首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Non-destructive observations of root growth and distribution can be obtained from counting root intercepts with observation tubers inserted in the root zone. This paper describes the technique of inserting clear acrylic tubes horizontally into large undisturbed and repacked soil cores. Counts of roots intersecting scribed lines on the sides of the tubes were made with a fibrescope. Comparison was made between observation root tubes of different diameter (25 and 38.5 mm).The r2 values for the relationships between root intercept counts and destructively determined values of root length density (RLD) ranged from 0.78 to 0.96. The larger diameter tubes had higher r2 values. Theoretical calibration of the technique does not appear to be possible since analysis indicated that fewer roots intersected the scribed lines on the observation tube than would have been expected from a non-disturbed, randomly distributed root system. It is not known if this discrepancy is due to non-randomness or to an artifact associated with the insertion of the observation tube. Roots were not more prolific at the edge of the soil cores. Comparison of values of root length per unit soil surface area, rates of downward root growth and water uptake rates were within the ranges previously reported for wheat roots of field crops grown on clay soils. Observed root growth and distribution was found to be sensitive to four soil and water treatments imposed. It is concluded that the technique will allow quantitative analysis of root growth and distribution in undisturbed soil cores.  相似文献   

2.
Summary Models are presented in this paper for prediction of the extent to which soil aggregates in a loose seed bed can be displaced by extending roots and shoots. For roots, the maximum applied force is considered to be limited by either elastic bending, when the angle of contact with an aggregate surface is oblique, or buckling, when the root meets an aggregate perpendicularly. For emerging shoots, only the maximum forces are known. These forces are related to the known force displacement behaviour of artificially prepared beds of graded soil aggregates.It is concluded that displacement of soil aggregates which lie between 20 and 100 mm from the surface of the aggregate bed is only likely to be important for roots with diameters of 0.5 mm or less when the diameter of the aggregates in the bed is less than 1 mm. However, for plant species which have relatively large root diameters, such as pea, significant displacement of aggregates of up to 4 mm diameter may be possible. In contrast, emerging shoots are able to displace very much larger aggregates from their paths.  相似文献   

3.
Summary Two controlled environment experiments were conducted to examine the germination and early growth of wheat (Triticum aestivum L. cv. Songlen) growing under crop residues of rape, sorghum, field pea and wheat. Additional treamments also included were soil type (Lithic Vertic Ustochrept and Plinthustalf) and temperature (8°C and 24°C to simulate winter and autumn sowing conditions). At low temperature, wheat and sorghum residues produced the most adverse effects on germination with all residues reducing emergence at high temperatures. Shoot lengths were also reduced by most residues at high temperatures whilst root lengths and shoot and root dry weights were unaffected by residue treatments. These results suggest major phytotoxic effects of residues during early growth (up to 14 days after sowing) with, in general, few interactions with soil type or temperature.  相似文献   

4.
Woody plants in an African Burkea africana-Ochna pulchra savanna on deep sandy soil were found to have characteristically bimorphic root systems. The shallow lateral root component was often well developed and roots extended up to seven times the extent of the plant canopy in several species. Exponential tapering of lateral roots was found in Terminalia sericea. The wide-ranging roots, together with the high degree of multispecies root system interpenetration, result in the so-called, open grassy areas in the savanna mosaic often containing a competitively significant woody plant component. Root systems of Ochna pulchra were found to be relatively specialized and included: negatively geotropic, superficial roots; sinker roots to bedrock; high suckering response to damage in roots; belowground lignotuber-type organs; and sustained subterranean interconnections between some aboveground stems. These features are likely to contribute substantially to the resilience of this plant species to various climatic and veld management stress factors. Root/shoot mass ratios averaged unity but depended on plant size and aboveground growth form in Ochna pulchra. The dependence of these ratios on sizes of plant also applied to plant clones. Initiation of root tip growth occurred in early summer in one year and late spring in another. Main root tip growth occurred in late summer and early autumn, well after completion of most growth of leafy shoots in spring. It is suggested that some active uptake of water and nutrients by non-extending roots allows this form of phased growth in the plant. In an analysis of the seasonal growth of individual root tip systems, it was clear that transitory states of rest occur in fine root development but that these are far more frequent in the branching (and hence proliferation) of roots than in the continuing development of any root axis.Nomenclature follows the present system of the Botanical Research Institute, Pretoria, and the Flora of Southern Africa.I thank M.D. Panagos, P.S. Carr and J. Steyn for assistance at various stages of this work.  相似文献   

