首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The EnvZ/OmpR and GrrS/GrrA systems, two widely distributed two-component systems in gamma-Proteobacteria, negatively control amylovoran biosynthesis in Erwinia amylovora, and the two systems regulate motility in an opposing manner. In this study, we examined the interplay of EnvZ/OmpR and GrrS/GrrA systems in controlling various virulence traits in E. amylovora. Results showed that amylovoran production was significantly higher when both systems were inactivated, indicating that the two systems act as negative regulators and their combined effect on amylovoran production appears to be enhanced. In contrast, reduced motility was observed when both systems were deleted as compared to that of grrA/grrS mutants and WT strain, indicating that the two systems antagonistically regulate motility in E. amylovora. In addition, glycogen accumulation was much higher in envZ/ompR and two triple mutants than that of grrS/grrA mutants and WT strain, suggesting that EnvZ/OmpR plays a dominant role in regulating glycogen accumulation, whereas levan production was significantly lower in the grrS/grrA and two triple mutants as compared with that of WT and envZ/ompR mutants, indicating that GrrS/GrrA system dominantly controls levan production. Furthermore, both systems negatively regulated expression of three type III secretion (T3SS) genes and their combined negative effect on hrp-T3SS gene expression increased when both systems were deleted. These results demonstrated that EnvZ/OmpR and GrrS/GrrA systems co-regulate various virulence factors in E. amylovora by still unknown mechanisms or through different target genes, sRNAs, or proteins, indicating that a complex regulatory network may be involved, which needs to be further explored.  相似文献   

2.
A large ams gene cluster required for production of the acidic extracellular polysaccharide (EPS) amylovoran by the fire blight pathogen Erwinia amylovora was cloned. Tn5 mutagenesis and gene replacement were used to construct chromosomal ams mutants. Five complementation groups, essential for amylovoran synthesis and virulence in E. amylovora, were identified and designated amsA-E. The ams gene cluster is about 7 kb in size and functionally equivalent to the cps gene cluster involved in EPS synthesis by the related pathogen Erwinia stewartii. Mucoidy and virulence were restored to E. stewartii mutants in four cps complementation groups by the cloned E. amylovora ams genes. Conversely, the E. stewartii cps gene cluster was able to complement mutations in E. amylovora ams genes. Correspondence was found between the amsA-E complementation groups and the cpsB-D region, but the arrangement of the genes appears to be different. EPS production and virulence were also restored to E. amylovora amsE and E. stewartii cpsD mutants by clones containing the Rhizobium meliloti exoA gene.  相似文献   

3.
A large ams gene cluster required for production of the acidic extracellular polysaccharide (EPS) amylovoran by the fire blight pathogen Erwinia amylovora was cloned. Tn5 mutagenesis and gene replacement were used to construct chromosomal ams mutants. Five complementation groups, essential for amylovoran synthesis and virulence in E. amylovora, were identified and designated amsA-E. The ams gene cluster is about 7 kb in size and functionally equivalent to the cps gene cluster involved in EPS synthesis by the related pathogen Erwinia stewartii. Mucoidy and virulence were restored to E. stewartii mutants in four cps complementation groups by the cloned E. amylovora ams genes. Conversely, the E. stewartii cps gene cluster was able to complement mutations in E. amylovora ams genes. Correspondence was found between the amsA-E complementation groups and the cpsB-D region, but the arrangement of the genes appears to be different. EPS production and virulence were also restored to E. amylovora amsE and E. stewartii cpsD mutants by clones containing the Rhizobium meliloti exoA gene.  相似文献   

4.
5.
6.
The type III secretion system (T3SS) and exopolysaccharide (EPS) amylovoran are two essential pathogenicity factors in Erwinia amylovora, the causal agent of the serious bacterial disease fire blight. In this study, small molecules that inhibit T3SS gene expression in E. amylovora under hrp (hypersensitive response and pathogenicity)‐inducing conditions were identified and characterized using green fluorescent protein (GFP) as a reporter. These compounds belong to salicylidene acylhydrazides and also inhibit amylovoran production. Microarray analysis of E. amylovora treated with compounds 3 and 9 identified a total of 588 significantly differentially expressed genes. Among them, 95 and 78 genes were activated and suppressed by both compounds, respectively, when compared with the dimethylsulphoxide (DMSO) control. The expression of the majority of T3SS genes in E. amylovora, including hrpL and the avrRpt2 effector gene, was suppressed by both compounds. Compound 3 also suppressed the expression of amylovoran precursor and biosynthesis genes. However, both compounds induced significantly the expression of glycogen biosynthesis genes and siderophore biosynthesis, regulatory and transport genes. Furthermore, many membrane, lipoprotein and exported protein‐encoding genes were also activated by both compounds. Similar expression patterns were observed for compounds 1, 2 and 4. Using crab apple flower as a model, compound 3 was capable of reducing disease development in pistils. These results suggest a common inhibition mechanism shared by salicylidene acylhydrazides and indicate that small‐molecule inhibitors that disable T3SS function could be explored to control fire blight disease.  相似文献   

