首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA vaccines encoding a viral protein have been shown to induce antiviral immune responses and provide protection against subsequent viral challenge. In this study, we show that the efficacy of a DNA vaccine can be greatly improved by simultaneous expression of interleukin-2 (IL-2). Plasmid vectors encoding the major (S) or middle (pre-S2 plus S) envelope proteins of hepatitis B virus (HBV) were constructed and compared for their potential to induce hepatitis B surface antigen (HBsAg)-specific immune responses with a vector encoding the middle envelope and IL-2 fusion protein or with a bicistronic vector separately encoding the middle envelope protein and IL-2. Following transfection of cells in culture with these HBV plasmid vectors, we found that the encoded major protein was secreted while the middle protein and the fusion protein were retained on the cell membrane. Despite differences in localization of the encoded antigens, plasmids encoding the major or middle proteins gave similar antibody and T-cell proliferative responses in the vaccinated animals. The use of plasmids coexpressing IL-2 and the envelope protein in the fusion or nonfusion context resulted in enhanced humoral and cellular immune responses. In addition, the vaccine efficacy in terms of dosage used in immunization was increased at least 100-fold by coexpression of IL-2. We also found that DNA vaccines coexpressing IL-2 help overcome major histocompatibility complex-linked nonresponsiveness to HBsAg vaccination. The immune responses elicited by HBV DNA vaccines were also modulated by coexpression of IL-2. When restimulated with antigen in vitro, splenocytes from mice that received plasmids coexpressing IL-2 and the envelope protein produced much stronger T helper 1 (Th1)-like responses than did those from mice that had been given injections of plasmids encoding the envelope protein alone. Coexpression of IL-2 also increased the Th2-like responses, although the increment was much less significant.  相似文献   

2.
The unique immunoglobulin idiotype expressed on the surface of B lymphoma cells can be used as an effective antigen in tumor-specific vaccines when fused to immunostimulatory proteins and cytokines. A DNA vaccine encoding for an idiotype antibody single chain Fv (scFv) fragment fused to the Tetanus Toxin Fragment C (TTFrC) has been shown to induce protective anti-tumor responses. Protein-based strategies may be more desirable since they provide greater control over dosage, duration of exposure, and in vivo distribution of the vaccine. However, production of fusion protein vaccines containing complex disulfide bonded idiotype antibodies and antibody-derived fragments is challenging. We use an Escherichia coli-based cell-free protein synthesis platform as well as high-level expression of E. coli inclusion bodies followed by refolding for the rapid generation of an antibody fragment – TTFrC fusion protein vaccine. Vaccine proteins produced using both methods were shown to elicit anti-tumor humoral responses as well as protect from tumor challenge in an established B cell lymphoma mouse model. The development of technologies for the rapid production of effective patient-specific tumor idiotype-based fusion protein vaccines provides opportunities for clinical application.  相似文献   

3.
Therapeutic vaccination of B cell lymphoma patients with tumor-specific Ig (idiotype, or Id) chemically coupled to the immunogenic foreign carrier protein keyhole limpet hemocyanin (KLH) using glutaraldehyde has shown promising results in early clinical trials, and phase III trials are underway. However, glutaraldehyde Id-KLH vaccines fail to elicit anti-Id immune and clinical responses in many patients, possibly because glutaraldehyde reacts with lysine, cysteine, tyrosine, and histidine residues, damaging critical immunogenic epitopes. A sulfhydryl-based tumor Ag-carrier protein conjugation system using maleimide chemistry was used to enhance the efficacy of Id-KLH vaccines. Maleimide Id-KLH conjugates eradicated A20 lymphoma from most tumor-bearing mice, whereas glutaraldehyde Id-KLH had little efficacy. Maleimide Id-KLH elicited tumor-specific IgG Abs and T cells, with CD8(+) T cells being the major effectors of antilymphoma immunity. Maleimide Id-KLH vaccines also demonstrated superior efficacy in 38C13 and BCL-1 lymphoma models, where Abs were shown to be critical for protection. Importantly, standard glutaraldehyde Id-KLH conjugation procedures could result in "overconjugation" of the tumor Ag, leading to decreased efficacy, whereas the heterobifunctional maleimide-based conjugation yielded potent vaccine product regardless of conjugation duration. Under lysosomal processing conditions, the Id-carrier protein linkage was cleavable only after maleimide conjugation. Maleimide KLH conjugation was easily performed with human Igs analogous to those used in Id-KLH clinical trials. These data support the evaluation of sulfhydryl-based Id-KLH vaccines in lymphoma clinical trials and possibly the use of tumor Ag-carrier protein vaccines for other cancers.  相似文献   

