首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many invasive species have short life cycles, high reproduction, and easily dispersed offspring that make them good ruderal species under disturbance. However, the tolerance of such ruderal species to disturbance is often overlooked. In a 2-year mowing study, we applied frequent intense disturbances to examine the tolerance of two congeneric invasive thistles, Carduus acanthoides and Carduus nutans, and potential differences in their responses. Our results show that both species can survive multiple mowing events, with C. acanthoides surviving repeated intense mowing through a whole season. Furthermore, C. acanthoides was found to adjust its growth form to the disturbance regime, and successfully overwintered and reproduced in the subsequent growing season if the disturbance was terminated. Our results support the idea that tolerance to disturbance should be considered when examining invasions by short-lived monocarpic species, since avoidance of disturbance via rapid life cycle completion and seed production, and tolerance of disturbance via regrowth can co-occur in these species. Consequently, management of short-lived invasives should take both life history strategies into account.  相似文献   

2.
Seedling recruitment is a bottleneck for population dynamics and range shift. The vital rates linked to recruitment by seed are impacted by amplified drought induced by climate change. In the Mediterranean region, autumn and winter seedling emergence and mortality may have strong impact on the overall seedling recruitment. However, studies focusing on the temporal dynamic of recruitment during these seasons are rare. This study was performed in a deciduous Mediterranean oak forest located in southern France and quantifies the impact of amplified drought conditions on autumn and winter seedling emergence and seedling mortality rates of two herbaceous plant species with meso‐Mediterranean and supra‐Mediterranean distribution (respectively, Silene italica and Silene nutans). Seedlings were followed from October 2019 to May 2020 in both undisturbed and disturbed plots where the litter and the aboveground biomass have been removed to create open microsites. Amplified drought conditions reduced seedling emergence and increased seedling mortality for both Silene species but these negative effects were dependent on soil disturbance conditions. Emergence of S. italica decreased only in undisturbed plots (−7%) whereas emergence of Snutans decreased only in disturbed plots (−10%) under amplified drought conditions. The seedling mortality rate of Sitalica was 51% higher under amplified drought conditions in undisturbed plots while that of Snutans was 38% higher in disturbed plots. Aridification due to lower precipitation in the Mediterranean region will negatively impact the seedling recruitment of these two Silene species. Climate change effects on early vital rates may likely have major negative impacts on the overall population dynamic.  相似文献   

3.
Identifying environmental factors associated with vital rate variation is critical to predict population consequences of environmental perturbation. We used matrix models to explore effects of habitat and microsite on demography of two widespread herbs, Chamaecrista fasciculata (partridge pea) and Balduina angustifolia (yellow buttons). We evaluated models simulating population dynamics in common microsites (shrub, litter, bare sand) within two habitats (intact, degraded Florida scrub) using data on experimental populations initiated by sowing seeds, and natural seed production. Models included four stages (seed bank, small vegetative, large vegetative, reproductive) and three vital rates (survival, growth, fecundity), summarized in sixteen transitions. We conducted life table response experiments to assess contributions of each habitat and microsite to population growth rates. We found that (1) C. fasciculata had greatest population growth in degraded habitat and litter microsites, (2) B. angustifolia had similar population growth between habitats and greatest in bare sand microsites, (3) advancing growth transitions of C. fasciculata had greatest elasticity on population growth in degraded habitat, shrub, and litter, as did seed survival in intact habitat and bare sand, (4) seed survival and advancing growth transitions of B. angustifolia had greatest elasticity on population growth in both habitats, as did seed survival in shrub and litter, and advancing growth in bare sand. Greater population growth of C. fasciculata in degraded scrub is probably explained by release from belowground competition; B. angustifolia may be most affected by competition with shrubs. Microsites in intact scrub were not ecologically equivalent to those in degraded scrub emphasizing that intact scrub is ecologically complex and critical to preserve.  相似文献   