7.
Recent genome analysis of Erwinia amylovora, the causal agent of fire blight disease on Rosaceae, has shown that the chromosome is highly conserved among strains and that plasmids are the principal source of genomic diversity. A new circular plasmid, pEA68, was found in E. amylovora strain 692 (LMG 28361), isolated in Poland from Sorbus (mountain ash) with fire blight symptoms. Annotation of the 68,763-bp IncFIIa-type plasmid revealed that it contains 79 predicted CDS, among which two operons (tra, pil) are associated with mobility. The plasmid is maintained stably in E. amylovora and does not possess genes associated with antibiotic resistance or known virulence genes. Curing E. amylovora strain 692 of pEA68 did not influence its virulence in apple shoots nor amylovoran synthesis. Of 488 strains of E. amylovora from seventeen countries, pEA68 was only found in two additional strains from Belgium. Although the spread of pEA68 is currently limited to Europe, pEA68 comprises, together with pEA72 and pEA78 both found in North America, a new plasmid family that spans two continents.  相似文献   

8.
9.
Evolutionary genomics is coming into focus with the recent availability of complete sequences for many bacterial species. A hypothesis on the evolution of virulence factors in the plant pathogen Erwinia amylovora, the causative agent of fire blight, was generated using comparative genomics with the genomes E. amylovora, Erwinia pyrifoliae and Erwinia tasmaniensis. Putative virulence factors were mapped to the proposed genealogy of the genus Erwinia that is based on phylogenetic and genomic data. Ancestral origin of several virulence factors was identified, including levan biosynthesis, sorbitol metabolism, three T3SS and two T6SS. Other factors appeared to have been acquired after divergence of pathogenic species, including a second flagellar gene and two glycosyltransferases involved in amylovoran biosynthesis. E. amylovora singletons include 3 unique T3SS effectors that may explain differential virulence/host ranges. E. amylovora also has a unique T1SS export system, and a unique third T6SS gene cluster. Genetic analysis revealed signatures of foreign DNA suggesting that horizontal gene transfer is responsible for some of these differential features between the three species.  相似文献   

10.
Aggregatibacter actinomycetemcomitans a causative agent of periodontal disease in humans, forms biofilm on biotic and abiotic surfaces. A. actinomycetemcomitans biofilm is heterogeneous in nature and is composed of proteins, extracellular DNA and exopolysaccharide. To explore the role played by the exopolysaccharide in the colonization and disease progression, we employed genetic reduction approach using our rat model of A. actinomycetemcomitans-induced periodontitis. To this end, a genetically modified strain of A. actinomycetemcomitans lacking the pga operon was compared with the wild-type strain in the rat infection model. The parent and mutant strains were primarily evaluated for bone resorption and disease. Our study showed that colonization, bone resorption/disease and antibody response were all elevated in the wild-type fed rats. The bone resorption/disease caused by the pga mutant strain, lacking the exopolysaccharide, was significantly less (P < 0.05) than the bone resorption/disease caused by the wild-type strain. Further analysis of the expression levels of selected virulence genes through RT-PCR showed that the decrease in colonization, bone resorption and antibody titer in the absence of the exopolysaccharide might be due to attenuated levels of colonization genes, flp-1, apiA and aae in the mutant strain. This study demonstrates that the effect exerted by the exopolysaccharide in A. actinomycetemcomitans-induced bone resorption has hitherto not been recognized and underscores the role played by the exopolysaccharide in A. actinomycetemcomitans-induced disease.  相似文献   

