首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activities of neutral, magnesium-stimulated, and acid sphingomyelinases were measured in five regions of rat brain. Neutral enzyme activity was 2-3-fold higher in striatum than in parietal cortex and 13-fold higher than in cerebral white matter. Acid sphingomyelinase activity was more evenly distributed throughout these regions. Striatal neutral sphingomyelinase activity was not affected by treatment of rats with reserpine or haloperidol and was reduced (16%) by 6-hydroxydopamine. Striatal acid sphingomyelinase was unaffected by reserpine and 6-hydroxydopamine, and was increased (17%) by haloperidol. We conclude that neutral, magnesium-stimulated sphingomyelinase activity differs in various regions of rat brain and is particularly enriched in the corpus striatum. However, it appears to be a constitutive component of tissue rather than a readily modulated regulatory element of the catecholaminergic system.  相似文献   

2.
The endogenous levels of the two cannabinoid receptor ligands 2-arachidonoyl glycerol and anandamide, and their respective congeners, monoacyl glycerols and N-acylethanolamines, as well as the phospholipid precursors of N-acylethanolamines, were measured by gas chromatography-mass spectrometry in glioblastoma (WHO grade IV) tissue and meningioma (WHO grade I) tissue and compared with human non-tumour brain tissue. Furthermore, the metabolic turnover of N-acylethanolamines was compared by measurements of the enzymatic activity of N-acyltransferase, N-acylphosphatidylethanolamine-hydrolysing phospholipase D and fatty acid amide hydrolase in the same three types of tissue. Glioblastomas were characterized by enhanced levels of N-acylethanolamines (eightfold, 128 +/- 59 pmol/micromol lipid phosphorus) including anandamide (17-fold, 4.6 +/- 3.1 pmol/micromol lipid phosphorus) and several species of N-acylphosphatidylethanolamines (three to eightfold). This was accompanied by a more than 60% reduction in the enzyme activities of N-acylphosphatidylethanolamine-hydrolysing phospholipase D and fatty acid amide hydrolase. By contrast, meningiomas were characterized by a massively enhanced level of 2-monoacyl glycerols (20-fold, 2293 +/- 361 pmol/micromol lipid phosphorus) including 2-arachidonoyl glycerol (20-fold, 1524 +/- 361 pmol/micromol lipid phosphorus). This was accompanied by an enhanced in vitro conversion of phosphatidylcholine to monoacyl glycerol (fivefold). The enhanced level of the 2-arachidonoyl glycerol, anandamide and other N-acylethanolamines detected in the two types of tumour tissue may possibly act as endogenous anti-tumour mediators by stimulation of both cannabinoid and non-cannabinoid receptor-mediated mechanisms.  相似文献   

3.
Purification and properties of sucrose synthase from maize kernels   总被引:14,自引:9,他引:5       下载免费PDF全文
Su JC  Preiss J 《Plant physiology》1978,61(3):389-393
Sucrose synthase was purified from 22-day-old maize (Zea mays L.) kernels to homogeneity by the successive steps of ammonium sulfate fractionation, gel filtration through a Sephadex G-200 column, and affinity chromatography on a UDP-hexanol-amino-agarose column. The degree of purification is 42-fold and the yield is over 80%. Polyacrylamide gel electrophoretic techniques, sedimentation velocity, and gel filtration studies revealed that the enzyme has identical subunits and could assume tetrameric, octameric, and other higher aggregated forms which are dependent on the ionic species and ionic strength of the solution. All of the enzyme forms exhibit catalytic activity but show differences in their specific activities. In most cases, the tetramer is the predominant form and has the highest specific activity. It is thus concluded that the tetramer could be the native form of the enzyme. The subunit protein has a molecular weight of 88,000 and a blocked NH2 terminus which is not available to Edman degradation. Some general properties and the amino acid composition of the enzyme are also reported.  相似文献   

