首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumors can promote their own progressive growth by inducing T cell apoptosis. Though previous studies suggested that tumor-mediated T cell killing is receptor dependent, we recently showed that tumor gangliosides also participate, a notion consistent with reports indicating that, in some cell types, gangliosides can activate the intrinsic apoptotic pathway by stimulating reactive oxygen species production, cytochrome c release, and caspase-9 activation. In this study, we used normal peripheral blood T cells, as well as caspase-8-, caspase-9-, and Fas-associated death domain protein-deficient Jurkat cells, to assess whether the death ligands and gangliosides overexpressed by the renal cell carcinoma (RCC) cell line SK-RC-45 can independently stimulate T cell apoptosis as a mechanism of immune escape. Anti-FasL Abs and the glycosylceramide synthase inhibitor 1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (PPPP) each partially inhibited the ability of SK-RC-45 to kill cocultured activated T cells; together, as purified molecules, RCC gangliosides and rFasL induced a more extensive mitochondrial permeability transition and greater levels of apoptosis than either agent alone, equivalent to that induced by the FasL- and ganglioside-expressing RCC line itself. rFasL-mediated apoptosis was completely inhibited in caspase-8- and Fas-associated death domain protein-negative Jurkat cells, though apoptosis induced by purified gangliosides remained intact, findings that correlate with the observed partial inhibition of SK-RC-45-induced apoptosis in the Jurkat lines with defective death receptor signaling. Western blot analysis performed on lysates made from wild-type and mutant Jurkat cells cocultured with SK-RC-45 revealed caspase activation patterns and other biochemical correlates which additionally supported the concept that tumor-associated gangliosides and FasL independently activate the caspase cascade in T cells through the intrinsic and extrinsic pathways, respectively.  相似文献   

2.
3.
The parasite Entamoeba histolytica is named for its ability to lyse host tissues. To determine the factors responsible, we have initiated an examination of the contribution of parasite virulence factors and host caspases to cellular destruction by the parasite. Amoebic colitis in C3H/HeJ mice was associated with extensive host apoptosis at sites of E. histolytica invasion. In vitro studies of E. histolytica –Jurkat T-cell interactions demonstrated that apoptosis required contact via the amoebic Gal/GalNAc lectin, but was unaffected by 75% inhibition of the amoebic cysteine proteinases. Parasite-induced DNA fragmentation was unaffected in caspase 8-deficient Jurkat cells treated with the caspase 9 inhibitor Ac-LEHD-fmk. In contrast, caspase 3-like activity was observed within minutes of E. histolytica contact and the caspase 3 inhibitor Ac-DEVD-CHO blocked Jurkat T cell death, as measured by both DNA fragmentation and 51Cr release. These data demonstrate rapid parasite-induced activation of caspase 3-like caspases, independent of the upstream caspases 8 and 9, which is required for host cell death.  相似文献   

4.
T cells from cancer patients are often functionally impaired, which imposes a barrier to effective immunotherapy. Most pronounced are the alterations characterizing tumor-infiltrating T cells, which in renal cell carcinomas includes defective NF-kappaB activation and a heightened sensitivity to apoptosis. Coculture experiments revealed that renal tumor cell lines induced a time-dependent decrease in RelA(p65) and p50 protein levels within both Jurkat T cells and peripheral blood T lymphocytes that coincided with the onset of apoptosis. The degradation of RelA/p50 is critical for SK-RC-45-induced apoptosis because overexpression of RelA in Jurkat cells protects against cell death. The loss of RelA/p50 coincided with a decrease in expression of the NF-kappaB regulated antiapoptotic protein Bcl-xL at both the protein and mRNA level. The disappearance of RelA/p50 protein was mediated by a caspase-dependent pathway because pretreatment of T lymphocytes with a pan caspase inhibitor before coculture with SK-RC-45 blocked RelA and p50 degradation. SK-RC-45 gangliosides appear to mediate this degradative pathway, as blocking ganglioside synthesis in SK-RC-45 cells with the glucosylceramide synthase inhibitor, PPPP, protected T cells from tumor cell-induced RelA degradation and apoptosis. The ability of the Bcl-2 transgene to protect Jurkat cells from RelA degradation, caspase activation, and apoptosis implicates the mitochondria in these SK-RC-45 ganglioside-mediated effects.  相似文献   

