首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteoarthritis is a prevalent and disabling disease affecting an increasingly large swathe of the world population. While clinical osteoarthritis is a late-stage condition for which disease-modifying opportunities are limited, osteoarthritis typically develops over decades, offering a long window of time to potentially alter its course. The etiology of osteoarthritis is multifactorial, showing strong associations with highly modifiable risk factors of mechanical overload, obesity and joint injury. As such, characterization of pre-osteoarthritic disease states will be critical to support a paradigm shift from palliation of late disease towards prevention, through early diagnosis and early treatment of joint injury and degeneration to reduce osteoarthritis risk. Joint trauma accelerates development of osteoarthritis from a known point in time. Human joint injury cohorts therefore provide a unique opportunity for evaluation of pre-osteoarthritic conditions and potential interventions from the earliest stages of degeneration. This review focuses on recent advances in imaging and biochemical biomarkers suitable for characterization of the pre-osteoarthritic joint as well as implications for development of effective early treatment strategies.  相似文献   

2.
IntroductionPrevious studies in animal models of osteoarthritis suggest that alendronate (ALN) has antiresorptive and chondroprotective effects, and can reduce osteophyte formation. However, these studies used non-physiologic injury methods, and did not investigate early time points during which bone is rapidly remodeled prior to cartilage degeneration. The current study utilized a non-invasive model of knee injury in mice to investigate the effect of ALN treatment on subchondral bone changes, articular cartilage degeneration, and osteophyte formation following injury.MethodsNon-invasive knee injury via tibial compression overload or sham injury was performed on a total of 90 mice. Mice were treated with twice weekly subcutaneous injections of low-dose ALN (40 μg/kg/dose), high-dose ALN (1,000 μg/kg/dose), or vehicle, starting immediately after injury until sacrifice at 7, 14 or 56 days. Trabecular bone of the femoral epiphysis, subchondral cortical bone, and osteophyte volume were quantified using micro-computed tomography (μCT). Whole-joint histology was performed at all time points to analyze articular cartilage and joint degeneration. Blood was collected at sacrifice, and serum was analyzed for biomarkers of bone formation and resorption.ResultsμCT analysis revealed significant loss of trabecular bone from the femoral epiphysis 7 and 14 days post-injury, which was effectively prevented by high-dose ALN treatment. High-dose ALN treatment was also able to reduce subchondral bone thickening 56 days post-injury, and was able to partially preserve articular cartilage 14 days post-injury. However, ALN treatment was not able to reduce osteophyte formation at 56 days post-injury, nor was it able to prevent articular cartilage and joint degeneration at this time point. Analysis of serum biomarkers revealed an increase in bone resorption at 7 and 14 days post-injury, with no change in bone formation at any time points.ConclusionsHigh-dose ALN treatment was able to prevent early trabecular bone loss and cartilage degeneration following non-invasive knee injury, but was not able to mitigate long-term joint degeneration. These data contribute to understanding the effect of bisphosphonates on the development of osteoarthritis, and may support the use of anti-resorptive drugs to prevent joint degeneration following injury, although further investigation is warranted.  相似文献   

3.
Post-traumatic osteoarthritis: the role of accelerated chondrocyte senescence   总被引:14,自引:0,他引:14  
Joint injuries frequently lead to progressive joint degeneration that causes the clinical syndrome of post-traumatic osteoarthritis. The pathogenesis of osteoarthritis remains poorly understood, but patient age is a significant risk factor for progressive joint degeneration. We have found that articular cartilage chondrocytes show strong evidence of senescence with increasing age, including synthesis of smaller more irregular aggrecans; increased expression of lysosomal beta-galactosidase and telomere erosion; and decreased proteoglycan synthesis, response to the anabolic cytokine IGF-I, proliferative capacity, and mitochondrial function. These observations help explain the strong association between age and joint degeneration, but they do not explain how joint injury increases the risk of joint degeneration in younger individuals. We hypothesized that excessive loading of articular surfaces due to acute joint trauma or post-traumatic joint instability, incongruity or mal-alignment increases release of reactive oxygen species, and that the increased oxidative stress on chondrocytes accelerates chondrocyte senescence thereby decreasing the ability of the cells to maintain or restore the tissue. To test this hypothesis, we exposed human articular cartilage chondrocytes from young adults to mechanical and oxidative stress. We found that shear stress applied to cartilage explants in a triaxial pressure vessel increased release of reactive oxygen species and oxidative stress induced chondrocyte senescence (as measured by expression of lysosomal beta-galactosidase, nuclear and mitochondrial DNA damage and decreased mitochondrial function). These observations support the hypothesis that joint injury accelerates chondrocyte senescence and that this acceleration plays a role in the joint degeneration responsible for post-traumatic osteoarthritis.  相似文献   