4.
Mesembryanthemum crystallinum plants were irrigated with 400 mol m?3 NaCl to induce CAM and levels of leaf starch, and activities of starch-degrading enzymes were measured. During Crassulacean acid metabolism (CAM) induction, daily starch turnover gradually became more pronounced and was three- to four-fold greater than in leaves of C3 plants after 3 weeks. Activities of α- and β-amylase, D-enzyme and starch phosphorylase all increased 10- to 20-fold within 3 weeks of the start of salt treatment. Activities of α- and β-amylase increased more than fourfold within the first 24 h of salt treatment, which is the fastest increase in enzyme activities so far measured during the induction of CAM with salt solution in intact plants of this species. Most enzyme activities were partially chloroplastic; however, the principal starch-degrading activity was constituted by an extra-chloroplastic β-amylase. CAM starch-phosphorylase activity, which was mainly chloroplastic, exhibited a two- to three-fold diurnal change in parallel with starch content. CAM induction in M. crystallinum is clearly associated with greater starch turnover and enhanced starch-degrading enzyme activities, which as catalysts of the initial reaction to release carbon for synthesis of phosphoenolpyruvate (PEP) appear highly significant for the functioning of the CAM pathway. The diurnal rhythm of phosphorylase activity may be of particular significance.  相似文献   

5.
Two proteases active in and specific to oat etioplasts and up to 24-hour etiochloroplasts, only very slightly contaminated by other cellular compartments are described. The enzyme showed pH optima of 4.2 (acid) and 6.8 (neutral), temperature optima of 50 C and the highest level of enzyme activity was with prolamellar bodies (PLBs) as substrate. Both enzymes showed evidence of a sulfhydryl reagent requirement, particularly for the neutral enzyme. Levels of both proteases increased up to 4 hours of illumination of leaves, and then sharply decreased with the largest differences exhibited by the neutral protease. The pH values in the plastid stroma indicated that the neutral enzyme was likely to be the most important in PLB transformation. A comparison between plastid-associated and extra-plastidic protease activities showed similar properties, except the affinity toward PLBs, which was much higher for plastid proteases (Km: 0.2 and 1.1 milligrams protein per milliliter, respectively).  相似文献   

6.
When cultured sycamore cells are homogenised in a phosphate-citrate buffer at pH 7.0 and the homogenate centrifuged two fractions are obtained both of which show the presence of an acid (opt. pH 4.0–4.5) and a neutral (opt. pH 7.0–7.4) invertase. The activity of the insoluble pellet appears to be located in its cell wall fragments. The acid and neutral invertases of the soluble fraction can be separated by fractional precipitation with (NH4SO4. The activities of these enzymes are low in stationary phase cells but they increase following subculture to reach peaks of activity towards the end of the period of most active cell growth and division and then decline again as the cells begin to enter stationary phase. The activities of both enzymes are higher in the cell wall than in the soluble fraction and the acid invertase reaches higher levels of activity than the neutral enzyme in both fractions. When cells are subcultured there occurs within a few hours an increase in the acid invertase and a decline in the neutral invertase activity in the cell wall fraction and a decline in the acid invertase of the soluble fraction prior to the large net increases in the activities of both enzymes in both locations which occurs as the cells embark upon cell division. The pattern of changes in the invertase activities through the growth cycle of batch propagated cultures is similar whether the cells are grown in sucrose, or glucose, or sucrose plus glucose; the highest levels of activities were recorded in the glucose-grown cells. The total yield of invertase activities and the distribution of activities between the soluble and cell wall fractions of the homogenates are affected by the pH of the extraction medium (within the range pH 4.0–8.0). It has not proved possible to completely remove the invertases from the cell wall fraction; upwards of 50 % of the acid invertase was recovered from this fraction by treatment with Triton-X followed by urea, but these treatments inactivated a high proportion of the neutral enzyme. These findings are compared with other studies on the activity and intra-cellular distribution of plant invertases and the possible roles of these enzymes discussed.  相似文献   