4.
DNA vaccination has become an attractive immunization strategy against cancer. However, a major problem of DNA vaccination is its limited potency to be taken up by the antigen-presenting cells. In contrast, loss of immunogenic epitopes of tumour cells has urged the development of vaccines against multiple epitopes. In this study, we developed a novel strategy for the APC to efficiently cross-present a fusion tumour antigen, which contains both MHC class I-restricted and class II-restricted T-cell epitopes from Her-2/neu and p53 in a cognate manner. The N-terminus of the fusion Her-2/neu, p53 protein was linked to the sequence encoding for human secondary lymphoid-tissue chemokine for secretion and chemokinesis, and the C-terminus of the fusion protein was linked to a cell-binding domain of IgG (Fc portion, the cell-binding domain of IgG) for receptor-mediated internalization. Here, we show that the introduction of fused-gene DNA vaccine by gene gun reduced the size of established tumours and prolonged the lifespan of tumour-bearing mice. Results show that this DNA vaccination strategy can broadly enhance the antigen-specific cellular and humoral immune responses. This vaccine is capable of inducing adaptive immunity and may provide a novel, generic design for the development of therapeutic and preventive DNA vaccines.  相似文献   

5.
An intercellular spreading strategy using herpes simplex virus type 1 (HSV-1) VP22 protein is employed to enhance DNA vaccine potency of Leishmania major amastin antigen in BALB/c mice model. We evaluated the immunogenicity and protective efficacy of plasmid DNA vaccines encoding amastin-enhanced green fluorescent protein (EGFP) and VP22-amastin-EGFP. Optimal cell-mediated immune responses were observed in BALB/c mice immunized with VP22-amastin-EGFP as assessed by cytokine gene expression analysis using real time RT-PCR. Vaccination with the VP22-amastin-EGFP fusion construct elicited significantly higher IFN-gamma response upon antigen stimulation of splenocytes from immunized mice compared to amastin as a sole antigen. Mice immunized by VP22-amastin-EGFP showed partial protection following infectious challenge with L. major, as measured by parasite load in spleens. These results suggest that the development of DNA vaccines encoding VP22 fused to a target Leishmania antigen would be a promising strategy to improve immunogenicity and DNA vaccine potency.  相似文献   

6.
为阐明小鼠IgG2b-Fc对DNA疫苗免疫原性的增强作用,首先构建表达人类免疫缺陷病毒1型(human immunodeficiency virus type 1,HIV-1)CN54Gag基因的DNA疫苗及表达Gag与小鼠IgG2b-Fc融合基因的DNA疫苗,限制性酶切和DNA测序结果表明这两个疫苗均构建成功,蛋白免疫印迹结果也显示其正确表达。然后,利用上述DNA疫苗接种C57BL/6小鼠,比较两个DNA疫苗所诱导的特异性体液免疫反应和特异性细胞免疫反应。结果显示,融合表达小鼠IgG2b-Fc对特异性细胞免疫和体液免疫反应均有增强作用,但只有对特异性体液免疫反应的增强作用有统计学意义。  相似文献   