5.
Lee SH  Park SW  Pyo CW  Yoo NK  Kim J  Choi SY 《Biochimie》2009,91(1):102-108
The cell proliferation of p53-deficient Jurkat T cells is controlled after prolonged exposure to human lactoferrin (Lf). However, the molecular mechanism by which Lf influences these cellular responses remains unclear. In this study, we demonstrate that Lf-induced apoptosis in Jurkat T cells occurs in a dose- and time-dependent manner via the regulation of c-Jun N-terminal kinase (JNK) activity. Jurkat cells exposed to Lf for 1 day, especially at concentrations in excess of 500 microg/ml, showed typical apoptosis, as indicated by decreased cell viability and increased Annexin V binding. Our results also showed that Lf induced the activation of caspase 9 and caspase 3 activation, as demonstrated by our detection of cleaved caspases and PARP. Lf-induced apoptosis did not influence Bcl-2 expression via an ERK1/2 phosphorylation pathway, but was rather associated with the level of Bcl-2 phosphorylation. The treatment of cells with the specific JNK inhibitor SP600125, but not the p38 MAPK inhibitor SB203580, revealed that the JNK-Bcl-2 signaling cascade is required for Lf-induced apoptosis. When JNK activation was abolished by SP600125, no Bcl-2 phosphorylation was detected, and the Lf-treated Jurkat cells did not undergo cell death. These findings indicate that Lf functions as a biological mediator of apoptosis in the human leukemia Jurkat T-cell line, via the JNK-associated Bcl-2 signaling pathway.  相似文献   

6.
It was recently demonstrated that during apoptosis, active caspase 9 and caspase 3 rapidly accumulate in the mitochondrion-enriched membrane fraction (D. Chandra and D. G. Tang, J. Biol. Chem.278:17408-17420, 2003). We now show that active caspase 8 also becomes associated with the membranes in apoptosis caused by multiple stimuli. In MDA-MB231 breast cancer cells treated with etoposide (VP16), active caspase 8 is detected only in the membrane fraction, which contains both mitochondria and endoplasmic reticulum (ER), as revealed by fractionation studies. Immunofluorescence microscopy, however, shows that procaspase 8 and active caspase 8 predominantly colocalize with the mitochondria. Biochemical analysis demonstrates that both procaspase 8 and active caspase 8 are localized mainly on the outer mitochondrial membrane (OMM) as integral proteins. Functional analyses with dominant-negative mutants, small interfering RNAs, peptide inhibitors, and Fas-associated death domain (FADD)- and caspase 8-deficient Jurkat T cells establish that the mitochondrion-localized active caspase 8 results mainly from the FADD-dependent and tumor necrosis factor receptor-associated death domain-dependent mechanisms and that caspase 8 activation plays a causal role in VP16-induced caspase 3 activation and cell death. Finally, we present evidence that the OMM-localized active caspase 8 can activate cytosolic caspase 3 and ER-localized BAP31. Cleavage of BAP31 leads to the generation of ER- localized, proapoptotic BAP20, which may mediate mitochondrion-ER cross talk through a Ca(2+)-dependent mechanism.  相似文献   

7.
13-Methyltetradecanoic acid (13-MTD), a saturated branched-chain fatty acid purified from soy fermentation products, induces apoptosis in human cancer cells. We investigated the inhibitory effects and mechanism of action of 13-MTD on T-cell non-Hodgkin’s lymphoma (T-NHL) cell lines both in vitro and in vivo. Growth inhibition in response to 13-MTD was evaluated by the cell counting kit-8 (CCK-8) assay in three T-NHL cell lines (Jurkat, Hut78, EL4 cells). Flow cytometry analyses were used to monitor the cell cycle and apoptosis. Proteins involved in 13-MTD-induced apoptosis were examined in Jurkat cells by western blotting. We found that 13-MTD inhibited proliferation and induced the apoptosis of T-NHL cell lines. 13-MTD treatment also induced a concentration-dependent arrest of Jurkat cells in the G1-phase. During 13-MTD-induced apoptosis in Jurkat cells, the cleavage of caspase-3 and poly ADP-ribose polymerase (PARP, a caspase enzymolysis product) were detected after incubation for 2 h, and increased after extending the incubation time. However, there was no change in the expression of Bcl-2 or c-myc proteins. The appearance of apoptotic Jurkat cells was accompanied by the inhibition of AKT and nuclear factor-kappa B (NF-κB) phosphorylation. In addition, 13-MTD could also effectively inhibit the growth of T-NHL tumors in vivo in a xenograft model. The tumor inhibition rate in the experimental group was 40%. These data indicate that 13-MTD inhibits proliferation and induces apoptosis through the down-regulation of AKT phosphorylation followed by caspase activation, which may provide a new approach for treating T-cell lymphomas.  相似文献   