7.
—The distribution of choline acetyltransferase (ChAc, EC 2.3.1.6) and l -glutamate 1-carboxylyase (glutamate decarboxylase, GAD, EC 4.1.1.15) was studied in serial frontal slices of the substantia nigra (SN) (pars compacta, PC; pars reticulata, PR; an intermediate region, IR) as well as in other brain areas from post mortem tissue of control and Parkinsonian patients. Within the SN from control brain ChAc and GAD activities showed a distinctive distribution: ChAc activity in PC was higher than in PR and IR by 427% and 253% respectively and within PC the enzyme activity in the rostral part exceeded that in the control part by 353%. The GAD activity in PC was higher by 41% than that in PR and within PC seemed to be higher in the caudal than in the rostral part. For both enzyme activities there were no significant differences between PR and IR or within these regions. In Parkinsonian brain both ChAc and GAD activities were reduced to 15-25% of controls in all 3 regions of the SN. The distinctive distribution of ChAc and GAD activity found in the SN of control brain was abolished: no difference was observed between the 3 regions. However, within PC the ChAc activity was lower in the medial than in the rostral part. Since nigral ChAc is possibly located in interneurons, the decrease in enzyme activity may be connected with the cell loss observed in the SN of Parkinsonian brain. By contrast, nigral GAD is probably contained in terminals of strio-nigral neurons and the decrease in enzyme activity in Parkinson's disease in the absence of striatal cell loss, may reflect a change in the functional state of these GABA neurons. Among various areas of control brains ChAc activity was highest in caudate nucleus and putamen while GAD was highest in SN. caudate nucleus, putamen and cerebral cortex. In Parkinsonian brain the most severe reduction in ChAc and GAD activities was found in the SN.  相似文献   

8.
Summary Activities of three lysosomal enzymes—acid RNase,N-acetyl-β-D-glucosaminidase and acid phosphatase—were determined during the growth cycles of WI-38 and HeLa cells, as well as in radiation-arrested WI-38 cells. In confluent and growth-arrested cultures of WI-38 cells, the lysosomal RNase increased six- to sevenfold; glucosaminidase, four- to five-fold; and phosphatase, two- to threefold. In HeLa cells, the lysosomal enzymes also increased in confluent cultures, but less than twofold; and the RNase level increased only transiently. In both WI-38 and HeLa cells, the rate of RNA breakdown, also increased as cultured approached confluency. The rate of turnover of RNA, like the level of acid RNase, was higher in WI-38 cells than in HeLa cells (4 d half-life compared to 8 d). The increase in acid RNase could be prevented by incubation of cells in NH4Cl, but the rate of turnover in the presence of NH4Cl increased just as much when cells became confluent or stopped growth. The content of acid RNase could be changed more than 10-fold without altering the rate of RNA turnover. It is suggested that the increase in enzyme level is more important for possible autophagy or increased digestion of engulfed RNA, rather than for normal RNA turnover, when growth stops. This study was supported by Grant GM-21357 from the National Institutes of Health.  相似文献   

9.
Ornithogenic soils of the Cape Bird adelie penguin rookeries,Antarctica   总被引:3,自引:3,他引:0  
Summary Ammonia evolution and urease, phosphatase and protease activities were measured after field incubations of soil from 5 sites, differently influenced by penguin guano, from Cape Bird, Antarctica. Rates of NH3 production were low considering the large amounts of free NH3 in these soils. Enzyme activities were higher than expected and, under optimum conditions of temperature, moisture and substrate availability, were sufficient to degrade rapidly the accumulated organic matter in these soils. Laboratory incubations confirmed these high levels of activity; they also showed high dehydrogenase, but not sulphatase, activity. The surface horizon from the site that received continuous additions of fresh penguin excreta had considerably more enzyme activity than the other samples. The optimum activity of phosphatase in this sample was at pH 9.5-10. These enzyme activities are compared with those of New Zealand topsoils, and considered in relation to activities likely to occur under field conditions. Recommendations are made for further biochemical studies at Cape Bird.  相似文献   