7.
Prostatic acid phosphatase (PAP) is a prostate cancer tumor antigen and a prostate-specific protein shared by rats and humans. Previous studies indicated that Copenhagen rats immunized with a recombinant vaccinia virus expressing human PAP (hPAP) developed PAP-specific cytotoxic T cells (CTL) with cross reactivity to rat PAP (rPAP) and evidence of prostate inflammation. Viral delivery of vaccine antigens is an active area of clinical investigation. However, a potential difficulty with viral-based immunizations is that immune responses elicited to the viral vector might limit the possibility of multiple immunizations. In this paper, we investigate the ability of another genetic immunization method, a DNA vaccine encoding PAP, to elicit antigen-specific CD8+ T cell immune responses. Specifically, Lewis rats were immunized with either a plasmid DNA-based (pTVG-HP) or vaccinia-based (VV-HP) vaccine each encoding hPAP. We determined that rats immunized with a DNA vaccine encoding hPAP developed a Th1-biased immune response as indicated by proliferating PAP-specific CD4+ and CD8+ cells and IFNγ production. Rats immunized with vaccinia virus encoding PAP did not develop a PAP-specific response unless boosted with a heterologous vaccination scheme. Most importantly, multiple immunizations with a DNA vaccine encoding the rat PAP homologue (pTVG-RP) could overcome peripheral self-tolerance against rPAP and generate a Th1-biased antigen-specific CD4+ and CD8+ T cell response. Overall, DNA vaccines provide a safe and effective method of generating prostate antigen-specific T cell responses. These findings support the investigation of PAP-specific DNA vaccines in human clinical trials.  相似文献   

8.
Vaccination with naked DNA holds great promise but immunogenicity needs to be improved. DNA constructs encoding bivalent proteins that bind antigen-presenting cells (APC) for delivery of antigen have been shown to enhance T and B cell responses and protection in tumour challenge experiments. However, the mechanism for the increased potency remains to be determined. Here we have constructed DNA vaccines that express the fluorescent protein mCherry, a strategy which allowed tracking of vaccine proteins. Transfected muscle fibres in mice were visualized, and their relationship to infiltrating mononuclear cells could be determined. Interestingly, muscle fibers that produced MHC class II-specific dimeric vaccine proteins with mCherry were for weeks surrounded by a localized intense cellular infiltrate composed of CD45+, MHC class II+ and CD11b+ cells. Increasing numbers of eosinophils were observed among the infiltrating cells from day 7 after immunization. The local infiltrate surrounding mCherry+ muscle fibers was dependent on the MHC II-specificity of the vaccine proteins since the control, a non-targeted vaccine protein, failed to induce similar infiltrates. Chemokines measured on day 3 in immunized muscle indicate both a DNA effect and an electroporation effect. No influence of targeting was observed. These results contribute to our understanding for why targeted DNA vaccines have an improved immunogenicity.  相似文献   

9.
Eo SK  Lee S  Chun S  Rouse BT 《Journal of virology》2001,75(2):569-578
In this study, we examined the effects of murine chemokine DNA, as genetic adjuvants given mucosally, on the systemic and distal mucosal immune responses to plasmid DNA encoding gB of herpes simplex virus (HSV) by using the mouse model. The CC chemokines macrophage inflammatory protein 1beta (MIP-1beta) and monocyte chemotactic protein 1 (MCP-1) biased the immunity to the Th2-type pattern as judged by the ratio of immunoglobulin isotypes and interleukin-4 cytokine levels produced by CD4(+) T cells. The CXC chemokine MIP-2 and the CC chemokine MIP-1alpha, however, mounted immune responses of the Th1-type pattern, and such a response rendered recipients more resistant to HSV vaginal infection. In addition, MIP-1alpha appeared to act via the upregulation of antigen-presenting cell (APC) function and the expression of costimulatory molecules (B7-1 and B7-2), whereas MIP-2 enhanced Th1-type CD4(+) T-cell-mediated adaptive immunity by increasing gamma interferon secretion from activated NK cells. Our results emphasize the value of using the mucosal route to administer DNA modulators such as chemokines that function as adjuvants by regulating the activity of innate immunity. Our findings provide new insight into the value of CXC and CC chemokines, which act on different innate cellular components as the linkage signals between innate and adaptive immunity in mucosal DNA vaccination.  相似文献   

