首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A relatively large number of studies reassert the strong relationship between galling insect diversity and extreme hydric and thermal status in some habitats, and an overall pattern of a greater number of galling species in the understory of scleromorphic vegetation. We compared galling insect diversity in the forest canopy and its relationship with tree richness among upland terra firme, várzea, and igapó floodplains in Amazonia, Brazil. The soils of these forest types have highly different hydric and nutritional status. Overall, we examined the upper layer of 1,091 tree crowns. Galling species richness and abundance were higher in terra firme forests compared to várzea and igapó forests. GLM-ANCOVA models revealed that the number of tree species sampled in each forest type was determinant in the gall-forming insect diversity. The ratio between galling insect richness and number of tree species sampled (GIR/TSS ratio) was higher in the terra firme forest and in seasonally flooded igapó, while the várzea presented the lowest GIR/TSS ratio. In this study, we recorded unprecedented values of galling species diversity and abundance per sampling point. The GIR/TSS ratio from várzea was approximately 2.5 times higher than the highest value of this ratio ever reported in the literature. Based on this fact, we ascertained that várzea and igapó floodplain forests (with lower GIA and GIR), together with the speciose terra firme galling community emerge as the gall diversity apex landscape among all biogeographic regions already investigated. Contrary to expectation, our results also support the “harsh environment hypothesis”, and unveil the Amazonian upper canopy as similar to Mediterranean vegetation habitats, hygrothermically stressed environments with leaf temperature at lethal limits and high levels of leaf sclerophylly.  相似文献   

2.
Spatial heterogeneity in the plant species composition of tropical forests is expected to influence animal species abundance and composition because vegetation constitutes the primary habitat feature for forest animals. Floristic variation is tied to variation in soils, so edaphic properties should ultimately influence animal species composition as well. The study of covariation in floristic and faunistic turnover has been hindered by the difficulty of completing coordinated surveys in hyperdiverse tropical communities, but this can be overcome with the use of a few plant taxa that function as surrogates for general floristic turnover. We used avian and plant transect surveys and soil sampling in a western Amazonian upland (terra firme) forest landscape to test whether spatial variation in bird community composition is associated with floristic turnover and corresponding edaphic gradients. Partial Mantel tests and Non‐metric Multidimensional Scaling showed floristic distinctiveness between two forest types closely associated with differences in soil cation concentrations, and differences in both floristic composition and cation concentrations were further linked to compositional differences in avian species, independent of geographic distances among sites. Ten percent of bird species included in Indicator Species Analyses showed significant associations with one of the two forest types. The upland forest types that we sampled, each corresponding to a different geological formation, are intermediate relative to edaphically extreme environments in the region. Models of avian diversification should take into account this environmental heterogeneity, as should conservation planning approaches that aim to represent faunal diversity. Abstract in Spanish is available in the online version of this article.  相似文献   

3.
We document patterns of fruit and vertebrate abundance within an extensive, virtually undisturbed mosaic of seasonally flooded (várzea and igapó) and unflooded (terra firme) forests of central Amazonia. Using phenological surveys and a standardised series of line-transect censuses we investigate the spatial and temporal patterns of immature and mature fruit availability and how this may affect patterns of habitat use by vertebrates in the landscape. All habitats showed marked peaks in fruiting activity, and vertebrate detection rates varied over time for most species both within and between forest types. Many arboreal and terrestrial vertebrates used both types of flooded forest on a seasonal basis, and fluctuations in the abundance of terrestrial species in várzea forest were correlated with fruit availability. Similarly, the abundance of arboreal seed predators such as buffy saki monkeys (Pithecia albicans) and macaws (Ara spp.) were closely linked with immature fruit availability in terra firme forest. We conclude that highly heterogeneous landscapes consisting of terra firme, várzea and igapó forest appear to play an important role in the dynamics of many vertebrate species in lowland Amazonia, but the extent to which different forest types are used is highly variable in both space and time.  相似文献   