10.
Monoamine oxidase in the vervet monkey showed greater variations in activity in six brain regions when tyramine or phenylethylamine was used as the substrate (3.8- to 4.1-fold differences) than when serotonin was the substrate (1.8-fold differences). With phenylethylamine and tyramine as substrates, the highest MAO specific activities were found in the hypothalamus and the lowest in the cerebellum and cortex. With serotonin as the substrate, the highest specific activities were in the mesencephalon and cortex. The inhibition of tyramine deamination by clorgyline and deprenyl yielded biphasic plots indicative of the presence of MAO-A and MAO-B enzyme forms in the vervet brain. On the basis of these inhibitor curves, the vervet brain could be estimated to contain approximately 85% MAO-B and 15% MAO-A, in contrast to rat brain which contains 45% MAO-B and 55% MAO-A. The inhibition of serotonin deamination by deprenyl in vervet brain yielded a biphasic plot, suggesting that some serotonin deamination in the vervet is accomplished by the MAO-B enzyme form. Estimations of the relative amounts of MAO-A and MAO-B based on inhibitor curves or based on substrate ratios yielded proportionate results which were in close agreement across the different brain regions, supporting the validity of these approaches to estimating MAO-A and MAO-B activities.  相似文献   

11.
Work demonstrating the operation of a photorespiratory N cycle in Chlamydomonas is described. NH3 release by this process is light dependent, sensitive to changes in pO2 and pCO2, and abolished by a photosystem II inhibitor. Evidence is presented which shows that this NH3 derives its N from protein rather than from freshly synthesised glutamate. Protein turnover is shown to provide amino-N at a rate sufficient to account for the highest photorespiratory N excretion observed suggesting that changes in excretion can be accounted for by increased catabolism of normally recirculating amino acids. It is equally possible however that a direct link between photorespiration and protein turnover exists, increased NH3 excretion resulting from enhanced protein turnover. The data suggest that if similar mechanisms operate in higher plants, previous estimates of the amount of N recycled in photorespiration may have been too high.Abbreviations GS glutamine synthetase - PMSF phenyl methyl sulfonyl fluoride - MSO L-methionine-DL-sulfoximine - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea  相似文献   

12.
—The activity of protein methylase II (S-adenosylmethionine:protein-carboxyl methyltransferase, EC 2.1.1.24), which methylates (esterifies) free carboxyl groups in the substrate protein, was measured in several mammalian organs in an effort to elucidate the nature of the natural substrate for the enzyme. The highest endogenous substrate activity was found in posterior and anterior pituitary glands, possibly in association with neurosecretory granules. In other parts of the brain endogenous substrates are lacking, although the cytosol fractions contain high activity of the enzyme which methylates exogenously added substrates. Rat whole blood also contains endogenous substrate protein. The protein precipitated by 50% (NH4)2SO4 contained active substrate protein whereas blood protein methylase II is localized exclusively in the erythrocytes. Cohn fractions I, II and III are more active as substrate for protein methylase II than fraction V.  相似文献   

13.
The composition and metabolism of the proteins of the cerebral pallium of the rabbit during the final one-third of the gestational period were measured. During this period, the brain increased in size almost 10-fold and the migration of neuroblasts to form the cerebral cortex became complete. Concurrent with the marked structural changes, the solubility characteristics and electrophoretic distribution of various brain proteins showed little change. However, at the time of birth and in the adult, significant differences in gel electrophoresis patterns were apparent. The rate of synthesis of protein in brain slices from the fetus of 20 days gestation was 3-fold higher per mg of tissue than in the neonate and about 30-fold higher than in the adult. Activities of acidic and neutral proteases per unit weight were virtually the same and nearly constant throughout the late fetal period. However, during this stage, while rapid growth persists, the total protein synthetic activity of the pallium predominated over the total proteolytic activity, whereas sometime after birth the ratios of these activities reversed consequent to a shutdown of the synthetic process.  相似文献   

14.
Biochemical and physiological parameters associated with nitrogen metabolism were measured in nodules and roots of glasshouse-grown clones of two symbiotically ineffective alfalfa (Medicago sativa L.) genotypes supplied with either NO3 or NH4+. Significant differences were observed between genotypes for nodule soluble protein concentrations and glutamine synthetase (GS) and glutamate synthase (GOGAT) specific activities, both in untreated controls and in response to applied N. Nodule soluble protein of both genotypes declined in response to applied N, while nodule GS, GOGAT, and glutamate dehydrogenase (GDH) specific activities either decreased or remained relatively constant. In contrast, no genotype differences were observed in roots for soluble protein concentrations and GS, GOGAT, and GDH specific activities, either in untreated controls or in response to applied N. Root soluble protein levels and GS and GOGAT specific activities of N-treated plants increased 2- to 4-fold within 4 days and then decreased between days 13 and 24. Root GDH specific activity of NH4+-treated plants increased steadily throughout the experiment and was 50 times greater than root GS or GOGAT specific activities by day 24.  相似文献   

