首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
MicroRNAs (miRNAs) play an important role in the regulation of gene expression and are involved in many cellular processes including inhibition of viral replication in infected cells. In this study, three subtypes of influenza A viruses (pH1N1, H5N1 and H3N2) were analyzed to identify candidate human miRNAs targeting and silencing viral genes expression. Candidate human miRNAs were predicted by miRBase and RNAhybrid based on minimum free energy (MFE) and hybridization patterns between human miRNAs and viral target genes. In silico analysis presented 76 miRNAs targeting influenza A viruses, including 70 miRNAs that targeted specific subtypes (21 for pH1N1, 27 for H5N1 and 22 for H3N2) and 6 miRNAs (miR-216b, miR-3145, miR-3682, miR-4513, miR-4753 and miR-5693) that targeted multiple subtypes of influenza A viruses. Interestingly, miR-3145 is the only candidate miRNA targeting all three subtypes of influenza A viruses. The miR-3145 targets to PB1 encoding polymerase basic protein 1, which is the main component of the viral polymerase complex. The silencing effect of miR-3145 was validated by 3′-UTR reporter assay and inhibition of influenza viral replication in A549 cells. In 3′-UTR reporter assay, results revealed that miR-3145 triggered significant reduction of the luciferase activity. Moreover, expression of viral PB1 genes was also inhibited considerably (P value < 0.05) in viral infected cells expressing mimic miR-3145. In conclusion, this study demonstrated that human miR-3145 triggered silencing of viral PB1 genes and lead to inhibition of multiple subtypes of influenza viral replication. Therefore, hsa-miR-3145 might be useful for alternative treatment of influenza A viruses in the future.  相似文献   

2.
3.
Sequence heterogeneity at the ends of mature microRNAs (miRNAs) is well documented, but its effects on miRNA function are largely unexplored. Here we studied the impact of miRNA 5′-heterogeneity, which affects the seed region critical for target recognition. Using the example of miR-142-3p, an emerging regulator of the hematopoietic lineage in vertebrates, we show that naturally coexpressed 5′-variants (5′-isomiRs) can recognize largely distinct sets of binding sites. Despite this, both miR-142-3p isomiRs regulate exclusive and shared targets involved in actin dynamics. Thus, 5′-heterogeneity can substantially broaden and enhance regulation of one pathway. Other 5′-isomiRs, in contrast, recognize largely overlapping sets of binding sites. This is exemplified by two herpesviral 5′-isomiRs that selectively mimic one of the miR-142-3p 5′-isomiRs. We hypothesize that other cellular and viral 5′-isomiRs can similarly be grouped into those with divergent or convergent target repertoires, based on 5′-sequence features. Taken together, our results provide a detailed characterization of target recognition by miR-142-3p and its 5′-isomiR-specific viral mimic. We furthermore demonstrate that miRNA 5′-end variation leads to differential targeting and can thus broaden the target range of miRNAs.  相似文献   

4.
Anti-microRNA (miRNA) oligonucleotides (AMOs) with 2′-O-Methyl (2′OMe) residues are commonly used to study miRNA function and can achieve high potency, with low cytotoxicity. Not withstanding this, we demonstrate the sequence-dependent capacity of 2′OMe AMOs to inhibit Toll-like receptor (TLR) 7 and 8 sensing of immunostimulatory RNA, independent of their miRNA-targeting function. Through a screen of 29 AMOs targeting common miRNAs, we found a subset of sequences highly inhibitory to TLR7 sensing in mouse macrophages. Interspecies conservation of this inhibitory activity was confirmed on TLR7/8 activity in human peripheral blood mononuclear cells. Significantly, we identified a core motif governing the inhibitory activity of these AMOs, which is present in more than 50 AMOs targeted to human miRNAs in miRBaseV20. DNA/locked nucleic acids (LNA) AMOs synthesized with a phosphorothioate backbone also inhibited TLR7 sensing in a sequence-dependent manner, demonstrating that the off-target effects of AMOs are not restricted to 2′OMe modification. Taken together, our work establishes the potential for off-target effects of AMOs on TLR7/8 function, which should be taken into account in their therapeutic development and in vivo application.  相似文献   