4.
Osteoarthritis is often a progressive and disabling disease, which occurs in the setting of a variety of risk factors – such as advancing age, obesity, and trauma – that conspire to incite a cascade of pathophysiologic events within joint tissues. An important emerging theme in osteoarthritis is a broadening of focus from a disease of cartilage to one of the 'whole joint'. The synovium, bone, and cartilage are each involved in pathologic processes that lead to progressive joint degeneration. Additional themes that have emerged over the past decade are novel mechanisms of cartilage degradation and repair, the relationship between biomechanics and biochemical pathways, the importance of inflammation, and the role played by genetics. In this review we summarize current scientific understanding of osteoarthritis and examine the pathobiologic mechanisms that contribute to progressive disease.  相似文献   

5.
股骨头坏死是一种常见的疾病,在30岁至60岁年龄段的人群中较为常见,临床的症状包括疼痛以及髋部不适等,股骨头坏死在早期很难发现,由于没有得到准确的诊断,耽误了最佳的治疗时间和有效的治疗,随着病情的发展,最终将会造成股骨头变形以及塌陷,从而引起骨性关节炎,对髋关节功能的影响是很大的,甚至会丧失髋关节的基本功能。股骨头坏死的病状体征和早期症状存在一定的隐蔽性,因此,造成误诊的情况频繁发生。此外,有些疾病的症状表现为髋关节疼痛,最后反而容易被误诊为股骨头坏死。  相似文献   

6.
Osteoarthritis, the clinical syndrome of joint pain and dysfunction due to joint degeneration, is among the most frequent and symptomatic medical problems for middle aged and older people, and it is the most common cause of long term disability in most populations of people over 65. Currently there are no effective methods of preventing or curing osteoarthritis. Post-traumatic OA, the joint degeneration, pain and dysfunction that develop following joint injury, is the form of OA that is most directly related to elevated articular surface contact stress. However, mechanical stress that exceeds the tolerance of the articular surface can cause or accelerate the progression of joint degeneration in all individuals and in all synovial joints. In some patients, decreasing mechanical forces on degenerated joint surfaces stimulates formation of a new biologic articular surface. The advances in understanding of the effects of mechanical forces on chondrocytes and cartilage presented and discussed at the 4th Symposium on Mechanobiology: Cartilage and Chondrocyte will help in the efforts to develop new methods of preventing and treating osteoarthritis.  相似文献   

7.
Temporomandibular joint (TMJ) osteoarthritis is a common chronic degenerative disease of the TMJ. In order to explore its aetiology and pathological mechanism, many animal models and cell models have been constructed to simulate the pathological process of TMJ osteoarthritis. The main pathological features of TMJ osteoarthritis include chondrocyte death, extracellular matrix (ECM) degradation and subchondral bone remodelling. Chondrocyte apoptosis accelerates the destruction of cartilage. However, autophagy has a protective effect on condylar chondrocytes. Degradation of ECM not only changes the properties of cartilage but also affects the phenotype of chondrocytes. The loss of subchondral bone in the early stages of TMJ osteoarthritis plays an aetiological role in the onset of osteoarthritis. In recent years, increasing evidence has suggested that chondrocyte hypertrophy and endochondral angiogenesis promote TMJ osteoarthritis. Hypertrophic chondrocytes secrete many factors that promote cartilage degeneration. These chondrocytes can further differentiate into osteoblasts and osteocytes and accelerate cartilage ossification. Intrachondral angiogenesis and neoneurogenesis are considered to be important triggers of arthralgia in TMJ osteoarthritis. Many molecular signalling pathways in endochondral osteogenesis are responsible for TMJ osteoarthritis. These latest discoveries in TMJ osteoarthritis have further enhanced the understanding of this disease and contributed to the development of molecular therapies. This paper summarizes recent cognition on the pathogenesis of TMJ osteoarthritis, focusing on the role of chondrocyte hypertrophy degeneration and cartilage angiogenesis.  相似文献   

