首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epiblast stem cells (EpiSCs), which are pluripotent cells isolated from early post-implantation mouse embryos (E5.5), show both similarities and differences compared to mouse embryonic stem cells (mESCs), isolated earlier from the inner cell mass (ICM) of the E3.5 embryo. Previously, we have observed that while chromatin is very dispersed in E3.5 ICM, compact chromatin domains and chromocentres appear in E5.5 epiblasts after embryo implantation. Given that the observed chromatin re-organization in E5.5 epiblasts coincides with an increase in DNA methylation, in this study, we aimed to examine the role of DNA methylation in chromatin re-organization during the in vitro conversion of ESCs to EpiSCs. The requirement for DNA methylation was determined by converting both wild-type and DNA methylation-deficient ESCs to EpiSCs, followed by structural analysis with electron spectroscopic imaging (ESI). We show that the chromatin re-organization which occurs in vivo can be re-capitulated in vitro during the ESC to EpiSC conversion. Indeed, after 7 days in EpiSC media, compact chromatin domains begin to appear throughout the nuclear volume, creating a chromatin organization similar to E5 epiblasts and embryo-derived EpiSCs. Our data demonstrate that DNA methylation is dispensable for this global chromatin re-organization but required for the compaction of pericentromeric chromatin into chromocentres.  相似文献   

2.
Generation of mouse chimeras is useful for the elucidation of gene function. In the present report, we describe a new technique for the production of chimeras by injection of R1 embryonic stem (ES) cells into the perivitelline space of one-cell stage mouse embryos. One-cell embryos are injected with 2–6 ES cells into the perivitelline space under the zona pellucida without laser-assistance. Our embryo culture experiments reveal that ES cells injected at the one-cell stage embryo start to be incorporated into the blastomeres beginning at the 8-cell stage and form a chimeric blastocyst after 4 days. We have used this approach to successfully produce a high rate of mouse chimeras in two different mouse genetic backgrounds permitting the establishment of germ line transmitters. This method allows for the earlier introduction of ES cells into mouse embryos, and should free up the possibility of using frozen one-cell embryos for this purpose.  相似文献   

3.
4.
5.
胚胎干细胞(embryonic stem cells,ESCs)是从囊胚的内细胞团分离出来的多潜能干细胞,具有多向分化的能力。将外源基因导入ES细胞建立转基因动物,对于研究外源基因的功能和调控具有一定的价值。载有外源性基因的病毒在感染ES细胞后,可通过囊胚注射获得具有胚系遗传的该转基因动物,并且这一外源基因可以稳定遗传和表达。该研究主要是利用携带hPML-RARα基因的慢病毒感染小鼠ES细胞系(R1),获得携带该基因的ES细胞,感染后的ES细胞核型正常。在此基础上,将感染后的ES细胞经囊胚注射,获得了携带有hPML-RARα基因的3只嵌合小鼠,其中,有1只具有遗传特性。对嵌合体小鼠与C57杂交的后代给予强力霉素(doxycycline)处理,3天以后骨髓细胞hPML-RARα基因开始表达,这证明了在小鼠体内该外源基因表达的可诱导性。以上证实,已经成功利用ES细胞建立了可诱导的白血病转基因小鼠模型。  相似文献   

6.
The developmental competence of in vitro cultured embryos vitrified-warmed at an early cleavage stage (2- or 4, 8-cell stage) was examined by both direct transfer into recipient animals and after in vitro manipulation for chimeric mice production using embryonic stem (ES) cells. Vitrified-warmed embryos transferred at the morulae and blastocyst stages showed fetus development comparable to control embryos, although blastocyst development of vitrified-warmed embryos was significantly slower than that of controls. When vitrified-warmed early cleavage stage embryos were used for chimeric mouse production using ES cells, 1 to 10% of the injected or aggregated embryos developed into chimeric neonates and germ-line chimeric mice were obtained from all ES cell lines. This study indicates that embryos developed in vitro from vitrified-warmed embryos have equivalent competence with unvitrified embryos irrespective of stage of vitrification and that these vitrified-warmed embryos maintain adequate viability even after in vitro manipulation such as aggregation and microinjection with ES cells.  相似文献   

