首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Titin plays crucial roles in sarcomere organization and cardiac elasticity by acting as an intrasarcomeric molecular spring. A mutation in the tenth Ig-like domain of titin''s spring region is associated with arrhythmogenic cardiomyopathy, a disease characterized by ventricular arrhythmias leading to cardiac arrest and sudden death. Titin is the first sarcomeric protein linked to arrhythmogenic cardiomyopathy. To characterize the disease mechanism, we have used atomic force microscopy to directly measure the effects that the disease-linked point mutation (T16I) has on the mechanical and kinetic stability of Ig10 at the single molecule level. The mutation decreases the force needed to unfold Ig10 and increases its rate of unfolding 4-fold. We also found that T16I Ig10 is more prone to degradation, presumably due to compromised local protein structure. Overall, the disease-linked mutation weakens the structural integrity of titin''s Ig10 domain and suggests an Ig domain disease mechanism.  相似文献   

2.
3.
Interleukin (IL-15), a pro-inflammatory cytokine has been studied as a possible marker of Alzheimer’s disease (AD); however its exact role in neuro-inflammation or the pathogenesis AD is not well understood yet. A Multiple Indicators Multiple Causes (MIMIC) approach was used to examine the relationship between serum IL-15 levels and AD in a well characterized AD cohort, the Texas Alzheimer''s Research and Care Consortium (TARCC). Instead of categorical diagnoses, we used two latent construct d (for dementia) and g’ (for cognitive impairments not contributing to functional impairments) in our analysis. The results showed that the serum IL-15 level has significant effects on cognition, exclusively mediated by latent construct d and g’. Contrasting directions of association lead us to speculate that IL-15’s effects in AD are mediated through functional networks as d scores have been previously found to be specifically related to default mode network (DMN). Our finding warrants the need for further research to determine the changes in structural and functional networks corresponding to serum based biomarkers levels.  相似文献   

4.
The acridine-based, potential Alzheimer's disease therapeutic agents, tacrine and velnacrine, were incubated with rat or gerbil neocortical synaptosomal membranes. Electron paramagnetic resonance employing a protein-specific spin label was used to monitor this interaction. Analogous to their effects in erythrocyte membranes [Butterfield and Rangachari (1992) Biochem. Biophys. Res. Commun. 185: 596–603], in the present studies both agents decreased segmental motion of spin labeled synaptosomal membrane proteins, consistent with increased cytoskeletal protein-protein interactions (0.001相似文献   

5.

Background

Alzheimer''s Disease (AD) is the most common neurodegenerative disease and the leading cause of dementia among senile subjects. It has been proposed that AD can be caused by defects in mitochondrial oxidative phosphorylation. Given the fundamental contribution of the mitochondrial genome (mtDNA) for the respiratory chain, there have been a number of studies investigating the association between mtDNA inherited variants and multifactorial diseases, however no general consensus has been reached yet on the correlation between mtDNA haplogroups and AD.

Methodology/Principal Findings

We applied for the first time a high resolution analysis (sequencing of displacement loop and restriction analysis of specific markers in the coding region of mtDNA) to investigate the possible association between mtDNA-inherited sequence variation and AD in 936 AD patients and 776 cognitively assessed normal controls from central and northern Italy. Among over 40 mtDNA sub-haplogroups analysed, we found that sub-haplogroup H5 is a risk factor for AD (OR = 1.85, 95% CI:1.04–3.23) in particular for females (OR = 2.19, 95% CI:1.06–4.51) and independently from the APOE genotype. Multivariate logistic regression revealed an interaction between H5 and age. When the whole sample is considered, the H5a subgroup of molecules, harboring the 4336 transition in the tRNAGln gene, already associated to AD in early studies, was about threefold more represented in AD patients than in controls (2.0% vs 0.8%; p = 0.031), and it might account for the increased frequency of H5 in AD patients (4.2% vs 2.3%). The complete re-sequencing of the 56 mtDNAs belonging to H5 revealed that AD patients showed a trend towards a higher number (p = 0.052) of sporadic mutations in tRNA and rRNA genes when compared with controls.