4.
Aims The coastal Brazilian rainforest on white-sand (restinga) ranks among the most fragmented forest types in the tropics, owing to both the patchy distribution of sandy soils and widespread coastal development activities. Here we study the environmental and evolutionary determinants of a forest tree assemblage at a single restinga forest in Southeastern Brazil. We also explore the ability of competing hypotheses to explain the maintenance of species diversity in this forest type, which includes contrasting extremes of edaphic conditions associated with flooding stress.Methods The study was conducted in a white-sand forest permanent plot of 10.24 ha on the coastal plain of Southeastern Brazil. This plot was divided into 256 quadrats of 20×20 m, which were classified into two main edaphic habitats (flooded and drained). Trees with a diameter ≥1cm at breast height were identified. We assembled DNA sequence data for each of the 116 morphospecies recognized using two chloroplast markers (rbcL and matK). A phylogenetic tree was obtained using the maximum likelihood method, and a phylogenetic distance matrix was produced from an ultrametric tree. We analyzed similarity in floristic composition and structure between habitats and related them to cross-plot distances using permutation procedures. Null model torus shift simulations were performed to obtain a statistical significance level for habitat association for each species. The phylogenetic structure for the two habitats and for each 20×20 m quadrat was calculated using the mean phylogenetic distance weighted by species abundance and checked for significance using the standardized effect size generated by 5000 randomizations of phylogenetic tip labels.Important findings Our results indicate that partitioning among edaphic habitats is important for explaining species distributions and coexistence in restinga forests. Species distributions within the plot were found to be non-random: there was greater floristic similarity within than between habitats, and>40% of the more abundant species were positively or negatively associated with at least one habitat. Patterns of habitat association were not independent of phylogenetic relatedness: the community was overdispersed with respect to space and habitat type. Closely related species tended to occur in different habitats, while neighboring trees tended to belong to more distantly related species. We conclude that habitat specialization is important for the coexistence of species in restinga forests and that habitat heterogeneity is therefore an essential factor in explaining the maintenance of diversity of this unique but fragile and threatened type of forest.  相似文献   

5.
Ecological and evolutionary processes influence community assembly at both local and regional scales. Adding a phylogenetic dimension to studies of species turnover allows tests of the extent to which environmental gradients, geographic distance and the historical biogeography of lineages have influenced speciation and dispersal of species throughout a region. We compare measures of beta diversity, phylogenetic community structure and phylobetadiversity (phylogenetic distance among communities) in 34 plots of Amazonian trees across white‐sand and clay terra firme forests in a 60 000 square kilometer area in Loreto, Peru. Dominant taxa in white‐sand forests were phylogenetically clustered, consistent with environmental filtering of conserved traits. Phylobetadiversity measures found significant phylogenetic clustering between terra firme communities separated by geographic distances of <200–300 km, consistent within recent local speciation at the watershed scale in the Miocene‐aged clay‐soil forests near the foothills of the Andes. Although both distance and habitat type yielded statistically significant effects on both species and phylogenetic turnover, the patterns we observed were more consistent with an effect of habitat specialization than dispersal limitation. Our results suggest a role for both broad‐scale biogeographic and evolutionary processes, as well as habitat specialization, influencing community structure in Amazonian forests.  相似文献   

6.
In the Peruvian Amazon, white‐sand forests are patchily distributed and restricted to a few localities in the North. Although recent studies have documented patterns of habitat specialization by plants in these unique forests, very few studies of the fauna of these habitats have been conducted. The species composition of the avifauna of the white‐sand forests at six localities in the region was sampled by conducting transects and point counts. Surrounding habitats were also sampled to compare avifaunal communities and to determine the degree of restriction of bird species to white‐sand habitats. Non‐metric multidimensional scaling analysis showed that bird communities of white‐sand forests were more similar to each other than they were to terra firme or flooded forest communities. Sites on either side of the Amazon‐Marañón barrier were the most similar within habitat type consistent with the hypothesis that these rivers represent a major biogeographic barrier. Twenty‐six species, belonging to 13 families, were to some degree specialized to white‐sand forests. This is the first comprehensive ornithological assessment carried out on these habitats in Peru. The high degree of habitat specialization found in these 26 bird species highlights the need for conservation and management measures that will protect white‐sand forests.  相似文献   