7.
We examined whether chick embryos are a suitable experimental model for the evaluation of pluripotency of stem cells. Mouse embryonic stem cells (mESCs) expressing the reporter gene, LacZ or GFP were injected into the subgerminal cavity of blastoderms (freshly oviposited) or the marginal vein of chick embryos (2 days of incubation). Injected mESCs were efficiently incorporated into the body and extra‐embryonic tissues of chick embryos and formed small clusters. Increased donor cell numbers injected were positively associated with the efficiency of chimera production, but with lower viability. A single mESC injected into the blastoderm proliferated into 34.7 ± 3.8 cells in 3 days, implying that the chick embryo provides an optimal environment for the growth of xenogenic cells. In the embryo body, mESCs were interspersed as small clustered chimeras in various tissues. Teratomas were observed in the yolk sac and the brain with three germ layers. In the yolk sac, clusters of mESCs gradually increased in volume and exhibited varied morphology such as a water balloon‐like or dark‐red solid mass. However, mESCs in the brain developed into a large soft tissue mass of whitish color and showed a tendency to differentiate into ectodermal lineage cells, including primitive neural ectodermal and neuronal cells expressing the neurofilament protein. These results indicate that chick embryos are useful for the teratoma formation assays of mESCs and have a broad‐range potential as an experimental host model.  相似文献   

8.
Mammalian embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass (ICM) of the blastocyst. These cells are able to proliferate continuously without differentiation in vitro under suitable conditions. Their capacity of pluripotency in differentiation will be resumed when they are reintroduced into host embryos, when they will contribute to the embryonic development to form chimeric individuals. Manipulation of ES cells has been mainly established from studies in the mouse, and is powerful in the production of transgenic animals. Porcine ICM-derived cell lines possess the same cellular morphology and in vitro behavior as those of murine ES cells, but have lower efficiency in chimera formation when reintroduced into host embryos. This study was to determine the influences of passage number and the duration of in vitro culture on the capacity of porcine ICM-derived cells in the generation of chimeric embryos. The results showed that when passage number of porcine ICM-derived cells was less than 15, there were no detrimental effects on its integration ability. Extending the culture time up to 6 days in each passage of porcine ICM-derived cells impaired its integration capacity into the host blastocyst. Porcine ICM-derived cells cultured for more than 4 days in each passage should not be used for blastocyst injection if high efficiency of chimera production is to be achieved.  相似文献   

9.
10.
Murine embryonic stem cells (mESCs) inoculated at passage P13 with the mycoplasma species M. hominis, M. fermentans and M. orale and cultured over 20 passages showed reduced growth rate and viability (P < 0.0001) compared to control mESCs. Spectral karyotypic analysis of mycoplasma-infected mESCs showed a number of non-clonal chromosomal aberrations which increased with the duration of infection. The differentiation status of the infected mESCs was most affected at passage P13+6 where the infection was strongest and 46.3% of the mESCs expressed both POU5F1 and SSEA-1 markers whereas 84.8% of control mESCs expressed both markers. The percentage of germline chimeras from mycoplasma-infected mESCs was examined after blastocyst injection and embryo transfer to suitable recipients at different passages and, compared to the respective control group, was most affected at passage P13+5 (50% vs. 90%; P < 0.07). Further reductions were obtained at the same passage in the percentage of litters born (50% vs. 100%; P < 0.07) and in the percentage of pups born (22% vs. 45%; P < 0.001). Thirty three chimeras (39.8%) obtained from blastocyst injection with mycoplasma-infected mESCs showed reduced body weight (P < 0.0001), nasal discharge, osteoarthropathia, and cachexia. Flow cytometric analysis of plasma from chimeras produced with mycoplasma-infected mESCs revealed statistically significant differences in the proportions of T-cells and increased levels of IgG1 (P < 0.001), IgG2a (P < 0.05) and IgM (P < 0.05), anti-DNA antibodies (P < 0.05) and rheumatoid factor (P < 0.01). The present data indicate that mycoplasma contamination of mESCs affects various cell parameters, germline transmission, and postnatal development of the resulting chimeras.  相似文献   

11.
The polymerase chain reaction (PCR) technique was used to detect a whey acidic protein (WAP) gene and transgene presence in mouse ova cultured to various stages of development after pronuclear microinjection at the one-cell stage. The PCR technique detected an endogenous 442 bp WAP DNA sequence in 78% of one-cell, 88% of two-cell and 94% of four-cell ova, and in 95% of morulae and 97% of blastocysts. The heterologous WAP-human protein C transgene was detected in 88% of one-cell, 88% of two-cell and 44% of four-cell ova, and in 40% of morulae and 29% of blastocysts. For comparison, the integration frequency for transgenic mouse production using the same DNA construct was 22%. After five days ofin vitro culture, embryos that were either developmentally arrested or fragmented were tested for the presence of the transgene. The injected construct was detected in 83% of arrested one-cell, 85% of arrested two-cell, and 85% of fragmented ova. In culture, only 28% of zygotes microinjected with DNA developed to the blastocyst stage compared to 74% of noninjected zygotes, while 63% of zygotes developed to the blastocyst stage after injection of buffer alone. Pronuclear injection of the transgene at concentrations of 1.5, 15 and 50 g ml–1 resulted in 28, 11 and 9% development to blastocysts and 29, 86 and 88% transgene detection, respectively. Transgene detection was 85, 96 and 97% in degenerate embryos at the respective doses of DNA. These data show that pronuclear microinjection of the transgene is detrimental to subsequent embryonic development. Also, unintegrated copies of the transgene probably exist at least until the blastocyst stage, and thereafter are degraded to the extent that they can no longer be detected by PCR.  相似文献   