15.
The technique of estimating gamma-aminobutyric acid (GABA) turnover by inhibiting its major degrading enzyme GABA-T (4-aminobutyrate:2-oxoglutarate aminotransferase; EC 2.6.1.19) and measuring GABA accumulation has been used repeatedly, but, at least in rats, its usefulness has been limited by several difficulties, including marked differences in the degree of GABA-T inhibition in different brain regions after systemic injection of GABA-T inhibitors. In an attempt to improve this type of approach for measuring GABA turnover, the time course of GABA-T inhibition and accumulation of GABA in 12 regions of rat brain has been studied after systemic administration of aminooxyacetic acid (AOAA), injected at various doses and with different routes of administration. A total and rapidly occurring inhibition of GABA-T in all regions was obtained with intraperitoneal injection of 100 mg/kg AOAA, whereas after lower doses, marked regional differences in the degree of GABA-T inhibition were found, thus leading to underestimation of GABA synthesis rates, e.g., in substantia nigra. The activity of the GABA-synthesizing enzyme GAD (L-glutamate-1-decarboxylase; EC 4.1.1.15) was not reduced significantly at any time after intraperitoneal injection of AOAA, except for a small decrease in olfactory bulbs. Even the highest dose of AOAA tested (100 mg/kg) was not associated with toxicity in rats, but induced motor impairment, which was obviously related to the marked GABA accumulation found with this dose. The increase in GABA concentrations induced with intraperitoneal injection of 100 mg/kg AOAA was rapid in onset, allowing one to estimate GABA turnover rates from the initial rate of GABA accumulation, i.e., during the first 30 min after AOAA injection. GABA turnover rates thus determined were correlated in a highly significant fashion with the GAD activities determined in brain regions, with highest turnover rates measured in substantia nigra, hypothalamus, olfactory bulb, and tectum. Pretreatment of rats with diazepam, 5 mg/kg i.p., 5-30 min prior to AOAA, reduced the AOAA-induced GABA accumulation in all 12 regions examined, most probably as a result of potentiation of postsynaptic GABA function. The data indicate that AOAA is a valuable tool for regional GABA turnover studies in rats, provided the GABA-T inhibitor is administered in sufficiently high doses to obtain complete inhibition of GABA degradation.  相似文献   

16.
Homocarnosine (HCarn) content varied over a 6-fold range in different regions of autopsied human brain, being highest in the dentate nucleus and the inferior olive, and lowest in the caudate nucleus and mesolimbic system. HCarn content was similar in biopsied and autopsied frontal cortex. Very little if any carnosine (Carn) was present in human brain, except for the olfactory bulb, where Carn may have comprised 20% of the imidazole dipeptides present. Only HCarn was present in human CSF. HCarn-Carn synthetase enzyme activity in biopsy specimens of human frontal and temporal cortex was approx 10 times greater than has been reported for rat cerebral cortex. The enzyme synthesized Carn 3–5 times as rapidly as HCarn, when β-alanine (β-Ala) or GABA substrate concentrations were 10 MM. The synthetase was found to have an apparent Km of 1.8 mM for β-Ala, and 8.8 mM for GABA. HCarn-Carn synthetase activity decreases rapidly after brain death, and was not detectable in autopsied brain specimens frozen more than 6 h after patients’deaths. Homocarnosinase activity was determined in brain, using L-[γaminobutyryl-1-14C]HCarn as substrate, and measuring radioactive GABA produced by hydrolysis of HCarn at pH 7.2 in the presence of Co2+ ions. Homocarnosinase activity was similar in biopsied and autopsied human cerebral cortex, and appeared to be stable for at least 10 h after death in unfrozen brain. Differences in the regional distribution of HCarn-Carn synthetase and homocarnosinase activities, as well as regional differences in GABA content in human brain, do not readily account for regional differences in HCarn content, nor do they suggest a physiological role for HCarn.  相似文献   