8.
Molecular targeted therapy has shown promise as a treatment for advanced hepatocellular carcinoma (HCC). Celecoxib (Celebrex®) exhibits antitumor effects in human HCC cells, and its mechanism of action is mediated either by its ability to inhibit cyclooxygenase 2 (COX-2) or by a number of various other COX-2 independent effects. Proteasome inhibitors (PIs) can exert cell growth inhibitory and apoptotic effects in different tumor cell types, including HCC cells. The present study examined the interaction between celecoxib and the PI MG132 in two human liver tumor cell lines HepG2 and HA22T/VGH. Our data showed that each inhibitor reduced proliferation and induced apoptosis in a dose-dependent manner in both cell lines. Moreover, the combination of celecoxib with MG132 synergistically inhibited cell viability and increased apoptosis, as documented by caspase 3 and 7 activation, PARP cleavage, and down-regulation of Bcl-2. Celecoxib and MG132, both alone and synergistically in combination, induced expression of the endoplasmic reticulum (ER) stress genes ATF4, CHOP, TRB3 and promoted the splicing of XBP1 mRNA. Knockdown of TRB3 mRNA expression by small interference RNA significantly decreased combination-induced cell death in HA22T/VGH cells, whereas it increased combination-induced cell death in HepG2 cells, suggesting that activation of the ER stress response might have either a detrimental or a protective role in liver tumor cell survival. In conclusion, our data indicate that combination treatment with celecoxib and MG132 resulted in synergistic antiproliferative and proapoptotic effects against liver cancer cells, providing a rational basis for the clinical use of this combination in the treatment of liver cancer.  相似文献   

9.
Oncogenic Ras induces cells to undergo apoptosis after inhibition of protein kinase C (PKC) activity. The integration of differential signaling pathways is required for full execution of apoptosis. In this study, we used Jurkat as well as Fas/FADD-defective cell lines expressing v-ras to determine the upstream elements required for activation of the caspase cascade in PKC/Ras-mediated apoptosis. During this Ras-induced apoptotic process, caspase-8 was activated, possibly through its binding to Fas-associated death domain (FADD), in Jurkat/ras and Jurkat/Fas(m)/ras cells but not in Jurkat/FADD(m)/ras cells. c-Jun NH(2)-terminal kinase (JNK) was activated in all three cell lines expressing ras in response to apoptotic stimulation. Suppression of JNK by dn-JNK1 blocked the interaction of FADD and caspase-8 and partially protected Jurkat/ras and Jurkat/Fas(m)/ras cells from apoptosis. However, dn-JNK1 had no effect on PKC/Ras-induced apoptosis in Jurkat/FADD(m)/ras cells. The results indicate that FADD/caspase-8 signaling is involved in PKC/Ras-mediated apoptosis, and JNK may be an upstream effector of caspase activation.  相似文献   

10.
Pramanicin is a novel anti-fungal drug with a wide range of potential application against human diseases. It has been previously shown that pramanicin induces cell death and increases calcium levels in vascular endothelial cells. In the present study, we showed that pramanicin induced apoptosis in Jurkat T leukemia cells in a dose- and time-dependent manner. Our data reveal that pramanicin induced the release of cytochrome c and caspase-9 and caspase-3 activation, as evidenced by detection of active caspase fragments and fluorometric caspase assays. Pramanicin also activated c-jun N-terminal kinase (JNK), p38 and extracellular signal-regulated kinases (ERK 1/2) with different time and dose kinetics. Treatment of cells with specific MAP kinase and caspase inhibitors further confirmed the mechanistic involvement of these signalling cascades in pramanicin-induced apoptosis. JNK and p38 pathways acted as pro-apoptotic signalling pathways in pramanicin-induced apoptosis, in which they regulated release of cytochrome c and caspase activation. In contrast the ERK 1/2 pathway exerted a protective effect through inhibition of cytochrome c leakage from mitochondria and caspase activation, which were only observed when lower concentrations of pramanicin were used as apoptosis-inducing agent and which were masked by the intense apoptosis induction by higher concentrations of pramanicin. These results suggest pramanicin as a potential apoptosis-inducing small molecule, which acts through a well-defined JNK- and p38-dependent apoptosis signalling pathway in Jurkat T leukemia cells.  相似文献   