4.
Primula nutans Georgi is a herbaceous species broadly distributed in wetlands on the Qinghai–Tibetan Plateau. These wetlands are often spatially highly heterogeneous because of their hummock-and-hollow microtopography. To address how P. nutans can be so broadly distributed on these wetlands, we examined ramet distribution, abundance, and growth performance in environmentally variable microsites at the centimeter scale. P. nutans showed significantly higher ramet density on the south-orientated microsites than on the north-orientated microsites. With increasing relative microsite elevation on the hummocks, ramet density increased significantly, but individual leaf area decreased significantly. Principle component analysis and multiple regression analysis indicated that microsites at higher elevations tend to have higher light availability and higher ramet density. The study suggests that P. nutans shows high plasticity in the distribution, abundance, and growth performance in response to the microtopography at the centimeter scale, which may contribute to the broad distribution of the species in the hummock-and-hollow wetlands in harsh alpine environments on the Tibetan Plateau.  相似文献   

5.
Abstract. Questions: How do physical microsite conditions of microsites affect germination and seedling survival in different successional stages? Do different species germinate in similar microsites in a given successional stage? Location: Coleman Glacier foreland, Mount Baker, Washington State, USA. Methods: Two methods were used to characterize safe sites. 1. Grids of 300 10 cm × 10 cm plots were located in four different age classes on the foreland. 2.105 pairs of plots, with and without seedlings of Abies amabilis, were located in each age class. For each plot we identified all seedlings and all individuals < 1 m tall. Microsite characteristics such as topography and presence of rocks or woody debris were noted for each plot. Microsite characteristics were compared between plots with and without each species. In addition we examined the effect of distance from seed sources on the presence of Alnus viridis seeds and seedlings in a newly disturbed area. Results: In early successional sites, seedlings of several species were positively associated with depressions and presence of rocks, and negatively associated with ridges. Patterns were generally consistent among species. In later succession, seedlings were not significantly associated with any microsite characteristics. For Alnus viridis, seed density decreased with distance from seed sources but seedling density did not. Conclusions: Because of harsh conditions in early succession, physical microsites are important, and most species have similar microsite requirements. In later succession, physical microsites characteristics are not as important and are more variable. Microsites appear to be more important than seed rain in controlling the distribution of Alnus viridis in early succession.  相似文献   

6.
Barriers to establishing native plant communities on former pasture include dominance by a single planted species, hydrologic and edaphic alteration, and native species propagule limitation. Establishment may be dispersal‐limited (propagules do not arrive at the site), microsite‐limited (areas suitable for seedling emergence and survival do not exist), or both. Successful restoration strategies hinge on identifying and addressing critical limitations. We examined seed and microsite limitation to establishment of a native wildflower (Coreopsis lanceolata ) in a former pasture dominated by Paspalum notatum (bahiagrass). We determined the relative and interactive effects of microsite (irrigation and disturbance) and seed limitation on C. lanceolata establishment. We tested (1) irrigation (none, pre‐seeding, and pre‐ and post‐seeding), (2) disturbance (none, sethoxydim, glyphosate, and topsoil removal), and (3) C. lanceolata seeding rate (three seeding densities). Applying glyphosate before seeding increased C. lanceolata establishment compared to other disturbance treatments. Ultimately, C. lanceolata establishment was not affected by irrigation. Coreopsis lanceolata establishment was limited when seeded at 100 live seeds/m2 but not at 600 or 1100 live seeds/m2. Seed and microsite availability interactively affected C. lanceolata establishment, in that microsite limitation was biologically relevant only when a minimum number of seeds were present. In practice, both seed and microsite requirements must be met for successful establishment, and increasing the availability of seeds or microsites does not compensate for limitations of the other. Here, it is the relative importance of seed and microsite limitations that drives plant establishment; these limitations do not represent a simple dichotomy.  相似文献   

7.
Seed movements and fates are important for restoration as these determine spatial patterns of recruitment and ultimately shape plant communities. This article examines litter cover and microsite effects on seed availability at a saline site revegetated with Eucalyptus sargentii tree rows interplanted with 5?C6 rows of saltbush (Atriplex spp.). As litter accumulation decreases with increasing distance from tree rows, soil seed banks were compared between paired bare and litter-covered zones within three microsites; tree row, saltbush row closest to tree row and saltbush mid-row (middle row of saltbush between tree rows). Germinable seed banks of the four most abundant species with contrasting seed sizes and dispersal mechanisms were assessed to test the hypotheses that: (i) microsites with litter cover contain higher seed densities than bare areas, but that (ii) microsite and litter effects will vary depending on seed size and dispersal mechanisms. Overall, litter cover increased seed densities, however, litter effects varied with seed size, with no effect on small-seeded species and litter increasing densities of large-seeded species. Seed bank composition also differed between tree and shrub microsites due to differences in seed morphology and dispersal mechanisms. Water-dispersed species were unaffected by microsite but densities of wind-dispersed species, including Atriplex spp., were higher in saltbush microsites. Densities of wind-dispersed species also differed between the two saltbush microsites despite similar litter cover. Future plantings should consider row spacing and orientation, as well as the dimensions of seeding mounds and associated neighbouring depressions, to maximize litter and seed-trapping by microsites.  相似文献   