7.
Environmental heterogeneity in the tropics is thought to lead to specialization in plants and thereby contribute to the diversity of the tropical flora. We examine this idea with data on the habitat specificity of 35 western Amazonian species from the genera Protium, Crepidospermum, and Tetragastris in the monophyletic tribe Protieae (Burseraceae) mapped on a molecular-based phylogeny. We surveyed three edaphic habitats that occur throughout terra firme Amazonia: white-sand, clay, and terrace soils in eight forests across more than 2000 km in the western Amazon. Twenty-six of the 35 species were found to be associated with only one of three soil types, and no species was associated with all three habitats; this pattern of edaphic specialization was consistent across the entire region. Habitat association mapped onto the phylogenetic tree shows association with terrace soils to be the probable ancestral state in the group, with subsequent speciation events onto clay and white-sand soils. The repeated gain of clay association within the clade likely coincides with the emergence of large areas of clay soils in the Miocene deposited during the Andean uplift. Character optimizations revealed that soil association was not phylogenetically clustered for white-sand and clay specialists, suggesting repeated independent evolution of soil specificity is common within the Protieae. This phylogenetic analysis also showed that multiple cases of putative sister taxa with parapatric distributions differ in their edaphic associations, suggesting that edaphic heterogeneity was an important driver of speciation in the Protieae in the Amazon basin.  相似文献   

8.
The ancient landscape of the South - West Australian Floristic Region (SWAFR) is characterized by exceptional floristic diversity, attributed to a complex mosaic of nutrient - impoverished soils. Between - soil type differences in nutrient availability are expected to affect floristic assemblage patterns in the SWAFR. We compared patterns of floristic diversity between open - forest samples from three soil types in the high - rainfall zone of the SWAFR. The importance of environmental and spatial factors for species compositional turnover within soil types were evaluated within canonical correspondence analyses using variation partitioning. Patterns of phylogenetic diversity and dispersion were contrasted between soil types and related to differences in soil nutrient availability. Between - quadrat shared phylogenetic branch length for individual life form categories was correlated with explanatory variables using Mantel tests. Species and phylogenetic diversity increased with a decline in soil nutrients and basal area. Nutrient - poorer soils were differentiated by higher species density and phylogenetic diversity, and larger phylogenetic distances between species. Species turnover was best explained by environmental factors when soil nutrient concentrations and basal area were low. Coastal and inland quadrats from the most fertile soil type were distinguished by significantly differing patterns of phylogenetic diversity. Inland quadrats were characterized by strong relationships between phylogenetic diversity and environment, while phylogenetic patterns remained largely unaccounted for by explanatory variables within coastal quadrats. Phylogenetic diversity was more strongly related with environment within upland landform types for nutrient-poor soils. We highlight the complex relationships between climatic and edaphic factors within the SWAFR, and propose that the occurrence of refugial habitat for plant phylogenetic diversity is dynamically linked with these interactions. Climate change susceptibility was estimated to be especially high for inland locations within the high - rainfall zone. Despite the strong relationship between floristic diversity and soil fertility, holistic conservation approaches are required to conserve the mosaic of soil types regardless of soil nutrient status.  相似文献   