Conclusions

Our results indicate that high resolution analysis of inherited mtDNA sequence variation can help in identifying both ancient polymorphisms defining sub-haplogroups and the accumulation of sporadic mutations associated with complex traits such as AD.  相似文献   

6.
7.
目的:研究肝癌细胞弹性变化对其表达的整合素分子与配体分子相互作用的影响。方法:以壳聚糖/ 聚丙烯酰胺水凝胶作为 可变基底材料,并将人肝肿瘤细胞(HepG2)接种到不同软硬度壳聚糖/ 聚丙烯酰胺水凝胶基底上,利用原子力显微镜力与距离模 式定量测定不同软硬基底上生长的HepG2 肝瘤细胞膜表面整合素分子与层粘连蛋白分子之间相互作用力。结果:功能化的原子 力显微镜探针与不同软硬基底上生长的细胞所产生的粘附情况不相同,细胞生长在培养皿的为对照组;细胞生长在硬度为1000 Pa 壳聚糖/聚丙烯酰胺水凝胶基底上的为实验组,表达在HepG2 肝瘤细胞膜上的alpha-6-beta-1 整合素与其配体层粘连蛋白相互作用力 的大小分别为19± 7 pN和38.85± 19.7 pN。结论:基底软硬度会影响细胞整合素与配体分子间的相互作用。  相似文献   

8.
《Journal of molecular biology》2019,431(12):2248-2265
Apolipoprotein E4 (ApoE4) is one of three (E2, E3 and E4) human isoforms of an α-helical, 299-amino-acid protein. Homozygosity for the ε4 allele is the major genetic risk factor for developing late-onset Alzheimer's disease (AD). ApoE2, ApoE3 and ApoE4 differ at amino acid positions 112 and 158, and these sequence variations may confer conformational differences that underlie their participation in the risk of developing AD. Here, we compared the shape, oligomerization state, conformation and stability of ApoE isoforms using a range of complementary biophysical methods including small-angle x-ray scattering, analytical ultracentrifugation, circular dichroism, x-ray fiber diffraction and transmission electron microscopy We provide an in-depth and definitive study demonstrating that all three proteins are similar in stability and conformation. However, we show that ApoE4 has a propensity to polymerize to form wavy filaments, which do not share the characteristics of cross-β amyloid fibrils. Moreover, we provide evidence for the inhibition of ApoE4 fibril formation by ApoE3. This study shows that recombinant ApoE isoforms show no significant differences at the structural or conformational level. However, self-assembly of the ApoE4 isoform may play a role in pathogenesis, and these results open opportunities for uncovering new triggers for AD onset.  相似文献   

9.
Chromogranin A (CgA) is a soluble glycoprotein stored along with hormones and neuropeptides in secretory granules of endocrine cells. In the last four decades, intense efforts have been concentrated to characterize the structure and the biological function of CgA. Besides, CgA has been widely used as a diagnostic marker for tumors of endocrine origin, essential hypertension, various inflammatory diseases, and neurodegenerative disorders such as amyotrophic lateral sclerosis and Alzheimer’s disease. CgA displays peculiar structural features, including numerous multibasic cleavage sites for prohormone convertases as well as a high proportion of acidic residues. Thus, it has been proposed that CgA represents a precursor of biologically active peptides, and a “granulogenic protein” that plays an important role as a chaperone for catecholamine storage in adrenal chromaffin cells. The widespread distribution of CgA throughout the neuroendocrine system prompted several groups to investigate the role of CgA in peptide hormone sorting to the regulated secretory pathway. This review summarizes the findings and theoretical concepts around the molecular machinery used by CgA to exert this putative intracellular function. Since CgA terminal regions exhibited strong sequence conservation through evolution, our work focused on the implication of these domains as potential functional determinants of CgA. Characterization of the molecular signals implicating CgA in the intracellular traffic of hormones represents a major biological issue that may contribute to unraveling the mechanisms defining the secretory competence of neuroendocrine cells.  相似文献   

