GJA1), encoding connexin 43 (Cx43). In the course of performing an N-ethyl-N-nitrosourea mutagenesis screen, we identified a dominant mouse mutation that exhibits many classic symptoms of ODDD, including syndactyly, enamel hypoplasia, craniofacial anomalies and cardiac dysfunction. Positional cloning revealed that these mice carry a point mutation in Gja1 leading to the substitution of a highly conserved amino acid (G60S) in Cx43. In vivo and in vitro studies revealed that the mutant Cx43 protein acts in a dominant-negative fashion to disrupt gap junction assembly and function. In addition to the classic features of ODDD, these mutant mice also showed decreased bone mass and mechanical strength, as well as altered hematopoietic stem cell and progenitor populations. Thus, these mice represent an experimental model with which to explore the clinical manifestations of ODDD and to evaluate potential intervention strategies.  相似文献   

9.
Oculodentodigital dysplasia (ODDD) is a rare developmental disease resulting from germline mutations in the GJA1 gene that encodes the gap junction protein connexin43 (Cx43). In addition to the classical ODDD symptoms that affect the eyes, teeth, bone and digits, in some cases ODDD patients have reported bladder impairments. Thus, we chose to characterize the bladder in mutant mouse models of ODDD that harbor two distinct Cx43 mutations, G60S and I130T. Histological assessment revealed no difference in bladder detrusor wall thickness in mutant compared to littermate control mice. The overall localization of Cx43 in the lamina propria and detrusor also appeared to be similar in the bladders of mutant mice with the exception that the G60S mice had more instances of intracellular Cx43. However, both mutant mouse lines exhibited a significant reduction in the phosphorylated P1 and P2 isoforms of Cx43, while only the I130T mice exhibited a reduction in total Cx43 levels. Interestingly, Cx26 levels and distribution were not altered in mutant mice as it was localized to intracellular compartments and restricted to the basal cell layers of the urothelium. Our studies suggest that these two distinct genetically modified mouse models of ODDD probably mimic patients who lack bladder defects or other factors, such as aging or co-morbidities, are necessary to reveal a bladder phenotype.  相似文献   

10.
Craniometaphyseal dysplasia (CMD) is a rare sclerosing skeletal disorder with progressive hyperostosis of craniofacial bones. CMD can be inherited in an autosomal dominant (AD) trait or occur after de novo mutations in the pyrophosphate transporter ANKH. Although the autosomal recessive (AR) form of CMD had been mapped to 6q21-22 the mutation has been elusive. In this study, we performed whole-exome sequencing for one subject with AR CMD and identified a novel missense mutation (c.716G>A, p.Arg239Gln) in the C-terminus of the gap junction protein alpha-1 (GJA1) coding for connexin 43 (Cx43). We confirmed this mutation in 6 individuals from 3 additional families. The homozygous mutation cosegregated only with affected family members. Connexin 43 is a major component of gap junctions in osteoblasts, osteocytes, osteoclasts and chondrocytes. Gap junctions are responsible for the diffusion of low molecular weight molecules between cells. Mutations in Cx43 cause several dominant and recessive disorders involving developmental abnormalities of bone such as dominant and recessive oculodentodigital dysplasia (ODDD; MIM #164200, 257850) and isolated syndactyly type III (MIM #186100), the characteristic digital anomaly in ODDD. However, characteristic ocular and dental features of ODDD as well as syndactyly are absent in patients with the recessive Arg239Gln Cx43 mutation. Bone remodeling mechanisms disrupted by this novel Cx43 mutation remain to be elucidated.  相似文献   

11.
In the last decade or so, increasing evidences suggest that the mutations of two connexin genes, GJA3 and GJA8, are directly linked to human congenital cataracts in North and Central America, Europe and Asia. GIA3 and GIA8 genes encode gap junction-forming proteins, connexin (Cx) 46 and Cx50, respectively. These two connexins are predominantly expressed in lens fiber cells. Majority of identified mutations are missense, and the mutated sites are scattered across various domains of connexin molecules. Genetic deletion of either of these two genes leads to the development of cataracts; however, the types of cataracts developed are distinctive. More interestingly, microphthalmia is only developed in Cx50, but not Cx46 deficient mice, suggesting the unique role of Cx50 in lens cell growth and development. Knockin studies with the replacement of Cx46 or Cx50 at their respective gene locus further demonstrate the unique properties of these two connexins. Furthermore, the function of Cx50 in epithelial-fiber differentiation appears to be independent of its conventional role in forming gap junction junction channels. Due to their specific functions in maintaining lens clarity and development, and their malfunctions resulting in lens cataractogenesis and developmental impairment, connexin molecules could be developed as potential drug targets for therapeutic intervention for treatment of cataracts and other eye disorders. Recent advances in basic research of lens connexins and the discoveries of clinical disorders as a result of lens connexin dysfunctions are summarized and discussed here.  相似文献   