9.
Canopy gaps express the time-integrated effects of tree failure and mortality as well as regrowth and succession in tropical forests. Quantifying the size and spatial distribution of canopy gaps is requisite to modeling forest functional processes ranging from carbon fluxes to species interactions and biological diversity. Using high-resolution airborne Light Detection and Ranging (LiDAR), we mapped and analyzed 5,877,937 static canopy gaps throughout 125,581 ha of lowland Amazonian forest in Peru. Our LiDAR sampling covered a wide range of forest physiognomies across contrasting geologic and topographic conditions, and on depositional floodplain and erosional terra firme substrates. We used the scaling exponent of the Zeta distribution (λ) as a metric to quantify and compare the negative relationship between canopy gap frequency and size across sites. Despite variable canopy height and forest type, values of λ were highly conservative (λ mean  = 1.83, s  = 0.09), and little variation was observed regionally among geologic substrates and forest types, or at the landscape level comparing depositional-floodplain and erosional terra firme landscapes. λ-values less than 2.0 indicate that these forests are subjected to large gaps that reset carbon stocks when they occur. Consistency of λ-values strongly suggests similarity in the mechanisms of canopy failure across a diverse array of lowland forests in southwestern Amazonia.  相似文献   

10.
Abstract —Environmental heterogeneity in the tropics is thought to lead to specialization in plants and thereby contribute to the diversity of the tropical flora. We examine this idea with data on the habitat specificity of 35 western Amazonian species from the genera Protium, Crepidospermum, and Tetragastris in the monophyletic tribe Protieae (Burseraceae) mapped on a molecular‐based phylogeny. We surveyed three edaphic habitats that occur throughout terra firme Amazonia: white‐sand, clay, and terrace soils in eight forests across more than 2000 km in the western Amazon. Twenty‐six of the 35 species were found to be associated with only one of three soil types, and no species was associated with all three habitats; this pattern of edaphic specialization was consistent across the entire region. Habitat association mapped onto the phylogenetic tree shows association with terrace soils to be the probable ancestral state in the group, with subsequent speciation events onto clay and white‐sand soils. The repeated gain of clay association within the clade likely coincides with the emergence of large areas of clay soils in the Miocene deposited during the Andean uplift. Character optimizations revealed that soil association was not phylogenetically clustered for white‐sand and clay specialists, suggesting repeated independent evolution of soil specificity is common within the Protieae. This phylogenetic analysis also showed that multiple cases of putative sister taxa with parapatric distributions differ in their edaphic associations, suggesting that edaphic heterogeneity was an important driver of speciation in the Protieae in the Amazon basin.  相似文献   

11.
In Amazonia, the assemblages of several taxa differ significantly between upland terra firme and white‐water flooded várzea forests, but little is known about the diversity and distribution of bats in these two forest types. We compare the spatio‐temporal patterns of bat assemblage composition and structure in adjacent terra firme and várzea forests in the lower Purus River region of central Brazilian Amazonia. Bats were sampled using mist nets at five sites in each forest type during 40 nights (2400 net‐hours). We captured 1069 bats representing 42 species and Phyllostomidae bats comprised 99.3 percent of all captures. The bat assemblages in várzea and terra firme forests were significantly different, mainly due to a marked dissimilarity in species composition and in the number of captures during high‐water season. In addition, bat assemblages within forest types differed significantly between seasons for both terra firme and várzea. Frugivores dominated the bat assemblages in both forest types. Overall guild structure did not change between várzea and terra firme or between seasons, but frugivore and animalivore abundance increased significantly in várzea forest during the inundation. The difference in assemblage structure observed in the high‐water season is probably caused by the annual várzea flooding, which provides an effective barrier to the persistence of many understory bats. We also hypothesize that some bat species may undertake seasonal movements between forest types in response to fruit abundance, and our results further underline the importance of floodplain habitats for the conservation of species in the Amazon.  相似文献   