12.
Pluripotent stem cells are capable of differentiating into all cell types of the body and therefore hold tremendous promise for regenerative medicine. Despite their widespread use in laboratories across the world, a detailed understanding of the molecular mechanisms that regulate the pluripotent state is currently lacking. Mouse embryonic (mESC) and epiblast (mEpiSC) stem cells are two closely related classes of pluripotent stem cells, derived from distinct embryonic tissues. Although both mESC and mEpiSC are pluripotent, these cell types show important differences in their properties suggesting distinct pluripotent ground states. To understand the molecular basis of pluripotency, we analyzed the nuclear proteomes of mESCs and mEpiSCs to identify protein networks that regulate their respective pluripotent states. Our study used label-free LC-MS/MS to identify and quantify 1597 proteins in embryonic and epiblast stem cell nuclei. Immunoblotting of a selected protein subset was used to confirm that key components of chromatin regulatory networks are differentially expressed in mESCs and mEpiSCs. Specifically, we identify differential expression of DNA methylation, ATP-dependent chromatin remodeling and nucleosome remodeling networks in mESC and mEpiSC nuclei. This study is the first comparative study of protein networks in cells representing the two distinct, pluripotent states, and points to the importance of DNA and chromatin modification processes in regulating pluripotency. In addition, by integrating our data with existing pluripotency networks, we provide detailed maps of protein networks that regulate pluripotency that will further both the fundamental understanding of pluripotency as well as efforts to reliably control the differentiation of these cells into functional cell fates.  相似文献   

13.
Successful cloning by nuclear transfer has been reported with somatic or embryonic stem (ES) cell nucleus injection into enucleated mouse metaphase II oocytes. In this study, we enucleated mouse oocytes at the germinal vesicle (GV) or pro-metaphase I (pro-MI) stage and cultured the cytoplasm to the MII stage. Nuclei from cells of the R1 ES cell line were injected into both types of cytoplasm to evaluate developmental potential of resulting embryos compared to MII cytoplasmic injection. Immunocytochemical staining revealed that a spindle started to organize 30 min after nucleus injection into all three types of cytoplasm. A well-organized bipolar spindle resembling an MII spindle was present in both pro-MI and MII cytoplasm 1 h after injection with ES cells. However, in the mature GV cytoplasm, chromosomes were distributed throughout the cytoplasm and a much bigger spindle was formed. Pseudopronucleus formation was observed in pro-MI and MII cytoplasm after activation treatment. Although no pronucleus formation was found in GV cytoplasm, chromosomes segregated into two groups in response to activation. Only 8.1% of reconstructed embryos with pro-MI cytoplasm developed to the morula stage after culture in CZB medium. In contrast, 53.5% of embryos reconstructed with MII cytoplasm developed to the morula/blastocyst stage, and 5.3% of transferred embryos developed to term. These results indicate that GV material is essential for nucleus remodeling after nuclear transfer.  相似文献   

14.
15.
Fate of microinjected genes in preimplantation mouse embryos.   总被引:5,自引:0,他引:5  
The state of genes microinjected into mouse embryos was followed from the one-cell to the blastocyst stage using the polymerase chain reaction (PCR). Microinjected DNA was detected in all one-, two-, and four-cell injected embryos and in 44% of morula and 26% of blastocysts. Head-to-tail ligation of microinjected genes, a common feature of stably integrated transgene arrays, was detected in all embryos after injection of microinjected genes and occurred irrespective of the structure at the ends of the injected genes. Sensitivity of microinjected DNA to a methylation-dependent restriction endonuclease Dpn I was lost in all embryos by the two-cell stage (24 hr), indicating a change in DNA methylation, independent of transgene integration. Dissociation of blastomeres prior to compaction revealed a mosaic distribution of the microinjected DNA within the embryo and supports the notion that injected genes form a limited number of arrays, which segregate independently until they integrate into the genome or are degraded.  相似文献   