8.
骨性关节炎是影响人类健康及生活质量的最常见关节疾病之一,是一种以骨关节软骨退行性变和继发性周围骨质增生为特点的慢性关节疾病,又被称为退行性关节炎.多发于中老年人群,常累及全身骨关节中的脊柱、髋关节和膝关节等负重较大的关节,导致受累关节僵硬、变形,从而使关节功能受到严重影响,影响患者的生活质量。常见症状为受累关节疼痛,活动受限,休息后缓解及晨起关节僵硬感。由于人口老龄化加重,导致其发病率连年增加。但由于其病因及病机复杂多样,目前医学界还没有确切的结论,导致缺乏有效的治疗手段,本文就近几年来文献中提及的骨性关节炎病因及病机做一综述,有利于我们继续探索,早日认清这种疾病,治愈这种疾病,提高患者生活质量。  相似文献   

9.
Osteoarthritis is complex in genetics, pathogenesis, monitoring and treatment. Current treatment of osteoarthritis does not influence progression. Much could be gained by more effective 'low-tech-low-cost' treatment. However, many patients have rapidly progressive disease, multiple joint involvement, and severe disease. We need to clarify the genetics of osteoarthritis, identify those at risk for progression and severe disease, and identify molecular processes critical for joint survival and failure. Will saving the cartilage improve patient pain and function? Effective outcome measures are needed to accelerate testing of new treatments. Further improvement is needed in joint implant technology to decrease costs, wear and loosening.  相似文献   

10.
Animal models of osteoarthritis are extensively used for investigating disease pathways and for preclinical testing of novel therapies. Their predictive utility, however, has often been questioned, mainly because preclinical efficacy of novel therapeutics is poorly translated in clinical trials. In the current narrative review, we consider the preclinical models that were used to support undertaking clinical trials for disease-modifying osteoarthritis drugs, and compare outcomes between clinical and preclinical studies. We discuss this in light of the 1999 Food and Drug Administration draft guidelines for industry for use in the development of drugs, devices, and biological products intended for the treatment of osteoarthritis, which raised five considerations on the usefulness of osteoarthritis models. We systematically discuss what has been learnt regarding these five points since 1999, with emphasis on replicating distinct risk factors and subtypes of human osteoarthritis, and on comprehensive evaluation of the disease in animals, including pathology of all joint tissues, biomarker analysis, and assessment of pain and joint function. Finally, we discuss lessons learnt and propose some recommendations for how the evidence from preclinical research might be strengthened with a view to improving success in clinical translation.  相似文献   

11.
To identify patients at risk for progressive joint damage, there is a need for early diagnostic tools to detect molecular events leading to cartilage destruction. Isolation and characterization of distinct cartilage oligomeric matrix protein (COMP) fragments derived from cartilage and released into synovial fluid will allow discrimination between different pathological conditions and monitoring of disease progression. Early detection of disease and processes in the tissue as well as an understanding of the pathologic mechanisms will also open the way for novel treatment strategies. Disease-specific COMP fragments were isolated by affinity chromatography of synovial fluids from patients with rheumatoid arthritis, osteoarthritis, or acute trauma. Enriched COMP fragments were separated by SDS-PAGE followed by in-gel digestion and mass spectrometric identification and characterization. Using the enzymes trypsin, chymotrypsin, and Asp-N for the digestions, an extensive analysis of the enriched fragments could be accomplished. Twelve different neoepitopes were identified and characterized within the enriched COMP fragments. For one of the neoepitopes, Ser77, an inhibition ELISA was developed. This ELISA quantifies COMP fragments clearly distinguishable from total COMP. Furthermore, fragments containing the neoepitope Ser77 were released into the culture medium of cytokine (TNF-α and IL-6/soluble IL-6 receptor)-stimulated human cartilage explants. The identified neoepitopes provide a complement to the currently available commercial assays for cartilage markers. Through neoepitope assays, tools to pinpoint disease progression, evaluation methods for therapy, and means to elucidate disease mechanisms will be provided.  相似文献   