11.
Protein kinase CK2 is a ubiquitously expressed serine/threonine kinase consisting of two catalytic α/α′ and two regulatory β subunits. Expression of CK2 is highly elevated in tumor cells where it protects cells from apoptosis. Accordingly inhibition of CK2 is known to induce programmed cell death, making it a promising target for cancer therapy. In the present study we investigated apoptosis induction by the CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) in prostate tumor cells. In contrast to PC-3 cells LNCaP cells respond to CK2 inhibition with apoptosis. Most interestingly we found the mitochondrial pathway induced in LNCaP as well as in PC-3 cells as monitored by down-regulation of bcl-2 and subsequent cytochrome c release. In both cell lines activation of caspase 9 was not detected. Instead, an activation of the endoplasmic reticulum (ER) stress response in LNCaP cells after treatment with the CK2 inhibitor TBB was found. We show that this ER stress response led to an up-regulation of the death receptor DR5 and subsequent apoptosis in LNCaP cells.  相似文献   

12.
Herein, we report differential effects of various proteasome inhibitors including clasto-lactacystin-beta-lactone, (-)-epigallocatechin gallate (EGCG) and N-Acetyl-Leu-Leu-Norleu-al (LLnL) on proteasomal activities of YT and Jurkat cells, human natural killer (NK) and T cell lines, respectively. The inhibitory rates of these inhibitors on the purified 20S proteasomal and 26S proteasomal chymotrypsin-like activity in whole cell extracts and intact cells did not show significant differences between the two cell lines. The viability of both cell lines was reduced in the presence of LLnL. Subsequent studies revealed a reduction of the mitochondrial membrane potential and caspase-3 activation in these two cell lines upon treatment with proteasome inhibitors; however, caspase-3 activation occurred much earlier in Jurkat cells. Cell cycle analysis indicated a sub-G(1) apoptotic cell population in Jurkat cells and G(2)/M arrest in YT cells after they were treated by proteasome inhibitors. Moreover, pretreatment of YT cells by a caspase inhibitor followed by a proteasome inhibitor did not increase the percentage of G(2)/M phase cells. In addition, accumulation of p27 and IkappaB-alpha was detected only in Jurkat cells, but not YT cells. In summary, proteasome inhibitors may act differentially in cell cycle arrest and apoptosis of tumors of NK and T cell origin, and may have similar effects on normal NK and T cells.  相似文献   

13.
Accumulation of lipids in nonadipose tissues can lead to cell dysfunction and cell death, a phenomenon known as lipotoxicity. However, the signaling pathways and mechanisms linking lipid accumulation to cell death are poorly understood. The present study examined the hypothesis that saturated fatty acids disrupt endoplasmic reticulum (ER) homeostasis and promote apoptosis in liver cells via accumulation of ceramide. H4IIE liver cells were exposed to varying concentrations of saturated (palmitate or stearate) or unsaturated (oleate or linoleate) fatty acids. ER homeostasis was monitored using markers of the ER stress response pathway, including phosphorylation of IRE1alpha and eIF2alpha, splicing of XBP1 mRNA, and expression of molecular chaperone (e.g., GRP78) and proapoptotic (CCAAT/enhancer-binding protein homologous protein) genes. Apoptosis was monitored using caspase activity and DNA laddering. Palmitate and stearate induced ER stress, caspase activity, and DNA laddering. Inhibition of caspase activation prevented DNA laddering. Unsaturated fatty acids did not induce ER stress or apoptosis. Saturated fatty acids increased ceramide concentration; however, inhibition of de novo ceramide synthesis did not prevent saturated fatty acid-induced ER stress and apoptosis. Unsaturated fatty acids rescued palmitate-induced ER stress and apoptosis. These data demonstrate that saturated fatty acids disrupt ER homeostasis and induce apoptosis in liver cells via mechanisms that do not involve ceramide accumulation.  相似文献   