8.
Question: To what degree does the regeneration of understorey forest species depend on gaps of different age and on gap‐induced and non‐gap‐induced microsites? Do species preferences for a specific microsite change with the developmental stage of the gap? How do different species in the understorey interact over time? Location: Near‐natural spruce forest on Mt. Brocken in the Harz National Park, Germany. Methods: We established 90 study plots, stratified according to different gap age classes and undisturbed forest, and including subplots with three different gap‐induced types of microsites (logs, stumps and root plates) and two non‐gap‐induced microsites (moss‐covered rocks and ordinary forest ground). Results: Significant interactions of species were encountered with gap age as well as with microsite type, light availability and competition. While shoot densities of Vaccinium myrtillus were highest at intermediate gap age, Calamagrostis villosa and Trientalis europaea showed highest densities in the oldest gaps. The species preferred different microsites but had higher densities on non‐gap‐induced microsites, and their preferences changed over time. Unexpectedly, species shoot densities were not always negatively affected by densities of competing species. Conclusion: The results confirmed the importance of gaps for regeneration of forest herb layer species, but pointed to a much higher importance of microsites that were not induced by gaps compared to gap‐induced microsites. Niche differentiation between different herb layer species can be conceived as species‐specific preferences for microsite types that change with gap age, as a result of light conditions, degree of decay of logs and root plates and presence of competitors.  相似文献   

9.
Plants’ responses to climate change are complex. Even the same net performance changes may involve different responses of multiple life history traits. Here we show that two congeneric thistles, Carduus nutans and Carduus acanthoides, both grew taller under increased temperature, albeit following divergent response patterns. For C. nutans, warming advanced bolting more than flowering, leading to a longer growing period before flowering and ultimately taller plant height at the end of the growing season. Carduus acanthoides maintained the same length of growing period because of equally shifted events in the phenological sequence, however, post-flowering growth rate was increased, which also led to enhanced final plant height. As seeds from taller plants disperse farther, their responses imply that future invasion spread rates of these two species will increase. Similar consequences due to divergent responses in life history traits, as demonstrated in this study, suggest that considering only ultimate performance outcomes, and not the underlying processes generating such outcomes, is not enough to understand the impacts of climate change.  相似文献   

10.
Beckage B  Clark JS 《Oecologia》2005,143(3):458-469
Seed and seedling predation may differentially affect competitively superior tree species to increase the relative recruitment success of poor competitors and contribute to the coexistence of tree species. We examined the effect of seed and seedling predation on the seedling recruitment of three tree species, Acer rubrum (red maple), Liriodendron tulipifera (yellow poplar), and Quercus rubra (northern red oak), over three years by manipulating seed and seedling exposure to predators under contrasting microsite conditions of shrub cover, leaf litter, and overstory canopy. Species rankings of seedling emergence were constant across microsites, regardless of exposure to seed predators, but varied across years. A. rubrum had the highest emergence probabilities across microsites in 1997, but Q. rubra had the highest emergence probabilities in 1999. Predators decreased seedling survival uniformly across species, but did not affect relative growth rates (RGRs). Q. rubra had the highest seedling survivorship across microsites, while L. tulipifera had the highest RGRs. Our results suggest that annual variability in recruitment success contributes more to seedling diversity than differential predation across microsites. We synthesized our results from separate seedling emergence and survival experiments to project seedling bank composition. With equal fecundity assumed across species, Q. rubra dominated the seedling bank, capturing 90% of the regeneration sites on average, followed by A. rubrum (8% of sites) and L. tulipifera (2% of sites). When seed abundance was weighted by species-specific fecundity, seedling bank composition was more diverse; L. tulipifera captured 62% of the regeneration sites, followed by A. rubrum (21% of sites) and Q. rubra (17% of sites). Tradeoffs between seedling performance and fecundity may promote the diversity of seedling regeneration by increasing the probability of inferior competitors capturing regeneration sites.  相似文献   