5.
Gu J  Xie Y  Schaefer HF 《Nucleic acids research》2007,35(15):5165-5172
The 2′-deoxyguanosine-3′,5′-diphosphate, 2′-deoxyadenosine-3′,5′-diphosphate, 2′-deoxycytidine-3′,5′-diphosphate and 2′-deoxythymidine-3′,5′-diphosphate systems are the smallest units of a DNA single strand. Exploring these comprehensive subunits with reliable density functional methods enables one to approach reasonable predictions of the properties of DNA single strands. With these models, DNA single strands are found to have a strong tendency to capture low-energy electrons. The vertical attachment energies (VEAs) predicted for 3′,5′-dTDP (0.17 eV) and 3′,5′-dGDP (0.14 eV) indicate that both the thymine-rich and the guanine-rich DNA single strands have the ability to capture electrons. The adiabatic electron affinities (AEAs) of the nucleotides considered here range from 0.22 to 0.52 eV and follow the order 3′,5′-dTDP > 3′,5′-dCDP > 3′,5′-dGDP > 3′,5′-dADP. A substantial increase in the AEA is observed compared to that of the corresponding nucleic acid bases and the corresponding nucleosides. Furthermore, aqueous solution simulations dramatically increase the electron attracting properties of the DNA single strands. The present investigation illustrates that in the gas phase, the excess electron is situated both on the nucleobase and on the phosphate moiety for DNA single strands. However, the distribution of the extra negative charge is uneven. The attached electron favors the base moiety for the pyrimidine, while it prefers the 3′-phosphate subunit for the purine DNA single strands. In contrast, the attached electron is tightly bound to the base fragment for the cytidine, thymidine and adenosine nucleotides, while it almost exclusively resides in the vicinity of the 3′-phosphate group for the guanosine nucleotides due to the solvent effects. The comparatively low vertical detachment energies (VDEs) predicted for 3′,5′-dADP (0.26 eV) and 3′,5′-dGDP (0.32 eV) indicate that electron detachment might compete with reactions having high activation barriers such as glycosidic bond breakage. However, the radical anions of the pyrimidine nucleotides with high VDE are expected to be electronically stable. Thus the base-centered radical anions of the pyrimidine nucleotides might be the possible intermediates for DNA single-strand breakage.  相似文献   

6.
7.
Potent antiviral RNAi can be induced by intracellular expression of short hairpin RNAs (shRNAs) and artificial microRNAs (miRNAs). Expression of shRNA and miRNA results in target mRNA degradation (perfect base pairing) or translational repression (partial base pairing). Although efficient inhibition can be obtained, error-prone viruses such as human immunodeficiency virus type 1 (HIV-1) can escape from RNAi-mediated inhibition by mutating the target sequence. Recently, artificial miRNAs have been shown to be potent RNAi inducers due to their efficient processing by the RNAi machinery. Furthermore, miRNAs may be more proficient in suppressing imperfect targets than shRNAs. In this study, we tested the knockdown efficiency of miRNAs and shRNAs against wild-type and RNAi-escape HIV-1 variants with one or two mutations in the target sequence. ShRNAs and miRNAs can significantly inhibit the production of HIV-1 variants with mutated target sequences in the open reading frame. More pronounced mutation-tolerance was measured for targets in the 3′ untranslated region (3′ UTR). Partially complementary sequences within the 3′ UTR of the HIV-1 RNA genome efficiently act as target sites for miRNAs and shRNAs. These data suggest that targeting imperfect target sites by antiviral miRNAs or shRNAs provides an alternative RNAi approach for inhibition of pathogenic viruses.  相似文献   

8.
9.
Nicotine binds to and activates a family of ligand-gated ion channels, neuronal nicotinic acetylcholine receptors (nAChRs). Chronic nicotine exposure alters the expression of various nAChR subtypes, which likely contributes to nicotine dependence; however, the underlying mechanisms regulating these changes remain unclear. A growing body of evidence indicates that microRNAs (miRNAs) may be involved in nAChR regulation. Using bioinformatics, miRNA library screening, site-directed mutagenesis, and gene expression analysis, we have identified a limited number of miRNAs that functionally interact with the 3′-untranslated regions (3′ UTRs) of mammalian neuronal nAChR subunit genes. In silico analyses revealed specific, evolutionarily conserved sites within the 3′ UTRs through which the miRNAs regulate gene expression. Mutating these sites disrupted miRNA regulation confirming the in silico predictions. In addition, the miRNAs that target nAChR 3′ UTRs are expressed in mouse brain and are regulated by chronic nicotine exposure. Furthermore, we show that expression of one of these miRNAs, miR-542-3p, is modulated by nicotine within the mesocorticolimbic reward pathway. Importantly, overexpression of miR-542-3p led to a decrease in the protein levels of its target, the nAChR β2 subunit. Bioinformatic analysis suggests that a number of the miRNAs play a general role in regulating cholinergic signaling. Our results provide evidence for a novel mode of nicotine-mediated regulation of the mammalian nAChR gene family.  相似文献   