14.
A critical aspect of AIDS pathogenesis that remains unclear is the mechanism by which human immunodeficiency virus type 1 (HIV-1) induces death in CD4(+) T lymphocytes. A better understanding of the death process occurring in infected cells may provide valuable insight into the viral component responsible for cytopathicity. This would aid the design of preventive treatments against the rapid decline of CD4(+) T cells that results in AIDS. Previously, apoptotic cell death has been reported in HIV-1 infections in cultured T cells, and it has been suggested that this could affect both infected and uninfected cells. To evaluate the mechanism of this effect, we have studied HIV-1-induced cell death extensively by infecting several T-cell lines and assessing the level of apoptosis by using various biochemical and flow cytometric assays. Contrary to the prevailing view that apoptosis plays a prominent role in HIV-1-mediated T-cell death, we found that Jurkat and H9 cells dying from HIV-1 infection fail to exhibit the collective hallmarks of apoptosis. Among the parameters investigated, Annexin V display, caspase activity and cleavage of caspase substrates, TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) signal, and APO2.7 display were detected at low to negligible levels. Neither peptide caspase inhibitors nor the antiapoptotic proteins Bcl-x(L) or v-FLIP could prevent cell death in HIV-1-infected cultures. Furthermore, Jurkat cell lines deficient in RIP, caspase-8, or FADD were as susceptible as wild-type Jurkat cells to HIV-1 cytopathicity. These results suggest that the primary mode of cytopathicity by laboratory-adapted molecular clones of HIV-1 in cultured cell lines is not via apoptosis. Rather, cell death occurs most likely via a necrotic or lytic form of death independent of caspase activation in directly infected cells.  相似文献   

15.
Cytochrome c is thought to play an important role in the initiation of apoptosis following its release from mitochondria. It is controversial whether such release is also involved in caspase activation and apoptotic cell death after ligation of the cell surface molecule Fas. We addressed this issue by investigating cells from the human cell lines Jurkat and SKW6 which had been treated with the inhibitor of the mitochondrial F0/F1-ATPase, oligomycin. Oligomycin-treatment led, over a wide range of concentrations, to ATP-depletion and, at similar concentrations, abrogated the appearance of caspase-3-like activity caused by stauroporine. Electroporation of cytochrome c protein into intact cells induced caspase activation in both cell lines and significant nuclear apoptosis in Jurkat cells. In ATP-depleted cells, electroporation of cytochrome c induced neither caspase activation nor nuclear fragmentation. Fas-induced caspase activation and nuclear apoptosis, however, were unaffected by the depletion of ATP. Thus, cytochrome c is unlikely to be an important factor in Fas-induced cell death.  相似文献   

16.
Minerval is an oleic acid synthetic analogue that impairs lung cancer (A549) cell proliferation upon modulation of the plasma membrane lipid structure and subsequent regulation of protein kinase C localization and activity. However, this mechanism does not fully explain the regression of tumours induced by this drug in animal models of cancer. Here we show that Minerval also induced apoptosis in Jurkat T‐lymphoblastic leukaemia and other cancer cells. Minerval inhibited proliferation of Jurkat cells, concomitant with a decrease of cyclin D3 and cdk2 (cyclin‐dependent kinase2). In addition, the changes that induced on Jurkat cell membrane organization caused clustering (capping) of the death receptor Fas (CD95), caspase‐8 activation and initiation of the extrinsic apoptosis pathway, which finally resulted in programmed cell death. The present results suggest that the intrinsic pathway (associated with caspase‐9 function) was activated downstream by caspase‐8. In a xenograft model of human leukaemia, Minerval also inhibited tumour progression and induced tumour cell death. Studies carried out in a wide variety of cancer cell types demonstrated that apoptosis was the main molecular mechanism triggered by Minerval. This is the first report on the pro‐apoptotic activity of Minerval, and in part explains the effectiveness of this non‐toxic anticancer drug and its wide spectrum against different types of cancer.  相似文献   

17.
We have previously characterized the effects of 2,6-diisopropylphenyl–docosahexaenoamide (DIP–DHA) conjugates and their analogs on the proliferation and progression of breast cancer cell lines. For this study, we investigated the effects of the DIP–DHA conjugate on 2 representative T cell acute lymphoblastic leukemia (T-ALL) cell lines: CEM and Jurkat. Treatment of both cell lines with DIP–DHA resulted in significantly greater inhibition of proliferation and induction of apoptosis than that of parent compounds, 2,6-diisopropylphenol (DIP) or docosahexaenoate (DHA). Treatment of the cells with DIP–DHA resulted in increased activation of caspase-3, and caspase-7. Furthermore, induction of apoptosis in both cell lines was reversed in the presence of a caspase family inhibitor. Treatment with DIP–DHA reduced mitochondrial membrane potential. These observations suggest that the effects are driven by intrinsic apoptotic pathways. DIP–DHA treatment also downregulated surface CXCR4 expression, an important chemokine receptor involved in cancer metastasis that is highly expressed in both CEM and Jurkat cells. In conclusion, our data suggest that the DIP–DHA conjugate exhibits significantly more potent effects on CEM and Jurkat cells than that of DIP or DHA alone. These conjugates have potential use for treatment of patients with T cell acute lymphoblastic leukemia.  相似文献   