11.
Patterns of moss and liverwort species diversity — species richness and species turnover (β‐diversity) — in three conifer‐dominated boreal forest stands of northern Alberta, Canada are described. We examined the relationship between bryophyte species diversity and micro‐environment at two sample grains, the microsite — substrate types for moss colonization: logs, stumps, tree bases, undisturbed patches of forest floor (dominated by feather moss species), and disturbed patches of forest floor — and the mesosite (25 m × 25 m plots). Microsite type and properties (e.g. decay class, hardwood vs softwood, pH) were the principal predictors of bryophyte species diversity and not micro‐environment variation among mesosites. Microsite type was the strongest predictor of microsite species richness and β‐diversity was higher among microsites and types and within microsites than among mesosites or stands. Microsite properties were significant predictors of species richness for all microsite types. Log and stump decay classes, influenced also by hardwood vs softwood predicted species richness of woody microsite types and soil pH and moisture predicted species richness of forest floor microsites. β‐diversity was highest for tree bases and disturbed patches of forest floor and lowest for logs. Mesosite β‐diversity was lower than that among microsites, and mesosite species richness was not well explained by measured environmental parameters. Results suggest that in conifer‐dominated boreal stands, species richness of microsites is only negligibly influenced by within‐stand variation at the mesosite grain and that substrate characteristics are the most important predictors of bryophyte species diversity in this ecosystem.  相似文献   

12.
Abstract. We evaluated the potential for restoring riparian grass and sedge meadows currently dominated by Artemisia tridentata var. tridentata with an experiment in which we burned sites with low, intermediate, and high water tables, i.e., dry, intermediate, and wet sites. To define the alternative states and thresholds for these ecosystems, we examined burning and water table effects on both abiotic variables and establishment of grasses adapted to relatively high (Poa se‐cunda ssp. juncifolia), intermediate (Leymus triticoides), or low (L. cinereus) water tables. Wet sites had lower soil temperatures and higher soil water contents than dry sites. Burning increased soil temperatures on all sites. Undershrub microsites on control plots had the lowest temperatures, while former undershrub microsites on burn plots had the highest temperatures. Surface soil water was low on burn plots early in the growing season due to desiccation, but higher at deeper depths after active plant growth began. Emergence was generally greater on wet sites, but survival was microsite‐ and species‐specific. Undershrub microsites on control plots facilitated emergence and first‐year survival, but seedlings that survived initially harsh conditions on burn plots had similar numbers alive at the end. In general, favorable environments and establishment of species adapted to mesic conditions indicate that wet sites represent an alternative state of the naturally occurring dry meadow ecosystem type, and can be restored to grass and sedge meadows. Harsh environments and lack of establishment of species adapted to mesic conditions indicate that dry sites have crossed a threshold and may represent a new ecosystem type. Understory vegetation and seed banks on dry sites have been depleted, and restoration will require burning and reseeding with species adapted to more xeric conditions.  相似文献   

13.
The coexistence of multiple species within a trophic level can be regulated by consumer preferences and nutrient supply, but the influence of these factors on the co-occurrence of seagrass species is not well understood. We examined the biomass and density responses of two seagrass species in the Florida Keys Reef Tract to grazing pressure near patch reefs, and evaluated how nutrient enrichment impacted herbivory dynamics. We transplanted Halodule wrightii (shoalgrass) sprigs into caged and uncaged plots in a Thalassia testudinum (turtlegrass) bed near a patch reef. Nutrients (N and P) were added to half of the experimental plots. We recorded changes in seagrass shoot density, and after three months, we measured above- and belowground biomass and tissue nutrient content of both species. Herbivory immediately and strongly impacted H. wrightii. Within six days of transplantation, herbivory reduced the density of uncaged H. wrightii by over 80%, resulting in a decrease in above- and belowground biomass of nearly an order of magnitude. T. testudinum shoot density and belowground biomass were not affected by herbivory, but aboveground biomass and leaf surface area were higher within cages, suggesting that although herbivory influenced both seagrass species, T. testudinum was more resistant to herbivory pressure than H. wrightii. Nutrient addition did not alter herbivory rates or the biomass of either species over the short-term duration of this study. In both species, nutrient addition had little effect on the tissue nutrient content of seagrass leaves, and N:P was near the 30:1 threshold that suggested a balance between N and P. The different impacts of grazing on these two seagrass species suggest that herbivory may be an important regulator of the distribution of multiple seagrass species near herbivore refuges like patch reefs in the Caribbean.  相似文献   