12.
Martin JA  Buckwalter JA 《Biorheology》2006,43(3-4):517-521
Post-traumatic osteoarthritis is the form of osteoarthritis (OA) that develops following joint injury. Although its end-stage is indistinguishable from idiopathic OA, many patients with post-traumatic OA are younger than those with idiopathic OA, and they have a well-defined precipitating insult. Clinical and experimental studies suggest that excessive acute impact energy or chronic mechanical overload cause the degeneration of the articular surface responsible for post-traumatic OA. Yet, the mechanisms by which excessive mechanical force causes OA remain unknown. For these reasons it has not been possible to develop effective methods of preventing or decreasing the risk of post-traumatic OA. We hypothesized that mechanical loading that exceeds the tolerance of the articular surface causes chondrocyte damage due to oxidative stress. Our in vitro tests of human articular cartilage samples showed that shear stress causes chondrocyte death and that anti-oxidants decrease the shear stress induced cell death. These observations suggest that specific patterns of loading are particularly damaging to articular surfaces and that improved treatments of joint injuries may include mechanical methods of minimizing shear stresses and biologic methods of minimizing oxidative damage.  相似文献   

13.
骨关节炎(osteoarthritis,OA)是一种退行性关节疾病,以软骨变性、骨硬化和慢性滑膜炎症为主要病理特征。关节置换术是目前治疗终末期OA的唯一有效方式,但其预后较差,且人工关节寿命有限。因此,OA的研究重点已经转移为疾病预防和早期治疗。低强度脉冲超声(low-intensity pulsed ultrasound,LIPUS)不仅可以促进骨折的愈合和再生,而且在软组织修复、再生和抗炎等方面也发挥重要作用,已有研究证明LIPUS在软组织再生中具有潜在作用。简要介绍了LIPUS的治疗机制及其与OA发病机制的联系,总结了目前LIPUS用于预防OA的发生、发展以及促进关节软骨组织再生的基础和临床研究进展,以期为LIPUS未来做为预防关节软骨退变的潜在治疗方法提供理论依据。  相似文献   

14.
Osteoarthritis afflicts millions of individuals across the world resulting in impaired quality of life and increased health costs. To understand this disease, physicians have been studying risk factors, such as genetic predisposition, aging, obesity, and joint malalignment; however have been unable to conclusively determine the direct etiology. Current treatment options are short-term or ineffective and fail to address pathophysiological and biochemical mechanisms involved with cartilage degeneration and the induction of pain in arthritic joints. OA pain involves a complex integration of sensory, affective, and cognitive processes that integrate a variety of abnormal cellular mechanisms at both peripheral and central (spinal and supraspinal) levels of the nervous system Through studies examined by investigators, the role of growth factors and cytokines has increasingly become more relevant in examining their effects on articular cartilage homeostasis and the development of osteoarthritis and osteoarthritis-associated pain. Catabolic factors involved in both cartilage degradation in vitro and nociceptive stimulation include IL-1, IL-6, TNF-α, PGE2, FGF-2 and PKCδ, and pharmacologic inhibitors to these mediators, as well as compounds such as RSV and LfcinB, may potentially be used as biological treatments in the future. This review explores several biochemical mediators involved in OA and pain, and provides a framework for the understanding of potential biologic therapies in the treatment of degenerative joint disease in the future.  相似文献   