5.
In citrus, the majority of fine roots are distributed near the soil surface – a region where conditions are frequently dry and temperatures fluctuate considerably. To develop a better understanding of the relationship between changes in soil conditions and a plant’s below‐ground respiratory costs, the effects of temperature and soil drying on citrus root respiration were quantified in controlled greenhouse experiments. Chambers designed for measuring the respiration of individual roots were used. Under moist soil conditions, root respiration in citrus increased exponentially with changes in soil temperature (Q10 = 1·8–2·0), provided that the changes in temperature were short‐term. However, when temperatures were held constant, root respiration did not increase exponentially with increasing temperatures. Instead, the roots acclimated to controlled temperatures above 23 °C, thereby reducing their metabolism in warmer soils. Under drying soil conditions, root respiration decreased gradually beginning at 6% soil water content and reached a minimum at <2% soil water content in sandy soil. A model was constructed from greenhouse data to predict diurnal patterns of fine root respiration based on temperature and soil water content. The model was then validated in the field using data obtained by CO2 trapping on root systems of mature citrus trees. The trees were grown at a site where the soil temperature and water content were manipulated. Respiration predicted by the model was in general agreement with observed rates, which indicates the model may be used to estimate entire root system respiration for citrus.  相似文献   

6.
Summary Wheat crops with stunted chlorotic patches are widespread in northern Victoria, Australia, and are often associated with dense, compacted layers of soil. Poor growth of subterranean clover, with symptoms of cupped and reddened leaflets, is also a problem in these cropping regions during the pasture phase of the rotation. Artificially compacted soils were created to test the hypothesis that these symptoms of poor growth were caused by soil compaction. Soil compacted from 0–20 cm with a bulk density similar to that measured in problem fields reproduced these symptoms in wheat and subterranean clover. Surface compaction alone also reproduced the symptoms in clover.  相似文献   

7.
A manipulated increase in acid deposition (15 kg S ha−1), carried out for three months in a mature Scots pine (Pinus sylvestris) stand on a podzol, acidified the soil and raised dissolved Al at concentrations above the critical level of 5 mg l−1 previously determined in a controlled experiment with Scots pine seedlings. The induced soil acidification reduced tree fine root density and biomass significantly in the top 15 cm of soil in the field. The results suggested that the reduction in fine root growth was a response not simply to high Al in solution but to the depletion of exchangeable Ca and Mg in the organic layer, K deficiency, the increase in NH4:NO3 ratio in solution and the high proton input to the soil by the acid manipulation. The results from this study could not justify the hypothesis of Al-induced root damage under field conditions, at least not in the short term. However, the study suggests that a short exposure to soil acidity may affect the fine root growth of mature Scots pine.  相似文献   

8.
Several plant growth regulators (PGRs) commonly used in practicalfarming to restrict shoot height and control lodging were examined for theirimpact on root growth in naturally short or tall cultivars of barley (cvs.Kymppi and Saana), oat (cvs. Veli and Pal), and wheat (cvs. Mahti and Tjalve).The possible involvement of ethylene in the responses was also examined. Shootswere sprayed at the two-leaf stage with the gibberellin biosynthesis inhibitorsCycocel (chlormequat chloride) (CCC) or Moddus (Trinexapac-ethyl) (TE), or withthe ethylene-releasing agent Cerone (ethephon) (ETH) at 0, 0.1, 1, 10 or 50times the recommended agricultural rate (RR). Root elongation and ethyleneproduction by roots or shoots were unaffected by CCC at all application ratesorby TE at ×0.1 or ×1.0 RR. At ×10 and ×50 RR, TE wasinhibitory to root extension but did not increase ethylene biosynthesis bytheseroots or the shoots. ETH at ×0.1 or ×1.0 RR did not affect rootextension or ethylene production in roots or shoots. At all higher rates ofapplication ETH stimulated ethylene production strongly in shoots and roots ofall three species, while root elongation was retarded severely in barley,moderately in oat and only slightly in wheat. These differences in elongationresponse are attributed to differences in sensitivity to ethylene released byethephon. Accordingly, root elongation in wheat was only slightly affected whenethylene gas was supplied at concentrations up to 100 ppm for 3d. In contrast, root elongation in barley was strongly inhibitedbyethylene, with oat demonstrating an intermediate responsiveness.  相似文献   