10.
Tau hyperphosphorylation can be considered as one of the hallmarks of Alzheimer''s disease and other tauophaties. Besides its well-known role as a microtubule associated protein, Tau displays a key function as a protector of genomic integrity in stress situations. Phosphorylation has been proven to regulate multiple processes including nuclear translocation of Tau. In this contribution, we are addressing the physicochemical nature of DNA-Tau interaction including the plausible influence of phosphorylation. By means of surface plasmon resonance (SPR) we measured the equilibrium constant and the free energy, enthalpy and entropy changes associated to the Tau-DNA complex formation. Our results show that unphosphorylated Tau binding to DNA is reversible. This fact is in agreement with the protective role attributed to nuclear Tau, which stops binding to DNA once the insult is over. According to our thermodynamic data, oscillations in the concentration of dephosphorylated Tau available to DNA must be the variable determining the extent of Tau binding and DNA protection. In addition, thermodynamics of the interaction suggest that hydrophobicity must represent an important contribution to the stability of the Tau-DNA complex. SPR results together with those from Tau expression in HEK cells show that phosphorylation induces changes in Tau protein which prevent it from binding to DNA. The phosphorylation-dependent regulation of DNA binding is analogous to the Tau-microtubules binding inhibition induced by phosphorylation. Our results suggest that hydrophobicity may control Tau location and DNA interaction and that impairment of this Tau-DNA interaction, due to Tau hyperphosphorylation, could contribute to Alzheimer''s pathogenesis.  相似文献   

11.
Alzheimer''s disease (AD) is a complex neurodegenerative disorder involving multiple cellular and molecular processes. The discovery of drug molecules capable of targeting multiple factors involved in AD pathogenesis would greatly facilitate in improving therapeutic strategies. The repositioning of existing non-toxic drugs could dramatically reduce the time and costs involved in developmental and clinical trial stages. In this study, preliminary screening of 140 FDA approved nervous system drugs by docking suggested the viability of the tricyclic group of antidepressants against three major AD targets, viz. Acetylcholinesterase (AChE), β-secretase (BACE-1), and amyloid β (Aβ) aggregation, with one member, protriptyline, showing highest inhibitory activity. Detailed biophysical assays, together with isothermal calorimetry, fluorescence quenching experiments, kinetic studies and atomic force microscopy established the strong inhibitory activity of protriptyline against all three major targets. The molecular basis of inhibition was supported with comprehensive molecular dynamics simulations. Further, the drug inhibited glycation induced amyloid aggregation, another important causal factor in AD progression. This study has led to the discovery of protriptyline as a potent multi target directed ligand and established its viability as a promising candidate for AD treatment.  相似文献   

12.
It is suggested that disease limits populations only under exceptional circumstances, when other population-limiting factors are inoperative. This is precisely the situation with human populations, which have grown well (perhaps as much as three logs) beyond sustainability. It is inconceivable that any self-regulatory mechanism will bring human populations down to a level compatible with the survival of other large mammals, so the only hope for environmental survival is disease. In this essay, I discuss the inexorable rise of human populations and our seeming escape from all normal boundaries to population growth, apart, perhaps, from diseases. I then provide examples of how the various leishmaniases have affected and constrained human populations, or have failed to do so, providing an example of how diseases may ultimately protect landscapes from anthropogenic change.  相似文献   

13.
14.
CONSTANS(CO)基因是生物钟和开花时间基因之间监测日照长度的重要元件,在光周期途径中发挥核心功能。CO可以整合光信号和生物钟信号,诱导开花途径整合子FLOWERINGLOCUST(F即和SUPPRESSOROF OVEREXPRESSION OF CONSTANS 1(SOC1)的表达,进而促进植株开花。本文综述CO基因的开花调控机制,并结合CO基因的研究现状展望了其未来的研究方向。  相似文献   