15.
Osteoarthritis is a chronic degenerative disorder of the joint and represents one of the most common diseases worldwide. Its prevalence and severity are increasing owing to aging of the population, but treatment options remain largely limited to painkillers and anti-inflammatory drugs, which only provide symptomatic relief. In the late stages of the disease, surgical interventions are often necessary to partially restore joint function. Although the focus of osteoarthritis research has been originally on the articular cartilage, novel findings are now pointing to osteoarthritis as a disease of the whole joint, in which failure of different joint components can occur. In this Review, we summarize recent progress in the field, including data from novel ‘omics’ technologies and from a number of preclinical and clinical trials. We describe different in vitro and in vivo systems that can be used to study molecules, pathways and cells that are involved in osteoarthritis. We illustrate that a comprehensive and multisystem approach is necessary to understand the complexity and heterogeneity of the disease and to better guide the development of novel therapeutic strategies for osteoarthritis.KEY WORDS: Osteoarthritis, Cartilage, Bone, Animal models  相似文献   

16.
The role of inflammation in the development, progression, and clinical features of osteoarthritis has become an area of intense research in recent years. This led to the recognition of synovitis as an important source of inflammation in the joint and indicated that synovitis is intimately associated with pain and osteoarthritis progression. In this review, we discuss another emerging source of inflammation that could play a role in disease development/progression: the infrapatellar fat pad (IFP). The aim of this review is to offer a comprehensive view of the pathology of IFP as obtained from magnetic resonance studies, along with its characterization at both the cellular and the molecular level. Furthermore, we discuss the possible function of this organ in the pathological processes in the knee by summarizing the knowledge regarding the interactions between IFP and other joint tissues and discussing the pro- versus anti-inflammatory functions this tissue could have. We hope that this review will offer an overview of all published data regarding the IFP and will indicate novel directions for future research.  相似文献   

17.
Anterior cruciate ligament reconstruction (ACLR) restores joint stability following ACL injury but does not attenuate the heightened risk of developing knee osteoarthritis. Additionally, patellar tendon (PT) grafts incur a greater risk of osteoarthritis compared to hamstring grafts (HT). Aberrant gait biomechanics, including greater loading rates (i.e. impulsive loading), are linked to the development of knee osteoarthritis. However, the role of graft selection on walking gait biomechanics linked to osteoarthritis is poorly understood, thus the purpose of this study was to compare walking gait biomechanics between individuals with HT and PT grafts. Ninety-eight (74 PT; 24 HT) subjects with a history of ACLR performed walking gait at a self-selected speed from which the peak vertical ground reaction force (vGRF) during the first 50% of the stance phase and its instantaneous loading rate, peak internal knee extension and valgus moments, and peak knee flexion and varus angles were obtained. When controlling for time since ACLR and quadriceps strength, there were no differences in any kinetic or kinematic variables between graft types. While not significant, 44% of the PT cohort were identified as impulsive loaders (displaying a heelstrike transient in the majority of walking trials) compared to only 25% of the HT cohort (odds ratio = 2.3). This more frequent observation of impulsive loading may contribute to the greater risk of osteoarthritis with PT grafts. Future research is necessary to determine if impulsive loading and small magnitude differences between graft types contribute to osteoarthritis risk when extrapolated over thousands of steps per day.  相似文献   

18.
While morphologic and biochemical aspects of degenerative joint disease (osteoarthritis [OA]) have been elucidated by numerous studies, the molecular mechanisms underlying the progressive loss of articular cartilage during OA development remain largely unknown. The main focus of the present study was to gain more insight into molecular changes during the very early stages of mechanically induced cartilage degeneration and to relate molecular alterations to histological changes at distinct localizations of the joint. Studies on human articular cartilage are hampered by the difficulty of obtaining normal tissue and early-stage OA tissue, and they allow no progressive follow-up. An experimental OA model in dogs with a slow natural history of OA (Pond–Nuki model) was therefore chosen. Anterior cruciate ligament transection (ACLT) was performed on 24 skeletally mature dogs to induce joint instability resulting in OA. Samples were taken from different joint areas after 6, 12, 24 and 48 weeks, and gene expression levels of common cartilage molecules were quantified in relation to the histological grading (modified Mankin score) of adjacent tissue. Histological changes reflected early progressive degenerative OA. Soon after ACLT, chondrocytes responded to the altered mechanical conditions by significant and stable elevation of collagen type II, collagen type I and YKL40 expression, which persisted throughout the study. In contrast to the mild to moderate histological alterations, these molecular changes were not progressive and were independent of the joint localization (tibia, femur, lateral, medial) and the extent of matrix degeneration. MMP13 remained unaltered until 24 weeks, and aggrecan and tenascinC remained unaltered until 48 weeks after ACLT. These findings indicate that elevated collagen type II, collagen type I and YKL40 mRNA expression levels are early and sensitive measures of ACLT-induced joint instability independent of a certain grade of morphological cartilage degeneration. A second phase of molecular changes in OA may begin around 48 weeks after ACLT with altered expression of further genes, such as MMP13, aggrecan and tenascin. Molecular changes observed in the present study suggest that dog cartilage responds to degenerative conditions by regulating the same genes in a similar direction as that observed for chondrocytes in late human OA.  相似文献   