14.
The impact of small scale disturbances on the early seedling performance components of Helleborus foetidus (Ranunculaceae) was studied through a transplant experiment. The aims of this study were: (i) to determine if the herbivory pattern depends on microsite disturbance, by the analysis of two of its components, seedling encounter (the probability of at least one seedling being harmed) and seedling exploitation (the proportion of seedling tissue removed once encountered); (ii) to test if seedlings of H. foetidus in disturbed microsites will survive in a greater proportion than seedlings in undisturbed microsites; (iii) to investigate if seedling survival is correlated with the degree of herbivory. Microsite disturbances had a large effect on the herbivory pattern. Seedlings growing in undisturbed vegetation had a 2-fold higher likelihood of being grazed and suffered 1.38-fold higher damage than those growing in disturbed plots. At the end of this experiment, after fourteen months, only 10.4% of the seedlings transplanted were still alive due to seedling desiccation, but no differences on seedling survival were found between disturbed and undisturbed plots. The effect of herbivory and the interactive effect of herbivory and disturbance on seedling survival only reached statistical significance dependent upon site. We concluded that although small scale disturbances had a large impact on herbivory patterns; they had only a minor role in the early seedling survival of H. foetidus. Only locally, small scale disturbances showed an effect on seedling survival through herbivory. Abiotic factors like summer drought and spatial variations determined the early survival of H. foetidus seedlings to a major extent.  相似文献   

15.
Small-scale disturbances caused by animals often modify soil resource availability and may also affect plant attributes. Changes in the phenotype of plants growing on disturbed, nutrient-enriched microsites may influence the distribution and abundance of associated insects. We evaluated how the high nutrient availability generated by leaf-cutting ant nests in a Patagonian desert steppe may spread along the trophic chain, affecting the phenotype of two thistle species, the abundance of a specialist aphid and the composition of the associated assemblage of tending ants. Plants of the thistle species Carduus nutans and Onopordum acanthium growing in piles of waste material generated by leaf-cutting ant nests (i.e., refuse dumps) had more leaves, inflorescences and higher foliar nitrogen content than those in non-nest soils. Overall, plants in refuse dumps showed higher abundance of aphids than plants in non-nest soils, and aphid colonies were of greater size on O. acanthium plants than on C. nutans plants. However, only C. nutans plants showed an increase in aphid abundance when growing on refuse dumps. This resulted in a similar aphid load in both thistle species when growing on refuse dumps. Accordingly, only C. nutans showed an increase in the number of ant species attending aphids when growing on refuse dumps. The increase of soil fertility generated by leaf-cutting ant nests can affect aphid abundance and their tending ant assemblage through its effect on plant size and quality. However, the propagation of small-scale soil disturbances through the trophic chain may depend on the identity of the species involved.  相似文献   

16.
In heterogenous landscapes, seeds settle in some microsites more readily than others, independently of whether those microsites are suitable for germination and subsequent growth, and survival of seedlings. Wild seeds and seedlings of Ericameria nauseosa var. oreophila in the sand-dune ecosystem near Mono Lake, California show both concordance and conflict in where seeds are retained and where seedlings flourish. Using a field experiment, we followed performance of seeds and seedlings (i.e., the rate of germination and successful emergence, initial seedling size, seedling growth and survival over first growing season), by planting seeds of known sizes in pre-identified microsites (windward and lee aspects of interspaces between shrubs, under shrub canopies, and under snag canopies, respectively). Heavier seeds were more likely to germinate and emerge successfully and resulted in initially larger seedlings than lighter seeds. These initially larger seedlings subsequently remained larger over the growing season and lived longer than initially smaller seedlings. Independent of seed and initial seedling size, seedlings that germinated under the canopy of adult shrubs grew larger and survived longer than seedlings that germinated in interspaces (open space with little or no vegetation) or under snags (dead adult shrubs). Seedlings grown under the canopy of adult shrubs experienced significantly less solar radiation and wind-deposited sand than seedlings grown in interspace or snag microsites. Sand burial more than 1 cm was lethal for seedlings. The two variables of seed size and microsite type had by far greater impact on eventual growth and survival of seedlings than did aspect, and the effects of the former two variables were independent of each other. This study amplifies the body of work on E. nauseosa at this site demonstrating that the earliest events in the life history of this long-lived perennial shrub appear to persist through time despite the harsh and variable environment.  相似文献   