11.
Fire blight is caused by Erwinia amylovora and is the most destructive bacterial disease of apples and pears worldwide. In this study, we found that E. amylovora argD(1000)::Tn5, an argD Tn5 transposon mutant that has the Tn5 transposon inserted after nucleotide 999 in the argD gene-coding region, was an arginine auxotroph that did not cause fire blight in apple and had reduced virulence in immature pear fruits. The E. amylovora argD gene encodes a predicted N-acetylornithine aminotransferase enzyme, which is involved in the production of the amino acid arginine. A plasmid-borne copy of the wild-type argD gene complemented both the nonpathogenic and the arginine auxotrophic phenotypes of the argD(1000)::Tn5 mutant. However, even when mixed with virulent E. amylovora cells and inoculated onto immature apple fruit, the argD(1000)::Tn5 mutant still failed to grow, while the virulent strain grew and caused disease. Furthermore, the pCR2.1-argD complementation plasmid was stably maintained in the argD(1000)::Tn5 mutant growing in host tissues without any antibiotic selection. Therefore, the pCR2.1-argD complementation plasmid could be useful for the expression of genes, markers, and reporters in E. amylovora growing in planta, without concern about losing the plasmid over time. The ArgD protein cannot be considered an E. amylovora virulence factor because the argD(1000)::Tn5 mutant was auxotrophic and had a primary metabolism defect. Nevertheless, these results are informative about the parasitic nature of the fire blight disease interaction, since they indicate that E. amylovora cannot obtain sufficient arginine from apple and pear fruit tissues or from apple vegetative tissues, either at the beginning of the infection process or after the infection has progressed to an advanced state.  相似文献   

12.
13.
Bacterial biofilms are multicellular aggregates encased in an extracellular matrix mainly composed of exopolysaccharides (EPSs), protein and nucleic acids, which determines the architecture of the biofilm. Erwinia amylovora Ea1189 forms a biofilm inside the xylem of its host, which results in vessel plugging and water transport impairment. The production of the EPSs amylovoran and levan is critical for the formation of a mature biofilm. In addition, cyclic dimeric GMP (c‐di‐GMP) has been reported to positively regulate amylovoran biosynthesis and biofilm formation in E. amylovora Ea1189. In this study, we demonstrate that cellulose is synthesized by E. amylovora Ea1189 and is a major modulator of the three‐dimensional characteristics of biofilms formed by this bacterium, and also contributes to virulence during systemic host invasion. In addition, we demonstrate that the activation of cellulose biosynthesis in E. amylovora is a c‐di‐GMP‐dependent process, through allosteric binding to the cellulose catalytic subunit BcsA. We also report that the endoglucanase BcsZ is a key player in c‐di‐GMP activation of cellulose biosynthesis. Our results provide evidence of the complex composition of the extracellular matrix produced by E. amylovora and the implications of cellulose biosynthesis in shaping the architecture of the biofilm and in the expression of one of the main virulence phenotypes of this pathogen.  相似文献   

14.
15.
【目的】考察茎瘤固氮根瘤菌ORS571中c-di-GMP合成酶AZC-2412的编码基因缺失的突变表型,初步探究其功能机理。【方法】本实验构建基于cre-loxp重组酶系统的根瘤菌基因敲除系统,以及采用三亲接合技术构建突变株。测定野生型和突变株的生长速率、趋化能力、胞外多糖产量、生物膜形成等表型。【结果】突变株与野生型生长速率几乎相同。与野生型相比突变株由于细胞内c-di-GMP水平降低,胞外多糖、生物膜产量等均有所下降。【结论】实验表明,环二鸟苷酸合成酶AZC-2412缺失,使得c-di-GMP水平降低,对胞外多糖生成、细菌的运动能力、生物膜的形成、细胞絮凝、与植物的互作等均有调控作用。  相似文献   

16.
The fire blight pathogen Erwinia amylovora was assayed for survival under unfavourable conditions such as on nitrocellulose filters, in non‐host plants as well as in inoculated mature apples and in infested apple stem sections. In a sterile dry environment, an E. amylovora EPS (exopolysaccharide) mutant, and to a lesser extent its parental wild‐type strain decreased within 3 weeks to a low titre. However, under moist conditions the decrease of viable cells occurred only partially for both strains. Very low cell titres were recovered after application of E. amylovora onto the surface of tobacco leaves, whereas infiltration into the leaves produced lesions (hypersensitive response, HR), in which the bacteria survived in significant amounts. A similar effect was found for the necrotic zones of HR in tobacco leaves caused by E. pyrifoliae, by Pseudomonas syringae pathovars and HR‐deficient E. amylovora mutants or mutants deficient in EPS synthesis and disease‐specific genes. During 7 years of storage, the viability of E. amylovora in wood sections from fire blight‐infested apple trees declined to a low titre. In tissue of mature apples, E. amylovora cells slowly dispersed and could still be recovered after several weeks of storage at room temperature. A minimal risk of accidental dissemination of E. amylovora apart from infested host plants can experimentally not be excluded, but other data confirm a very low incidence of any long distance distribution.  相似文献   