9.
间套种植复合群体根系时空分布特征   总被引:18,自引:3,他引:18  
选择小麦/大豆和玉米/甘蓝2种典型间套种植模式,探讨了复合群体根系营养竞争与补偿的生态学机制.结果表明,小麦/大豆复合群体根系生长在年生长期内显示出双峰交错性,小麦总根重峰值出现在6月初,而大豆峰值出现在8月上、中旬.根重与根长密度的生长还表现出异步性,根重峰值的出现早于根长.复合群体各配对作物根系的垂直分布呈层次递减性,玉米拔节前根重的85%以上都分布于0~20cm土层,且垂直生长呈多波顾次递推特点.间套作物根系的分布呈明显的“偏态”不均衡分布,套作玉米根系偏甘蓝行20.4~40.7cm,而甘蓝根系偏玉米行仅8.5~12.6cm.施肥使套作玉米与甘蓝根系的交叉幅宽由40.2cm下降到20.1cm,2种作物根系的交叉点位置由20.5cm上升到12.4cm.  相似文献   

10.
The occurrence and distribution of tobacco rattle virus (TRV) in field plots was determined by soil bait-testing and disease incidence in tulips subsequently grown on these plots was studied. The virus occurred in patches, calculated as 1.5 m × 3.6 m. The presence of virus was not correlated with numbers of potential vector trichodorid nematodes. Of three trichodorid nematode species present, only Paratrichodorus teres transmitted TRV which, as with virus isolates obtained in bait-tests and from infected tulips, reacted in serological tests with an antiserum prepared against a Dutch isolate of pea-early browning virus (PEBV). Virus prevalence in a subsequent tulip crop was 0.8% and in a sample of tulip plants, virus was recovered only from plants showing virus symptoms. Plots from which TRV was recovered in bait-tests yielded significantly more virus diseased tulips than plots which tested negative for virus. Growing bait-plants in field-plots, as compared with greenhouse tests using soil collected as a series of sub-samples, resulted in an underestimate of the occurrence of TRV.  相似文献   

11.
The expression of defence-related peroxidases Prx7 and Prx8 in barley roots grown under selected abiotic stress conditions (toxic metals: Cd, Al, Co, Cu, Hg; drought, salinity, extreme temperatures: heat, cold) and compounds activating (2,4-D) or inhibiting (SHAM) POD activity as well as H2O2 and H2O2 scavenger (DTT) was characterized. Strong Cd concentration dependent expression of Prx8 peroxidase gene was observed, which correlated with root growth inhibition induced by Cd- and some other stress factors (heavy metals, heat and salinity). Application of H2O2 did not cause changes in expression of Prx8, but H2O2 scavenger (DTT) as well as the inhibitor (SHAM) and the activator (2,4-D) of PODs induced increase in Prx8 expression. Our results demonstrate that root growth inhibition during any disturbance of active oxygen species (AOS) in root tissue is correlated with up-regulation of Prx8 gene expression in barley roots.  相似文献   

12.
Summary 32P-labelled monocalcium phosphate solution was supplied to the root system of individual wheat plants within a field crop two weeks after emergence. Three levels of carrier P, equivalent to 2.5, 5, and 10 kgP ha–1 were used. The distribution of32P between shoots and the soil inorganic and organic P fractions was measured after a further six weeks growth.There was no evidence for the incorporation of32P-orthophosphate into soil organic P fractions in the wheat rhizosphere in the period between germination and mid-tillering.The suitability of the single plant technique to measure plant available P in field soils was assessed by calculating A values from plants grown in soil witth different fertilizer P histories. There was a significant linear relationship between A values and the amount of soil P extractable with 0.5M NaHCO3 from the different fertilizer treatments. Although the technique is unlikely to given an absolute value for plant available nutrient, it can provide quantitative data for comparative trials with different forms of fertilizer, methods of fertilizer application or amounts of available soil water. The values obtained should be termed comparative A values or Ac values.  相似文献   

13.
14.
Unused inorganic nitrogen (Ninorg) left in agricultural soils will typically leach to deeper soil layers. If it moves below the root zone it will be lost from the system, but the depth of the root zone depends on the crop species grown. In this experiment we studied the effect of 3-year crop sequences, with different combinations of deep-rooted and shallow-rooted crops, on soil Ninorg dynamics to 2.5 m soil depth and the possibility of crop utilization of N leached to deep soil layers. We grew ten different crop sequences for 3 years. The crops and catch crops grown were selected to allow different sequences of deep-rooted and shallow-rooted crops. Very different rooting depths were obtained, from only 0.5 m (leek), to ∼1.0 m (ryegrass and barley), 1.5 m (red beet), 2.0 m (fodder radish and white cabbage) and more than 2.5 m by the chicory catch crop. The results showed a significant retention of Ninorg within the 2.5 m soil profile from one year to the next, but the retained N had leached to deeper parts of the profile during the winter season. Only little Ninorg was retained over two winter seasons. The retention in the deeper soil layers allowed Ninorg to be taken up by succeeding deep-rooted main crops or catch crops. The effects of crop rooting depth on Ninorg in the subsoil layers from 1.0 to 2.5 m were striking. White cabbage reduced Ninorg below 1.0 m with up to 113 kg N ha-1 during its growth. Grown after catch crops, leek and red beet left on average 60 kg N ha−1 less below 1.0 m than leek and red beet grown without a preceding catch crop. We conclude that it is possible to design crop rotations with improved nitrogen use efficiency by using the differences in crop rooting patterns; deep-rooted crops or catch crops can be used to recover Ninorg leached after previous crops, and catch crops can be grown before shallow-rooted crops to lift the deep Ninorg up to layers where these crops have their roots.  相似文献   