17.
Understanding the factors limiting population growth is crucial for species management and conservation. We assessed the effects of seed and microsite limitation, along with climate variables, on Helianthemum squamatum, a gypsum soil specialist, in two sites in central Spain. We evaluated the effects of experimental seed addition and soil crust disturbance on H. squamatum vital rates (survival, growth and reproduction) across four years. We used this information to build integral projection models (IPMs) for each combination of management (seed addition or soil disturbance), site and year. We examined differences in population growth rate (λ) due to management using life table response experiments. Soil crust disturbance increased survival of mid to large size individuals and germination. Contributions to λ of positive individual growth (progression) and negative individual growth (retrogression) due to managements varied among years and sites. Soil crust disturbance increased λ in the site with the highest plant density, and seed addition had a moderate positive effect on λ in the site with lowest plant density. Population growth rate (λ) decreased by half in the driest year. Differences in management effects between sites may represent a shift from seed to microsite limitation at increasing densities. This shift underscores the importance of considering what factors limit population growth when selecting a management strategy.  相似文献   

18.
19.
The emergence of variety of land-use changes due to continuous anthropogenic pressure in peri-urban areas may concomitantly result in modification of the structure of associated plant communities for their sustainable growth. In the present study, plant diversity, and above- and belowground biomass distribution among species were investigated to understand their dynamics across different season, soil, and site conditions in a dry tropical peri-urban region in India. From four study sites that covered contrasting land uses: abandoned brick kiln (ABK), grazing land (GL), Kali river bank (KRB), and agricultural land (AL), a total of 360 monoliths were randomly extracted in three seasons, and dry weights were estimated for aboveground and belowground parts of species individuals. Seasonal soil samples of the sites were analyzed for physico-chemical characteristics. Of the total 87 recorded species that were mainly annual weeds and ruderals, 77% were forbs and 23% grasses. The ranges of plant biomass recorded across all sites and seasons were: aboveground 228–738 g m−2, belowground 83–288 g m−2, and a total of 344–1,026 g m−2. The dominance of species differed between above- and belowground; some species dominated only above- or belowground, and others dominated in both layers. Above- and belowground biomass of the sites, differential community-biomass allocation to above- and belowground parts and species dominants varied significantly with site and season. ABK and AL sites showed lower species diversity and soil nutrients compared to GL and KRB sites. Belowground biomass significantly declined with increasing soil organic C and total N, indicating altered dry matter allocation under resource-scarce habitat conditions. Higher diversity occurred at both low- and high-biomass sites, reflective of enhanced ability of these plant communities to exploit resources maximally in spatio-temporal pattern.  相似文献   

20.
Question: In the same landscape context — at a desert grassland‐shrubland transition zone, how does subdominant plant abundance vary in microsites around dominant grasses and shrubs? Location: Sevilleta LTER, New Mexico, USA (34°21’N; 106°53’W; 1650 m a.s.l.). Methods: We compared the distribution of subdominant plants in canopy, canopy edge and interspace microsites around individual shrubs (Larrea tridentata) and grasses (Bouteloua eriopoda) at a transition zone that has been encroached by shrubs within the past 50 ‐ 100 a. Plots of variable size according to microsite type and dominant plant size were sampled. Results: Subdominant abundance was higher in microsites around L. tridentata shrubs than in microsites around B. eriopoda. Furthermore, differences in species abundance and composition were higher among microsites around grasses than among microsites around shrubs. The distribution of subdominants was mostly explained by their phenological characteristics, which indicates the importance of temporal variation in resources to their persistence. Conclusions: This study of coexistence patterns around dominants revealed ecological contrasts between two dominant life forms, but other factors (such as disturbances) have to be taken into consideration to evaluate landscape‐scale diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号