12.
In this study, we investigated the pattern of floristic similarity as a function of geographical distances and environmental variability in well-drained uplands (terra firme) in Colombian Amazonia. The study site comprised three National Natural Parks, Tinigua, Chiribiquete, and Amacayacu, located in different geological units that represent a soil fertility gradient linked to parental materials. Differences in species richness between sites were compared using rarefaction analysis. A clear floristic transition appeared in the east–west direction following a soil fertility gradient along the first PCoA axis. In multiple regression analyses based on distance matrices, both geographical distances and geology explained 64 percent of the total floristic variation. Geographical distances alone accounted for 12 percent of variation in floristic similarities among plots, while geology alone accounted for 1 percent, and the joint effect of both explained 51 percent of the floristic variation. The species richness trend supports the existence of a latitudinal corridor southward of the geographical Equator in the Amazon basin, where tree diversity reaches the maximum expected values. A coupled effect of stochastic dispersal limitation and habitat specialization would certainly appear to be an appropriate explanation for tree species turnover in terra firme forests in Colombian Amazonia, strongly emphasizing that competition and neutrality must be supplementary rather than mutually exclusive processes. This result pinpoints the effect of dispersal on floral mixing as an ongoing active process for structuring tree communities in NW Amazonia, and the size of the reserves as a relevant issue to protect rare species from extinction by chance.
  相似文献   

13.
Unveiling the genetic basis of local adaptation to environmental variation is a major goal in molecular ecology. In rugged landscapes characterized by environmental mosaics, living populations and communities can experience steep ecological gradients over very short geographical distances. In lowland tropical forests, interspecific divergence in edaphic specialization (for seasonally flooded bottomlands and seasonally dry terra firme soils) has been proven by ecological studies on adaptive traits. Some species are nevertheless capable of covering the entire span of the gradient; intraspecific variation for adaptation to contrasting conditions may explain the distribution of such ecological generalists. We investigated whether local divergence happens at small spatial scales in two stands of Eperua falcata (Fabaceae), a widespread tree species of the Guiana Shield. We investigated Single Nucleotide Polymorphisms (SNP) and sequence divergence as well as spatial genetic structure (SGS) at four genes putatively involved in stress response and three genes with unknown function. Significant genetic differentiation was observed among sub‐populations within stands, and eight SNP loci showed patterns compatible with disruptive selection. SGS analysis showed genetic turnover along the gradients at three loci, and at least one haplotype was found to be in repulsion with one habitat. Taken together, these results suggest genetic differentiation at small spatial scale in spite of gene flow. We hypothesize that heterogeneous environments may cause molecular divergence, possibly associated to local adaptation in E. falcata.  相似文献   

14.
The contribution of vertebrate animals to nutrient cycling has proven to be important in various ecosystems. However, the role of large bodied primates in nutrient transport in neotropical forests is not well documented. Here, we assess the role of a population of woolly monkeys (Lagothrix lagothricha lugens) as vectors of nutrient movement through seed dispersal. We estimated total seed biomass transported by the population within and between two habitats (terra firme and flooded forests) at Tinigua Park, Colombia, and quantified potassium (K), phosphorus (P) and nitrogen (N) content in seeds of 20 plant species from both forests. Overall, the population transported an estimated minimum of 11.5 (±1.2 SD) g of potassium, 13.2 (±0.7) g of phosphorus and 34.3 (±0.1) g nitrogen, within 22.4 (±2.0) kg of seeds ha?1 y?1. Approximately 84% of all nutrients were deposited in the terra firme forest mostly through recycling processes, and also through translocation from the flooded forest. This type of translocation represents an important and high‐quality route of transport since abiotic mechanisms do not usually move nutrients upwards, and since chemical tests show that seeds from flooded forests have comparatively higher nutrient contents. The overall contribution to nutrient movement by the population of woolly monkeys is significant because of the large amount of biomass transported, and the high phosphorus content of seeds. As a result, the phosphorus input generated by these monkeys is of the same order of magnitude as other abiotic mechanisms of nutrient transport such as atmospheric deposition and some weathering processes. Our results suggest that via seed dispersal processes, woolly monkey populations can contribute to nutrient movement in tropical forests, and may act as important nutrient input vectors in terra firme forests. Am. J. Primatol. 72:992–1003, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
In the Congo basin, considerable uncertainty remains about the amount and spatial variation of carbon stocks. We studied two types of seasonally flooded forests (dominated by Guibourtia demeusei and Lophira alata) and nearby terra firme forests in northern Congo. We sampled 1.25 ha per forest type and a total of 1,400 trees ≥5 cm diameter. AGB ranged from 207–343 Mg/ha, with no significant differences between forest types. Few significant differences were observed in vegetation structure or tree diversity between forest types. Species richness and stem density of small trees were lower, and dominance was higher in Guibourtia plots, which are subject to greater flooding than Lophira plots. Guibourtia was absent from smaller diameter class in Guibourtia forests; and Uapaca spp. were more abundant in terra firme than in seasonally flooded plots. We show that both types of seasonally flooded forests store important quantities of AGB and should also be considered in forest conservation programmes. We recommend more research on seasonally flooded forests, on larger geographical extent, which assesses flood depth and duration, and measures tree height in the field, as we took a conservative approach to AGB estimates, and AGB could be even greater than we report here.  相似文献   