12.
Pelizaeus Merzbacher disease and Pelizaeus Merzbacher like disease (PMLD) are hypomyelinating leucodystrophies of the central nervous system (CNS) with a very similar phenotype. PMD is an X-linked recessive condition caused by mutations, deletion duplication or triplication of the proteolipid protein 1 gene (PLP1). However, PMLD is a recessive autosomal hypomyelinating leukodystrophy caused by mutations of the GJC2 gene. In this study, we analyzed 5 patients belonging to 4 Tunisian families. Direct sequencing of GJC2 gene in all probands showed the same homozygous founder mutation c.-167A>G localized in the promoter region. We also generated two microsatellite markers GJC2 195GT and GJC2 76AC closed to the GJC2 gene to confirm the presence of a founder effect for this mutation. Haplotype study showed that the c.-167A>G promoter mutation occurred in a specific founder haplotype in Tunisian population. The identification of this founder mutation has important implications towards genetic counseling in relatives of these families and the antenatal diagnosis.  相似文献   

13.
Gap junction channels are intercellular conduits that allow diffusional exchange of ions, second messengers, and metabolites. Human oligodendrocytes express the gap junction protein connexin47 (Cx47), which is encoded by the GJC2 gene. The autosomal recessive mutation hCx47M283T causes Pelizaeus-Merzbacher-like disease 1 (PMLD1), a progressive leukodystrophy characterized by hypomyelination, retarded motor development, nystagmus, and spasticity. We introduced the human missense mutation into the orthologous position of the mouse Gjc2 gene and inserted the mCx47M282T coding sequence into the mouse genome via homologous recombination in embryonic stem cells. Three-week-old homozygous Cx47M282T mice displayed impaired rotarod performance but unchanged open-field behavior. 10-15-day-old homozygous Cx47M282T and Cx47 null mice revealed a more than 80% reduction in the number of cells participating in glial networks after biocytin injections into oligodendrocytes in sections of corpus callosum. Homozygous expression of mCx47M282T resulted in reduced MBP expression and astrogliosis in the cerebellum of ten-day-old mice which could also be detected in Cx47 null mice of the same age. Three-month-old homozygous Cx47M282T mice exhibited neither altered open-field behavior nor impaired rotarod performance anymore. Adult mCx47M282T expressing mice did not show substantial myelin alterations, but homozygous Cx47M282T mice, additionally deprived of connexin32, which is also expressed in oligodendrocytes, died within six weeks after birth and displayed severe myelin defects accompanied by astrogliosis and activated microglia. These results strongly suggest that PMLD1 is caused by the loss of Cx47 channel function that results in impaired panglial coupling in white matter tissue.  相似文献   

14.
Gap junctional intercellular communication (GJIC) mediated by connexins, in particular connexin 43 (Cx43), plays important roles in regulating signal transmission among different bone cells and thereby regulates development, differentiation, modeling and remodeling of the bone. GJIC regulates osteoblast formation, differentiation, survival and apoptosis. Osteoclast formation and resorptive ability are also reported to be modulated by GJIC. Furthermore, osteocytes utilize GJIC to coordinate bone remodeling in response to anabolic factors and mechanical loading. Apart from gap junctions, connexins also form hemichannels, which are localized on the cell surface and function independently of the gap junction channels. Both these channels mediate the transfer of molecules smaller than 1.2kDa including small ions, metabolites, ATP, prostaglandin and IP(3). The biological importance of the communication mediated by connexin-forming channels in bone development is revealed by the low bone mass and osteoblast dysfunction in the Cx43-null mice and the skeletal malformations observed in occulodentodigital dysplasia (ODDD) caused by mutations in the Cx43 gene. The current review summarizes the role of gap junctions and hemichannels in regulating signaling, function and development of bone cells. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