15.
16.
Unlike formyl peptide receptor 1 (FPR1), FPR2/ALX (FPR2) interacts with peptides of diverse sequences but has low affinity for the Escherichia coli-derived chemotactic peptide fMet-Leu-Phe (fMLF). Using computer modeling and site-directed mutagenesis, we investigated the structural requirements for FPR2 to interact with formyl peptides of different length and composition. In calcium flux assay, the N-formyl group of these peptides is necessary for activation of both FPR2 and FPR1, whereas the composition of the C-terminal amino acids appears more important for FPR2 than FPR1. FPR2 interacts better with pentapeptides (fMLFII, fMLFIK) than tetrapeptides (fMLFK, fMLFW) and tripeptide (fMLF) but only weakly with peptides carrying negative charges at the C terminus (e.g. fMLFE). In contrast, FPR1 is less sensitive to negative charges at the C terminus. A CXCR4-based homology model of FPR1 and FPR2 suggested that Asp-2817.32 is crucial for the interaction of FPR2 with certain formyl peptides as its negative charge may be repulsive with the terminal COO- group of fMLF and negatively charged Glu in fMLFE. Asp-2817.32 might also form a stable interaction with the positively charged Lys in fMLFK. Site-directed mutagenesis was performed to remove the negative charge at position 281 in FPR2. The D2817.32G mutant showed improved affinity for fMLFE and fMLF and reduced affinity for fMLFK compared with wild type FPR2. These results indicate that different structural determinants are used by FPR1 and FPR2 to interact with formyl peptides.  相似文献   

17.
Extracellular neuritic plaques composed of amyloid‑β (Aβ) protein and intracellular neurofibrillary tangles containing phosphorylated tau protein are the two hallmark proteins of Alzheimer''s disease (AD), and the separate neurotoxicity of these proteins in AD has been extensively studied. However, interventions that target Aβ or tau individually have not yielded substantial breakthroughs. The interest in the interactions between Aβ and tau in AD is increasing, but related drug investigations are in their infancy. This review discusses how Aβ accelerates tau phosphorylation and the possible mechanisms and pathways by which tau mediates Aβ toxicity. This review also describes the possible synergistic effects between Aβ and tau on microglial cells and astrocytes. Studies suggest that the coexistence of Aβ plaques and phosphorylated tau is related to the mechanism by which Aβ facilitates the propagation of tau aggregation in neuritic plaques. The interactions between Aβ and tau mediate cognitive dysfunction in patients with AD. In summary, this review summarizes recent data on the interplay between Aβ and tau to promote a better understanding of the roles of these proteins in the pathological process of AD and provide new insights into interventions against AD.  相似文献   

18.
利用激光与DNA分子相互作用的动力学模型,借助适当的数值方法,讨论了系统动力学演化及相空间特性。结果表明:高频激光可使DNA分子的运动状态发生变化;特别地,相空间分析表明,高频激光的作用会使DNA分子运动在一些特定状态之间转变。从而可说明高频激光作用下DNA分子呈现新的有序运动现象。  相似文献   

19.
Our goal of this study is to characterize the functions of language areas in most precise terms. Previous neuroimaging studies have reported that more complex sentences elicit larger activations in the left inferior frontal gyrus (L. F3op/F3t), although the most critical factor still remains to be identified. We hypothesize that pseudowords with grammatical particles and morphosyntactic information alone impose a construction of syntactic structures, just like normal sentences, and that “the Degree of Merger” (DoM) in recursively merged sentences parametrically modulates neural activations. Using jabberwocky sentences with distinct constructions, we fitted various parametric models of syntactic, other linguistic, and nonlinguistic factors to activations measured with functional magnetic resonance imaging. We demonstrated that the models of DoM and “DoM+number of Search (searching syntactic features)” were the best to explain activations in the L. F3op/F3t and supramarginal gyrus (L. SMG), respectively. We further introduced letter strings, which had neither lexical associations nor grammatical particles, but retained both matching orders and symbol orders of sentences. By directly contrasting jabberwocky sentences with letter strings, localized activations in L. F3op/F3t and L. SMG were indeed independent of matching orders and symbol orders. Moreover, by using dynamic causal modeling, we found that the model with a inhibitory modulatory effect for the bottom-up connectivity from L. SMG to L. F3op/F3t was the best one. For this best model, the top-down connection from L. F3op/F3t to L. SMG was significantly positive. By using diffusion-tensor imaging, we confirmed that the left dorsal pathway of the superior longitudinal and arcuate fasciculi consistently connected these regions. Lastly, we established that nonlinguistic order-related and error-related factors significantly activated the right (R.) lateral premotor cortex and R. F3op/F3t, respectively. These results indicate that the identified network of L. F3op/F3t and L. SMG subserves the calculation of DoM in recursively merged sentences.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号