15.
Mark Coleman 《Plant and Soil》2007,299(1-2):195-213
In forest trees, roots mediate such significant carbon fluxes as primary production and soil CO2 efflux. Despite the central role of roots in these critical processes, information on root distribution during stand establishment is limited, yet must be described to accurately predict how various forest types, which are growing with a range of resource limitations, might respond to environmental change. This study reports root length density and biomass development in young stands of eastern cottonwood (Populus deltoidies Bartr.) and American sycamore (Platanus occidentalis L.) that have narrow, high resource site requirements, and compares them with sweetgum (Liquidambar styraciflua L.) and loblolly pine (Pinus taeda L.), which have more robust site requirements. Fine roots (<1 mm), medium roots (1 to 5 mm) and coarse roots (>5 mm) were sampled to determine spatial distribution in response to fertilizer and irrigation treatments delivered through drip irrigation tubes. Root length density and biomass were predominately controlled by stand development, depth and proximity to drip tubes. After accounting for this spatial and temporal variation, there was a significant increase in RLD with fertilization and irrigation for all genotypes. The response to fertilization was greater than that of irrigation. Both fine and coarse roots responded positively to resources delivered through the drip tube, indicating a whole-root-system response to resource enrichment and not just a feeder root response. The plastic response to drip tube water and nutrient enrichment demonstrate the capability of root systems to respond to supply heterogeneity by increasing acquisition surface. Fine-root biomass, root density and specific root length were greater for broadleaved species than pine. Roots of all genotypes explored the rooting volume within 2 years, but this occurred faster and to higher root length densities in broadleaved species, indicating they had greater initial opportunity for resource acquisition than pine. Sweetgum’s root characteristics and its response to resource availability were similar to the other broadleaved species, despite its functional resemblance to pine regarding robust site requirements. It was concluded that genotypes, irrigation and fertilization significantly influenced tree root system development, which varied spatially in response to resource-supply heterogeneity created by drip tubes. Knowledge of spatial and temporal patterns of root distribution in these stands will be used to interpret nutrient acquisition and soil respiration measurements. The US Government has the right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper. Mention of a commercial or proprietary product does not constitute endorsement or recommendation by the USDA Forest Service.  相似文献   

16.
Yang  J.  Hammer  R.D.  Thompson  A.L.  Blanchar  R.W. 《Plant and Soil》2003,250(2):175-182
A soil-based productivity index (PI) has been developed and is being tested as a means of quantitatively assessing potential soil productivity and predicting crop yield. Validation of the PI requires the PI-yield calibration for various soil-crop-climate systems. It is hypothesized that PI predictability and accuracy would be enhanced by inclusion of a soil water balance component. This study aims at developing a sufficiency factor that accounts for dynamics of soil water influenced by weather to improve the PI predictability. Soybeans (Glycine max[L.] Merr.) were grown in 1992 and 1993 on Mexico soil (fine, montmorillonitic, mesic Mollic Endoaqualfs). Test plots had altered A-horizon thicknesses of 0, 12.5, 25, and 37.5 cm over Bt horizons. A range of PI values in the plots resulted due to A-horizon treatment. The PI increased with increasing A-horizon thicknesses or depth to the Bt horizons. The PI was highly correlated with plot yield in 1992, a relatively dry year, in comparison with 1993, a relatively wet year. Inclusion of a factor assessed by daily balance of soil water significantly enhanced PI predictive power by 20% in both years. The factor best improved the PI predictability when based on the number of soil dry-wet cycles for given depth during the growing season. This study illustrates that yearly variation of soil water induced by weather should be considered for assessing crop performance based on soil properties.  相似文献   