16.
Various factors affect spatial genetic structure in plant populations, including adult density and primary and secondary seed dispersal mechanisms. We evaluated pollen and seed dispersal distances and spatial genetic structure of Carapa guianensis Aublet. (Meliaceae) in occasionally inundated and terra firme forest environments that differed in tree densities and secondary seed dispersal agents. We used parentage analysis to obtain contemporary gene flow estimates and assessed the spatial genetic structure of adults and juveniles. Despite the higher density of adults (diameter at breast height ≥ 25 cm) and spatial aggregation in occasionally inundated forest, the average pollen dispersal distance was similar in both types of forest (195 ± 106 m in terra firme and 175 ± 87 m in occasionally inundated plots). Higher seed flow rates (36.7% of juveniles were from outside the plot) and distances (155 ± 84 m) were found in terra firme compared to the occasionally inundated plot (25.4% and 114 ± 69 m). There was a weak spatial genetic structure in juveniles and in terra firme adults. These results indicate that inundation may not have had a significant role in seed dispersal in the occasionally inundated plot, probably because of the higher levels of seedling mortality.  相似文献   

17.
We documented the floristic composition of pteridophytes (ferns and fern allies) and Melastomataceae in Yasuní National Park, Amazonian Ecuador. Our main questions were: (1) Are the density of individuals, species richness, and/or species diversity (measured with Shannon's H′) of the two plant groups related to edaphic differences? and (2) How many of the pteridophyte and Melastomataceae species are non–randomly distributed in relation to a soil base content gradient within terra firme (non–inundated forest). To answer these questions, we sampled 27 line transects of 500 × 5 m distributed in an area of ca 20 × 25 km. The study area included a permanent 50 ha plot established to monitor forest dynamics; thus, our results also provide information on landscape–scale floristic variability to which results from within the plot can be compared. A total of 45,608 individuals and 140 species of pteridophytes, and 4893 individuals and 89 species of the Melastomataceae, were counted in the transects. Both with pteridophytes and with Melastomataceae, a clear negative correlation was found between the amount of extractable bases in the soil and the number of plant individuals encountered in a transect. With Melastomataceae, species richness and species diversity also were negatively correlated with soil base content, but with pteridophytes they were not. More than 50 percent of the common species of both pteridophytes and Melastomataceae were nonrandomly distributed along the soil cation content gradient within terra firme. We conclude that while the species richness patterns observed in one plant group are not indicative of similar patterns in other plant groups, it seems likely that a substantial (but unknown) proportion of species belonging to other plant groups will be found to show distribution patterns that reflect edaphic preferences within terra firme forests.  相似文献   