15.
16.
Gap junctions are unique membrane channels that play a significant role in intercellular communication in the developing and mature central nervous system (CNS). These channels are composed of connexin proteins that oligomerize into hexamers to form connexons or hemichannels. Many different connexins are expressed in the CNS, with some specificity with regard to the cell types in which distinct connexins are found, as well as the timepoints when they are expressed in the developing and mature CNS. Both the main neuronal Cx36 and glial Cx43 play critical roles in neurodevelopment. These connexins also mediate distinct aspects of the CNS response to pathological conditions. An imbalance in the expression, translation, trafficking and turnover of connexins, as well as mutations of connexins, can impact their function in the context of cell death in neurodevelopment and disease. With the ever-increasing understanding of connexins in the brain, therapeutic strategies could be developed to target these membrane channels in various neurological disorders.  相似文献   

17.
《FEBS letters》2014,588(8):1339-1348
There are now at least 14 distinct diseases linked to germ line mutations in the 21 genes that encode the connexin (Cx) family of gap junction proteins. This review focuses on the links between germ-line mutations in the gene encoding Cx43 (GJA1) and the human disease termed oculodentodigital dysplasia (ODDD). This disease is clinically characterized by soft tissue fusion of the digits, abnormal craniofacial bone development, small eyes and loss of tooth enamel. However, the disease is considerably more complex and somewhat degenerative as patients often suffer from other syndromic effects that include incontinence, glaucoma, skin diseases and neuropathies that become more pronounced during aging. The challenge continues to be understanding how distinct Cx43 gene mutations cause such a diverse range of tissue phenotypes and pathophysiological changes while other Cx43-rich organs are relatively unaffected. This review will provide an overview of many of these studies and distill some themes and outstanding questions that need to be addressed in the coming years.  相似文献   

18.
Cells within the vast majority of human tissues communicate directly through clustered arrays of intercellular channels called gap junctions. Gene ablation studies in mouse models have revealed that these intercellular channels are necessary for a variety of organ functions and that some of these genes are essential for survival. Molecular genetics has uncovered that germ line mutations in nearly half of the genes that encode the 21-member connexin family of gap junction proteins are linked to one or more human diseases. Frequently, these mutations are autosomal recessive, whereas in other cases, autosomal dominant mutations manifest as disease. Given the broad and overlapping distribution of connexins in a wide arrangement of tissues, it is hard to predict where connexin-linked diseases will clinically manifest. For instance, the most prevalent connexin in the human body is connexin-43 (Cx43), yet autosomal dominant mutations in the GJA1 gene, which encodes Cx43, exhibit modest developmental disorders resulting in a disease termed oculodentodigital dysplasia. Autosomal recessive mutations in the gene encoding Cx26 result in moderate to severe sensorineural hearing loss, whereas autosomal dominant mutations produce hearing loss and a wide range of skin diseases, including palmoplantar keratoderma. Here, we will focus on autosomal dominant mutations of the genes encoding Cx26 and Cx43 in relation to models that link genotypes to phenotypic outcomes with particular reference to how these approaches provide insight into human disease.  相似文献   

19.
20.
Exposure of rat liver epithelial cells to doxorubicin, an anthraquinone derivative widely employed in cancer chemotherapy, led to a dose-dependent decrease in gap junctional intercellular communication (GJC). Gap junctions are clusters of inter-cellular channels consisting of connexins, the major connexin in the cells used being connexin-43 (Cx43). Doxorubicin-induced loss of GJC was mediated by activation of extracellular signal-regulated kinase (ERK)-1 and ERK-2, as demonstrated using inhibitors of ERK activation. Furthermore, activation of the epidermal growth factor (EGF) receptor by doxorubicin was responsible for ERK activation and the subsequent attenuation of GJC. Inhibition of GJC, however, was not by direct phosphorylation of Cx43 by ERK-1/2, whereas menadione, a 1,4-naphthoquinone derivative that was previously demonstrated to activate the same EGF receptor-dependent pathway as doxorubicin, resulting in downregulation of GJC, caused strong phos-phorylation of Cx43 at serines 279 and 282. Thus, ERK-dependent downregulation of GJC upon exposure to quinones may occur both by direct phosphorylation of Cx43 and in a phosphorylation-independent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号