17.
 Transformation of barley and wheat via particle bombardment with a gene derived from Vitis vinifera L. (Vst1 gene) resulted in the expression of the foreign phytoalexin, resveratrol, in the transformed plants. Transgenic barley plants were regenerated from microspores and transgenic wheat plants from immature embryos were both selected on Basta. Stable integration of the gene in the genomes of transgenic barley and wheat plants, as well as their progeny, was analysed by Southern-blot analysis. The induction of the stilbene synthase promoter and the transient expression of stilbene synthase-specific mRNA after induction by wounding and infection were proofed in T1 and T2 progeny plants. An enhanced expression of the Vst1 gene under control of the stilbene synthase promoter was observed with enhancer sequences from the cauliflower mosaic virus 35s (CaMV 35s) promoter. The enzyme activity of the stilbene synthase was analysed in T1 progeny plants. The first pathological results indicated an increased resistance of transgenic barley plants to Botrytis cinerea used as a model experimental system. Received: 5 November 1997 / Accepted: 11 November 1997  相似文献   

18.
Summary We have investigated the mugineicacid-Fe transport activity of Fe-deficient barley roots, using the multi-compartment transport box system. The roots maintained Fe transport activity for 20 h after excision. The following results were obtained. (1) In Fe-deficient roots, mugineic acid addition enhanced the transport of Fe by 32.2 times over that of the control (with FeC13 addition). (2) The mugineic-acid-55Fe transport activity of Fe-deficient roots was 18.4-fold higher than that of the Fe-sufficient roots. (3) The mugineic-acid-55Fe transport activity was decreased (7.13% based on the control) by treatment with 5 M carbonylcyanidem-chlorophenyl hydrazone (CCCP). Pretreatment with 0.1 mM dicyclohexyl carbodiimide (DCCD) lowered the transport activity (10.7% based on the control) and 1 mMN-ethylmaleimide (NEM) pretreatment reduced the transport activity to a value equivalent to 2.41% of that in the control. It is concluded that mugineicacid-Fe transporter is induced in its activity and/or amount by Fe-deficiency treatment and has an SH residue at its active site, and that the transporter needs the proton motive force produced by ATPase. We detected three polypeptides (14, 28 and 40 kDa) in the root plasma membrane that were induced under Fe-deficiency treatment.Abbreviations p-APMSF (p-amidinophenyl)methanesulfonyl fluoride hydrochloride - CCCP carbonylcyanide m-chlorophenylhydrazone - DCCD dicyclohexylcabodiimide - DMSO dimethyl sulfoxide - MA mugineic acid - NEM N-ethylmaleimide  相似文献   

19.
通过两年的田间试验,研究了滴水量和滴水频率对膜下滴灌棉田土壤水分分布及棉花水分利用效率的影响.结果表明:从整个生育期来看,当滴水量(375 mm)相同时,高频滴灌(每3天1次)处理0~20 cm土层含水率较高而深层土壤湿润不够;低频滴灌(每10天1次)处理有利于水分的下渗和侧渗,深层土壤含水率较高,但水分补给不及时,表层土壤偏低;总体上中频滴灌(每7天1次)处理有利于水分在土壤剖面中的均匀分配.当滴水频率相同时,滴水量越大,土壤含水率越高,40 cm以下土层含水率也越高.不同处理的棉田耗水规律基本一致,苗期较低,平均不高于1.7 mm·d-1,蕾期开始上升至花铃期达到最高,日均耗水量可达8.7 mm·d-1,吐絮期回落到1.0 mm·d-1左右.总耗水量与降水和滴水量密切相关,而与滴水频率无关;滴水频率对棉花水分利用效率无显著影响,但水分利用效率随滴水量的增大而显著降低.少量滴灌(300 mm)虽然可以获得较高的水分利用效率,但减产严重,过量滴灌(450mm)无显著增产效应,水分浪费严重.在当地棉田自然条件下,采用中量(375 mm)+中低频(每7天或10天1次)的滴灌模式为宜.  相似文献   

20.
Summary Two acid soils showing different Al solubility as a function of pH were limed to a range of pH values (in 10–2 M CaCl2) between 4.1 and 5.6. The apparent critical pH for the growth of barley in pots was 0.25 lower in the soil showing lower Al solubility. The addition of phosphate reduced exchangeable and soluble Al in the soils, and lowered the apparent critical pH by 0.35 while maintaining the difference between the soils. The Al concentration at the critical pH, measured after cropping to take account of the treatment effects on soil Al, also varied with soil and with phosphate addition. These apparent critical values of both pH and soluble Al varied linearly with available phosphate, over the range 18 to 73 mg P/kg soil, as follows: pH from 4.9 to 4.3; soluble Al, from 0.010 mM to 0.056 mM; and the soluble Ca/Al mole ratio, from 1270 to 214.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号