18.
Prion disorders are progressive neurodegenerative diseases characterized by extensive neuronal loss and by the accumulation of the pathogenic form of prion protein, designated PrPSc. Recently, we have shown that PrP106–126 induces endoplasmic reticulum (ER) stress, leading to mitochondrial cytochrome c release, caspase 3 activation and apoptotic death. In order to further clarify the role of mitochondria in ER stress-mediated apoptotic pathway triggered by the PrP peptide, we investigated the effects of PrP106–126 on the Ntera2 human teratocarcinoma cell line that had been depleted of their mitochondrial DNA, termed NT2 ρ0 cells, characterized by the absence of functional mitochondria, as well as on the parental NT2 ρ+ cells. In this study, we show that PrP106–126 induces ER stress in both cell lines, given that ER Ca2+ content is low, glucose-regulated protein 78 levels are increased and caspase 4 is activated. Furthermore, in parental NT2 ρ+ cells, PrP106–126-activated caspase 9 and 3, induced poly (ADP-ribose) polymerase cleavage and increased the number of apoptotic cells. Dantrolene was shown to protect NT2 ρ+ from PrP106–126-induced cell death, demonstrating the involvement of Ca2+ release through ER ryanodine receptors. However, in PrP106–126-treated NT2 ρ0 cells, apoptosis was not able to proceed. These results demonstrate that functional mitochondria are required for cell death as a result of ER stress triggered by the PrP peptide, and further elucidate the molecular mechanisms involved in the neuronal loss that occurs in prion disorders.  相似文献   

19.
In response to endoplasmic reticulum (ER) stress, cells launch homeostatic and protective responses, but can also activate cell death cascades. A 54 kDa integral ER membrane protein called Herp was identified as a stress-responsive protein in non-neuronal cells. We report that Herp is present in neurons in the developing and adult brain, and that it is regulated in neurons by ER stress; sublethal levels of ER stress increase Herp levels, whereas higher doses decrease Herp levels and induce apoptosis. The decrease in Herp protein levels following a lethal ER stress occurs prior to mitochondrial dysfunction and cell death, and is mediated by caspases which generate a 30-kDa proteolytic Herp fragment. Mutagenesis of the caspase cleavage site in Herp enhances its neuroprotective function during ER stress. While suppression of Herp induction by RNA interference sensitizes neural cells to apoptosis induced by ER stress, overexpression of Herp promotes survival by a mechanism involving stabilization of ER Ca(2+) levels, preservation of mitochondrial function and suppression of caspase 3 activation. ER stress-induced activation of JNK/c-Jun and caspase 12 are reduced by Herp, whereas induction of major ER chaperones is unaffected. Herp prevents ER Ca(2+) overload under conditions of ER stress and agonist-induced ER Ca(2+) release is attenuated by Herp suggesting a role for Herp in regulating neuronal Ca(2+) signaling. By stabilizing ER Ca(2+) homeostasis and mitochondrial functions, Herp serves a neuroprotective function under conditions of ER stress.  相似文献   

20.
Staphylococcus aureus infections can result in septic and toxic shock with depletion of immune cells and massive cytokine production. Recently, we showed that, in S. aureus-infected Jurkat T cells, alpha-toxin is the major mediator of caspase activation and apoptosis. Here, we investigated the mechanisms of cell death induced by alpha-toxin in peripheral blood mononuclear cells (MNC). We show that alpha-toxin is required and sufficient for S. aureus-induced cell death not only in transformed Jurkat T cells but also in MNC. Low alpha-toxin doses (3-30 ng ml-1) dose- and time-dependently induced apoptosis in both cell types, which was completely blocked by the caspase inhibitor zVAD-fmk. In Jurkat T cells and MNC, alpha-toxin induced the breakdown of the mitochondrial membrane potential and the intrinsic activation of caspase-3, -8 and -9. Interestingly, unlike in Jurkat T cells, apoptosis in MNC was additionally mediated by a caspase-9-independent component. MNC, but not Jurkat T cells, produced tumour necrosis factor (TNF)-alpha upon alpha-toxin stimulation. Blocking endogenous TNF-alpha with a TNF-alpha receptor antagonist partially decreased apoptosis in MNC. Our data therefore suggest that, whereas in Jurkat T cells apoptosis is solely mediated by the mitochondrial pathway, in MNC endogenous TNF-alpha and a death receptor-dependent pathway are also involved, which may contribute to depletion of immune cells during S. aureus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号