17.
To many pathogenic bacteria, human hosts are an evolutionary dead end. This begs the question what evolutionary forces have shaped their virulence traits. Why are these bacteria so virulent? The coincidental evolution hypothesis suggests that such virulence factors result from adaptation to other ecological niches. In particular, virulence traits in bacteria might result from selective pressure exerted by protozoan predator. Thus, grazing resistance may be an evolutionarily exaptation for bacterial pathogenicity. This hypothesis was tested by subjecting a well characterized collection of 31 Escherichia coli strains (human commensal or extra-intestinal pathogenic) to grazing by the social haploid amoeba Dictyostelium discoideum. We then assessed how resistance to grazing correlates with some bacterial traits, such as the presence of virulence genes. Whatever the relative population size (bacteria/amoeba) for a non-pathogenic bacteria strain, D. discoideum was able to phagocytise, digest and grow. In contrast, a pathogenic bacterium strain killed D. discoideum above a certain bacteria/amoeba population size. A plating assay was then carried out using the E. coli collection faced to the grazing of D. discoideum. E. coli strains carrying virulence genes such as iroN, irp2, fyuA involved in iron uptake, belonging to the B2 phylogenetic group and being virulent in a mouse model of septicaemia were resistant to the grazing from D. discoideum. Experimental proof of the key role of the irp gene in the grazing resistance was evidenced with a mutant strain lacking this gene. Such determinant of virulence may well be originally selected and (or) further maintained for their role in natural habitat: resistance to digestion by free-living protozoa, rather than for virulence per se.  相似文献   

18.
Erwinia piriflorinigrans is a necrotrophic pathogen of pear reported from Spain that destroys flowers but does not progress further into the host. We sequenced the complete genome of the type strain CFBP 5888T clarifying its phylogenetic position within the genus Erwinia, and indicating a position between its closest relative, the epiphyte Erwinia tasmaniensis and other plant pathogenic Erwinia spp. (i.e., the fire blight pathogen E. amylovora and the Asian pear pathogen E. pyrifoliae). Common features are the type III and type VI secretion systems, amylovoran biosynthesis and desferrioxamine production. The E. piriflorinigrans genome also provided the first evidence for production of the siderophore chrysobactin within the genus Erwinia sensu stricto, which up to now was mostly associated with phytopathogenic, soft-rot Dickeya and Pectobacterium species. Plasmid pEPIR37, reported in this strain, is closely related to small plasmids found in the fire blight pathogen E. amylovora and E. pyrifoliae. The genome of E. piriflorinigrans also gives detailed insights in evolutionary genomics of pathoadapted Erwinia.  相似文献   

19.
20.
The RcsA and RcsB proteins of Erwinia amylovora and Escherichia coli were expressed in E. coli and purified. Their DNA-binding activity was examined using a 1-kb DNA region containing the putative promoter of the ams operon of Ew. amylovora, which is responsible for the biosynthesis of the exopolysaccharide amylovoran. Mobility shift assays indicated specific binding of RcsA and RcsB to a region of 78?bp spanning nucleotide positions ?578 to ?501 relative to the translational start of the first open reading frame of the operon. This region includes stretches of homology to E. coliσ 70 promoter consensus sequences and to the E. coli cps promoter region. Binding of the Rcs proteins was not found at a JUMPstart consensus, typical for various promoters of polysaccharide gene clusters. DNA-binding activity was not detected for RcsA alone and only high concentrations of RcsB were able to interact with the ams promoter in our assay. The two proteins bind cooperatively at the indicated region of the ams promoter and further evidence is provided showing that the DNA-protein complex formed involves a heterodimer of RcsA and RcsB. The specific activity of RcsA, but not of RcsB, was enhanced when the protein was expressed in E. coli at 28°?C, relative to expression at 37°?C. In addition, DNA-protein complex formation is affected by temperature. The E. coli RcsA/RcsB proteins bind to the same region of the ams promoter and are able to interact with the Rcs proteins from Ew. amylovora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号