16.
17.
Our Department of Experimental Embryology originated from The Laboratory of Embryo Biotechnology, which was organized and directed by Dr. Maria Czlonkowska until her premature death in 1991. Proving successful international transfer of frozen equine embryos and generation of an embryonic sheep-goat chimaera surviving ten years were outstanding achievements of her term. In the 1990s, we produced advanced fetuses of mice after reconstructing enucleated oocytes with embryonic stem (ES) cells, as well as mice originating entirely from ES cells by substitution of the inner cell mass with ES cells. Attempts at obtaining ES cells in sheep resulted in the establishment of embryo-derived epithelioid cell lines from Polish Heatherhead and Polish Merino breeds, producing overt chimaeras upon blastocyst injection. Successful re-cloning was achieved from 8-cell rabbit embryos, and healthy animals were born from the third generation of cloned embryos. Recently mice were born after transfer of 8-cell embryonic nuclei into selectively enucleated zygotes, and mouse blastocysts were produced from selectively enucleated germinal vesicle oocytes surrounded by follicular cells, upon their reconstruction with 2-cell nuclei and subsequent activation. Embryonic-somatic chimaeras were born after transfer of foetal fibroblasts into 8-cell embryos (mouse) and into morulae and blastocysts (sheep). We also regularly perform the following applications: in vitro production of bovine embryos from slaughterhouse oocytes or those recovered by ovum pick up; cryopreservation of oocytes and embryos (freezing: mouse, rabbit, sheep, goat; vitrification: rabbit, cow); and banking of somatic cells from endangered wild mammalian species (mainly Cervidae).  相似文献   

18.
Isolation of embryonic stem cells has been documented only in the mouse and perhaps the hamster and cow. We report results of experiments designed to determine the effect of age of porcine embryos (6 through 10 d after the first day of estrus) on isolation of cell lines with embryonic stem cell-like morphology. The capacity of fresh and short-term cultured inner cell mass (ICM) cells to differentiate into normal tissues after injection into blastocysts was also measured. Few Day-6 ICM survived in culture to the first passage onto fresh feeder cells, but cell lines with embryonic stem cell-like morphology developed from Day-7 through Day-10 ICM. Isolation of embryonic stem cell-like colonies was achieved at a higher frequency from ICM isolated from older embryos, but embryonic stem cell-like colonies from older embryos also tended to differentiate spontaneously in culture. Viable porcine chimeras were born after injection of fresh ICM into blastocysts that were transferred to recipients for development to term; no chimeras were born from blastocysts injected with ICM subjected to short-term (1 to 6 d) culture. Germ-cell chimerism was confirmed in one of the chimeras. These results document that undifferentiated cells can be removed from porcine blastocysts, transplanted to other embryos, and contribute to development of normal differentiated tissues, including germ cells. Cells with embryonic stem-like morphology can be isolated in culture from ICM at various embryonic ages, but ICM from young blastocysts (e.g., Day-7 embryos) yield embryonic stem cell-like colonies at lower frequency than do ICM from older blastocysts (e.g., Day-10 embryos).  相似文献   

19.
20.
Mouse parthenogenetic embryonic stem cells (PgESCs) could be applied to study imprinting genes and are used in cell therapy. Our previous study found that stem cells established by aggregation of two parthenogenetic embryos at 8‐cell stage (named as a2PgESCs) had a higher efficiency than that of PgESCs, and the paternal expressed imprinting genes were observably upregulated. Therefore, we propose that increasing the number of parthenogenetic embryos in aggregation may improve the development of parthenogenetic mouse and imprinting gene expression of PgESCs. To verify this hypothesis, we aggregated four embryos together at the 4‐cell stage and cultured to the blastocyst stage (named as 4aPgB). qPCR detection showed that the expression of imprinting genes Igf2, Mest, Snrpn, Igf2r, H19, Gtl2 in 4aPgB were more similar to that of fertilized blastocyst (named as fB) compared to 2aPgB (derived from two 4‐cell stage parthenogenetic embryos aggregation) or PgB (single parthenogenetic blastocyst). Post‐implantation development of 4aPgB extended to 11 days of gestation. The establishment efficiency of GFP‐a4PgESCs which derived from GFP‐4aPgB is 62.5%. Moreover, expression of imprinting genes Igf2, Mest, Snrpn, notably downregulated and approached the level of that in fertilized embryonic stem cells (fESCs). In addition, we acquired a 13.5‐day fetus totally derived from GFP‐a4PgESCs with germline contribution by 8‐cell under zona pellucida (ZP) injection. In conclusion, four embryos aggregation improves parthenogenetic development, and compensates imprinting genes expression in PgESCs. It implied that a4PgESCs could serve as a better scientific model applied in translational medicine and imprinting gene study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号