18.
Using complementary metrics to evaluate phylogenetic diversity can facilitate the delimitation of floristic units and conservation priority areas. In this study, we describe the spatial patterns of phylogenetic alpha and beta diversity, phylogenetic endemism, and evolutionary distinctiveness of the hyperdiverse Ecuador Amazon forests and define priority areas for conservation. We established a network of 62 one‐hectare plots in terra firme forests of Ecuadorian Amazon. In these plots, we tagged, collected, and identified every single adult tree with dbh ≥10 cm. These data were combined with a regional community phylogenetic tree to calculate different phylogenetic diversity (PD) metrics in order to create spatial models. We used Loess regression to estimate the spatial variation of taxonomic and phylogenetic beta diversity as well as phylogenetic endemism and evolutionary distinctiveness. We found evidence for the definition of three floristic districts in the Ecuadorian Amazon, supported by both taxonomic and phylogenetic diversity data. Areas with high levels of phylogenetic endemism and evolutionary distinctiveness in Ecuadorian Amazon forests are unprotected. Furthermore, these areas are severely threatened by proposed plans of oil and mining extraction at large scales and should be prioritized in conservation planning for this region.  相似文献   

19.
The concepts of phylogenetic community structure (PCS) and phylogenetic niche conservatism (PNC) allow ecologists to address the role of species’ evolutionary history in community assembly. It is important to test the role of historical legacies relative to environmental constraints at local scales, where communities are assembled. We studied phylogenetic structure and niche conservatism for palms (Arecaceae) in the 64-km2 Ducke Reserve in the central Amazon, near Manaus. The 72 study plots, each covering 0.1 ha, were distributed regularly in a terra firme forest along a hydro-edaphic gradient. We compared the observed palm PCS with assemblages generated by null models. We also analyzed whether morphological and ecological traits are labile or conserved along the phylogeny and quantified the spatial structure of morphological traits in each plot. We found an overall neutral PCS in combination with low PNC (labile traits), suggesting that evolutionary history poses little constraint on palm community assembly in this Amazonian landscape. Still, there was a tendency towards phylogenetic overdispersion in bottomlands, suggesting competitive exclusion among close relatives or, more likely, environmental filtering acting on convergent traits that affect co-occurrence in flood-prone areas. We conclude that (1) PCS of local communities is random as a whole and morphological traits are overall labile, but that (2) the hydro-edaphic gradient within terra firme forests leads to differences in species co-occurrence so that closely related species occur less often than expected in bottomlands due to diffuse competition among close relatives or environmental filtering on convergent traits.  相似文献   

20.
Exploring vegetation distribution spatial patterns facilitates understanding how biodiversity addresses the potential threat of future climate variability, especially for highly diverse and threatened tropical plant communities, but few empirical studies have been performed. Dacrydium pectinatum is a constructive and endangered species in the tropical mountain forests of Hainan Island, China. In this study, sixty‐eight 30 m × 30 m permanent plots of D. pectinatum were investigated, and species‐based and phylogenetic‐based methods were used to analyze the α‐ and β‐diversity pattern variation and its key drivers. Our study showed that species and phylogenetic α‐diversity patterns are different on a local scale. However, on a regional scale, the variations in the two α‐diversity patterns tend to converge, and they decrease with increasing elevation. The phylogenetic structure changes from overdispersion to convergence with increasing elevation. Soil (SOM, TP, AP), topography (EL, SL), and stand (CD) factors and α‐diversity showed close correlations. Species and phylogenetic β‐diversity have significant positive correlations with changing environmental distance and geographical distance; however, as a representative form of habitat heterogeneity, elevation distance has a greater impact on β‐diversity changes than geographical distance. In conclusion, the α‐ and β‐diversity patterns of the D. pectinatum community are mainly related to habitat filtering, especially in high‐elevation areas, and the colonization history of various regions also affects the formation of diversity patterns. Species‐based and phylogenetic‐based methods robustly demonstrated the key role of the habitat filtering hypothesis in community assembly. We believe that more plant diversity patterns need to be explored to understand the biodiversity formation mechanisms in tropical forests. We also recommend strengthening the construction and management of nature reserves to help address the biodiversity loss crisis in endangered tropical plant communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号