10.
11.
12.
13.
Advances in small RNA sequencing technologies and comparative genomics have fueled comprehensive microRNA (miRNA) gene annotations in humans and model organisms. Although new miRNAs continue to be discovered in recent years, these have universally been lowly expressed, recently evolved, and of debatable endogenous activity, leading to the general assumption that virtually all biologically important miRNAs have been identified. Here, we analyzed small RNAs that emanate from the highly repetitive rDNA arrays of Drosophila. In addition to endo-siRNAs derived from sense and antisense strands of the pre-rRNA sequence, we unexpectedly identified a novel, deeply conserved, noncanonical miRNA. Although this miRNA is widely expressed, this miRNA was not identified by previous studies due to bioinformatics filters removing such repetitive sequences. Deep-sequencing data provide clear evidence for specific processing with precisely defined 5′ and 3′ ends. Furthermore, we demonstrate that the mature miRNA species is incorporated in the effector complexes and has detectable trans regulatory activity. Processing of this miRNA requires Dicer-1, whereas the Drosha–Pasha complex is dispensable. The miRNA hairpin sequence is located in the internal transcribed spacer 1 region of rDNA and is highly conserved among Dipteran species that were separated from their common ancestor ∼100 million years ago. Our results suggest that biologically active miRNA genes may remain unidentified even in well-studied organisms.  相似文献   

14.
Song BH  Yun SI  Choi YJ  Kim JM  Lee CH  Lee YM 《RNA (New York, N.Y.)》2008,14(9):1791-1813
Tertiary or higher-order RNA motifs that regulate replication of positive-strand RNA viruses are as yet poorly understood. Using Japanese encephalitis virus (JEV), we now show that a key element in JEV RNA replication is a complex RNA motif that includes a string of three discontinuous complementary sequences (TDCS). The TDCS consists of three 5-nt-long strands, the left (L) strand upstream of the translation initiator AUG adjacent to the 5′-end of the genome, and the middle (M) and right (R) strands corresponding to the base of the Flavivirus-conserved 3′ stem–loop structure near the 3′-end of the RNA. The three strands are arranged in an antiparallel configuration, with two sets of base-pairing interactions creating L-M and M-R duplexes. Disrupting either or both of these duplex regions of TDCS completely abolished RNA replication, whereas reconstructing both duplex regions, albeit with mutated sequences, fully restored RNA replication. Modeling of replication-competent genomes recovered from a large pool of pseudorevertants originating from six replication-incompetent TDCS mutants suggests that both duplex base-pairing potentials of TDCS are required for RNA replication. In all cases, acquisition of novel sequences within the 3′M-R duplex facilitated a long-range RNA–RNA interaction of its 3′M strand with either the authentic 5′L strand or its alternative (invariably located upstream of the 5′ initiator), thereby restoring replicability. We also found that a TDCS homolog is conserved in other flaviviruses. These data suggest that two duplex base-pairings defined by the TDCS play an essential regulatory role in a key step(s) of Flavivirus RNA replication.  相似文献   

15.
Mirtrons are introns that form pre-miRNA hairpins after splicing to produce RNA interference (RNAi) effectors distinct from Drosha-dependent intronic miRNAs, and will be especially useful for co-delivery of coding genes and RNAi. A specific family of mirtrons – 3′-tailed mirtrons – has hairpins precisely defined on the 5′ end by the 5′ splice site and 3′ end by the branch point. Here, we present design principles for artificial 3′-tailed mirtrons and demonstrate, for the first time, efficient gene knockdown with tailed mirtrons within eGFP coding region. These artificial tailed mirtrons, unlike canonical mirtrons, have very few sequence design restrictions. Tailed mirtrons targeted against VEGFA mRNA, the misregulation of which is causative of several disorders including cancer, achieved significant levels of gene knockdown. Tailed mirtron-mediated knockdown was further shown to be splicing-dependent, and at least as effective as equivalent artificial intronic miRNAs, with the added advantage of very defined cleavage sites for generation of mature miRNA guide strands. Further development and exploitation of this unique mirtron biogenesis pathway for therapeutic RNAi coupled into protein-expressing genes can potentially enable the development of precisely controlled combinatorial gene therapy.  相似文献   