17.
Summary. Ornithine decarboxylase (ODC) and diamine oxidase (DAO) are important enzymes involved in the metabolism of polyamines (putrescine, spermidine and spermine). The influence of testosterone (T) and 17, β– estradiol (E2) on the activity of ODC and DAO was examined in cultivated normal rat kidney (NRK) epithelial cells. The results showed an increase in enzyme activities 4 hours or 12 hours after hormonal treatment. Both T and E2 led to a significant increase (1.6-fold) in ODC protein level as compared to the controls. Cellular concentration of spermidine and spermine increased (2.2- and 2.6-fold respectively) 4 hours after T addition. A higher levels in concentrations of putrescine (1.4-fold) and spermine (1.5-fold) 12 hours after E2 treatment were observed. These results suggest that the biosynthesis and terminal oxidation of the polyamines in NRK epithelial cells are androgen- and estrogen-mediated and depend on the hormonal sensitivity of the cells. Received April 5, 1999, Accepted December 20, 1999  相似文献   

18.
The specific activities of enzymes catalyzing the ammonium-dependent carbamyl phosphate synthesis (NH3-CPS) and the glutamine-dependent carbamyl phosphate synthesis (GLN-CPS) were increased during germination by approximately 5-and 1.7-fold respectively in the presence of 35 mm urea. The increase of NH3-CPS and GLN-CPS levels occurred immediately after the onset of germination and prior to the appearance of germ tube. Ammonium also stimulated the NH3-CPS activity, but the induction caused by urea was about three times higher than that by ammonium.  相似文献   

19.
In this study, a recombinant cephalosporin C acylase (CCA) was covalently or physically immobilized on an epoxy-activated support LX1000-EPC4 (EP) or its derivatives, EP-polyethyleneimine (EP-PEI) and EP-ethylenediamine (EP-EDA) with cationic groups on the surface. Zeta potential was used as a tool for activated carrier analysis and immobilization analysis. The EP-PEI (the cationic polymer PEI grafted support) showed higher zeta potential than EP-EDA (the small diamine EDA modified support) and EP support. Among these three supports, immobilization of CCA on EP-PEI had the highest specific activity according to the range of enzyme loadings. Michaelis constant Km values of EP-PEI-CCA and EP-EDA-CCA were 22?mM and 30?mM, respectively, which were lower than that of the free enzyme (43?mM), suggesting that the support’s zeta potential is related to the affinity of the enzyme for the substrate. The enzyme immobilized on EP-PEI showed a much higher thermal stability (stabilization factor of 32-fold compared with the free enzyme) than that on the EP-EDA (stabilization factor of 5.5-fold) and EP supports (stabilization factor of 1.7-fold). The adsorption of CCA on EP-PEI support was very strong and reversible. The CCA could be thoroughly desorbed using a high concentration of NaCl (e.g., 2 M) at low pH value (pH 3.0). The regenerated EP-PEI support could then be reused for enzyme immobilization.  相似文献   

20.
Classical (one-variable-at-a-time) and statistical methods (Plackett-Burman and Central composite design) were used to optimise growth medium for the production of cholesterol oxidase (COX) from Rhodococcus sp. NCIM 2891. COX activities from the classically and statistically optimised media were 0.75 and 3.25 U/ml, respectively. The statistically optimised medium had 4.33- and 9.7-fold higher enzymatic activity than the classically optimised and un-optimised basal medium, respectively. The ratio of enzyme production to cell growth rate was 29-fold higher in our statistically optimised medium than in the basal medium, indicating that the enzyme production could be classified as mixed type of growth. Cell-bound COX accounted for 90.68?±?2 % of the total enzymatic activity of the growth medium. Interactions between the COX-inducing substrate cholesterol and medium growth substrates yeast extract and (NH4)2HPO4 significantly enhanced the production of cell-bound COX. Our results validate the statistical approach as a potential technique for achieving the large-scale production of cell-bound COX from Rhodococcus sp. NCIM 2891.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号