19.
While morphologic and biochemical aspects of degenerative joint disease (osteoarthritis [OA]) have been elucidated by numerous studies, the molecular mechanisms underlying the progressive loss of articular cartilage during OA development remain largely unknown. The main focus of the present study was to gain more insight into molecular changes during the very early stages of mechanically induced cartilage degeneration and to relate molecular alterations to histological changes at distinct localizations of the joint. Studies on human articular cartilage are hampered by the difficulty of obtaining normal tissue and early-stage OA tissue, and they allow no progressive follow-up. An experimental OA model in dogs with a slow natural history of OA (Pond-Nuki model) was therefore chosen. Anterior cruciate ligament transection (ACLT) was performed on 24 skeletally mature dogs to induce joint instability resulting in OA. Samples were taken from different joint areas after 6, 12, 24 and 48 weeks, and gene expression levels of common cartilage molecules were quantified in relation to the histological grading (modified Mankin score) of adjacent tissue. Histological changes reflected early progressive degenerative OA. Soon after ACLT, chondrocytes responded to the altered mechanical conditions by significant and stable elevation of collagen type II, collagen type I and YKL40 expression, which persisted throughout the study. In contrast to the mild to moderate histological alterations, these molecular changes were not progressive and were independent of the joint localization (tibia, femur, lateral, medial) and the extent of matrix degeneration. MMP13 remained unaltered until 24 weeks, and aggrecan and tenascinC remained unaltered until 48 weeks after ACLT. These findings indicate that elevated collagen type II, collagen type I and YKL40 mRNA expression levels are early and sensitive measures of ACLT-induced joint instability independent of a certain grade of morphological cartilage degeneration. A second phase of molecular changes in OA may begin around 48 weeks after ACLT with altered expression of further genes, such as MMP13, aggrecan and tenascin. Molecular changes observed in the present study suggest that dog cartilage responds to degenerative conditions by regulating the same genes in a similar direction as that observed for chondrocytes in late human OA.  相似文献   

20.
骨关节炎(osteoarthritis,OA)是一种以进行性关节软骨的退化、骨赘形成及软骨下骨硬化为病理特征的疾病。近年来研究发现,关节滑膜的炎症也是骨关节炎发病的重要病理机制。骨关节炎患者体内血清及滑液中包含大量滑膜细胞和软骨细胞的代谢产物,如胶原蛋白降解产物、C反应蛋白降解产物、透明质酸、细胞因子和糖蛋白等,这些滑膜或软骨细胞的代谢产物与骨关节炎密切相关,它们在骨关节炎滑膜病变的发生和发展过程中发挥重要作用,能够一定程度反映骨关节炎患者体内关节滑膜的炎症程度及骨关节炎的进展程度。早期骨关节炎的滑膜病变在医学影像学检查中难以被识别和诊断,因此,寻找与骨关节炎滑膜病变相关的特异性生物学标志物有助于骨关节炎滑膜炎的早期诊断及进展评估。综述了以上各种滑膜或软骨细胞代谢产物与骨关节炎骨膜病变相关关系的研究进展,以期为未来开发相应的生化检测手段和药物提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号