16.
Although XRN2 proteins are highly conserved eukaryotic 5′→3′ exonucleases, little is known about their function in animals. Here, we characterize Caenorhabditis elegans XRN2, which we find to be a broadly and constitutively expressed nuclear protein. An xrn-2 null mutation or loss of XRN2 catalytic activity causes a molting defect and early larval arrest. However, by generating a conditionally mutant xrn-2ts strain de novo through an approach that may be also applicable to other genes of interest, we reveal further functions in fertility, during embryogenesis and during additional larval stages. Consistent with the known role of XRN2 in controlling microRNA (miRNA) levels, we can demonstrate that loss of XRN2 activity stabilizes some rapidly decaying miRNAs. Surprisingly, however, other miRNAs continue to decay rapidly in xrn-2ts animals. Thus, XRN2 has unanticipated miRNA specificity in vivo, and its diverse developmental functions may relate to distinct substrates. Finally, our global analysis of miRNA stability during larval stage 1 reveals that miRNA passenger strands (miR*s) are substantially less stable than guide strands (miRs), supporting the notion that the former are mostly byproducts of biogenesis rather than a less abundant functional species.  相似文献   

17.
18.
The 3′-terminal regions (20 to 32 residues) of the genome double-stranded RNA (dsRNA) segments of cytoplasmic polyhedrosis virus were sequenced. The dsRNAs, which were labeled at their 3′ termini by incubation with [5′-32P]pCp and T4 RNA ligase, were denatured and resolved into the plus and minus strands by agarose-urea gel electrophoresis. Ten single-stranded RNAs thus obtained from the five dsRNA segments IV, V, VIII, IX, and X were sequenced by postlabeling methods. Common 3′-terminal sequences, -GUUAGCC and -UUACU, were found in the plus and minus strands, respectively, of all five dsRNA segments. However, adjacent sequences diverged and were considerably variable. The homologous sequences found in the 3′ end may be important recognition signals for viral RNA polymerases and for assembly of the genome segments.  相似文献   

19.
Kaposi''s sarcoma (KS)-associated herpesvirus (KSHV) is the causative agent of KS, an important AIDS-associated malignancy. KSHV expresses at least 18 different mature microRNAs (miRNAs). We identified interleukin-1 receptor (IL-1R)-associated kinase 1 (IRAK1) as a potential target of miR-K12-9 (miR-K9) in an array data set examining changes in cellular gene expression levels in the presence of KSHV miRNAs. Using 3′-untranslated region (3′UTR) luciferase reporter assays, we confirmed that miR-K9 and other miRNAs inhibit IRAK1 expression. In addition, IRAK1 expression is downregulated in cells transfected with miR-K9 and during de novo KSHV infection. IRAK1 is an important component of the Toll-like receptor (TLR)/IL-1R signaling cascade. The downregulation of IRAK1 by miR-K9 resulted in the decreased stimulation of NF-κB activity in endothelial cells treated with IL-1α and in B cells treated with a TLR7/8 agonist. Interestingly, miR-K9 had a greater effect on NF-κB activity than did a small interfering RNA (siRNA) targeting IRAK1 despite the more efficient downregulation of IRAK1 expression with the siRNA. We hypothesized that KSHV miRNAs may also be regulating a second component of the TLR/IL-1R signaling cascade, resulting in a stronger phenotype. Reanalysis of the array data set identified myeloid differentiation primary response protein 88 (MYD88) as an additional potential target. 3′UTR luciferase reporter assays and Western blot analysis confirmed the targeting of MYD88 by miR-K5. The presence of miR-K9 and miR-K5 inhibited the production of IL-6 and IL-8 upon the IL-1α stimulation of endothelial cells. These results demonstrate KSHV-encoded miRNAs regulating the TLR/IL-1R signaling cascade at two distinct points and suggest the importance of these pathways during viral infection.  相似文献   

20.
MicroRNAs (miRNAs) suppress targeting gene expression through blocking translation or triggering mRNA degradation and, in general, act in trans, through a partially complementary interaction with the 3′ untranslated region (3′ UTR) or coding regions of a target gene. Although it has been reported previously that some miRNAs suppress their target genes on the opposite strand with a fully complementary sequence (i.e., natural antisense miRNAs that act in cis), there is no report to systematically study such cis-antisense miRNAs in different animal species. Here we report that cis-antisense miRNAs do exist in different animal species: 48 in Caenorhabditis elegans, 17 in Drosophila, 36 in Mus musculus, and 52 in Homo sapiens using a systematical bioinformatics approach. We show that most of these cis-antisense miRNAs can efficiently reduce the expression levels of their target genes in human cells. We further investigate hsa-miR-3661, one of the predicted cis-antisense miRNAs, in detail and demonstrate that this miRNA directly targets the coding sequence of PPP2CA located on the opposite DNA strand and inhibits the PPP2CA expression. Taken together, these results indicate that cis-antisense miRNAs are conservative and functional in animal species including humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号