10.
It is known that targeting of antigen to antigen presenting cells (APC) increases immune responses. However, it is unclear if more than one APC-specific targeting unit in the antigenic molecule will increase responses. To address this issue, we have here made heterodimeric vaccine molecules that each express four different fusion subunits. The bacterial ribonuclease barnase and its inhibitor barstar interact with high affinity, and the barnase-barstar complex was therefore used as a dimerization unit. Barnase and barstar were fused N-terminally with single chain fragment variable (scFv)s targeting units specific for either MHC class II molecules on APC or the hapten 5-iodo-4-hydroxy-3-nitrophenylacetyl (NIP). C-terminal antigenic fusions were either the fluorescent protein mCherry or scFv315 derived from myeloma protein M315. The heterodimeric vaccine molecules were formed both in vitro and in vivo. Moreover, the four different fused moieties appeared to fold correctly since they retained their specificity and function. DNA vaccination with MHC class II-targeted vaccine induced higher mCherry-specific IgG1 responses compared to non-targeted control. Since mCherry and MHC class II are in trans in this heterodimer, this suggests that heterodimeric proteins are formed in vivo without prior protein purification. Surprisingly, one targeting moiety was sufficient for the increased IgG1 response, and addition of a second targeting moiety did not increase responses. Similar results were found in in vitro T cell assays; vaccine molecules with one targeting unit were as potent as those with two. In combination with the easy cloning strategy, the heterodimeric barnase-barstar vaccine molecule could provide a flexible platform for development of novel DNA vaccines with increased potency.  相似文献   

11.
The potential for DNA vaccines encoding mutated versions of the same antigen to modulate immune responses in C3H/HeN mice was investigated. We created expression plasmids that encoded several versions of glycoprotein D (gD) from bovine herpesvirus 1, including authentic membrane-anchored glycoprotein (pSLRSV.AgD), a secreted glycoprotein (pSLRSV.SgD), and an intracellular protein (pSLRSV.CgD). Immunization of an inbred strain of mice with these plasmids resulted in highly efficacious and long-lasting humoral and cell-mediated immunity. We also demonstrated that the cell compartment in which plasmid-encoded gD was expressed caused a deviation in the serum immunoglobulin (Ig) isotype profile as well as the predominant cytokines secreted from the draining lymph node. Immunization of C3H/HeN mice with DNA vaccines encoding cell-associated forms of gD resulted in a predominance of serum IgG2a and gamma interferon-secreting cells within the spleens and draining lymph nodes. In contrast, mice immunized with a secreted form of this same antigen displayed immune responses characterized by greater levels of interleukin 4 in the draining lymph node and IgG1 as the predominant serum isotype. We also showed evidence of compartmentalization of distinct immune responses within different lymphoid organs.  相似文献   

12.
We describe the engineering of a human immunodeficiency virus-1 (HIV-1) p24-immunoglobulin A (IgA) antigen-antibody fusion molecule for therapeutic purposes and its enhancing effect on fused antigen expression in tobacco plants. Although many recombinant proteins have been expressed in transgenic plants as vaccine candidates, low levels of expression are a recurring problem. In this paper, using the HIV p24 core antigen as a model vaccine target, we describe a strategy for increasing the yield of a recombinant protein in plants. HIV p24 antigen was expressed as a genetic fusion with the alpha2 and alpha3 constant region sequences from human Ig alpha-chain and targeted to the endomembrane system. The expression of this fusion protein was detected at levels approximately 13-fold higher than HIV p24 expressed alone, and a difference in the behaviour of the two recombinant proteins during trafficking in the plant secretory pathway has been identified. Expressing the antigen within the context of alpha-chain Ig sequences resulted in the formation of homodimers and the antigen was correctly recognized by specific antibodies. Furthermore, the HIV p24 elicited T-cell and antibody responses in immunized mice. The use of Ig fusion partners is proposed as a generic platform technology for up-regulating the expression of antigens in plants, and may represent the first step in a strategy to design new vaccines with enhanced immunological properties.  相似文献   

13.
DNA vaccines based on subunits from pathogens have several advantages over other vaccine strategies. DNA vaccines can easily be modified, they show good safety profiles, are stable and inexpensive to produce, and the immune response can be focused to the antigen of interest. However, the immunogenicity of DNA vaccines which is generally quite low needs to be improved. Electroporation and co-delivery of genetically encoded immune adjuvants are two strategies aiming at increasing the efficacy of DNA vaccines. Here, we have examined whether targeting to antigen-presenting cells (APC) could increase the immune response to surface envelope glycoprotein (Env) gp120 from Human Immunodeficiency Virus type 1 (HIV-1). To target APC, we utilized a homodimeric vaccine format denoted vaccibody, which enables covalent fusion of gp120 to molecules that can target APC. Two molecules were tested for their efficiency as targeting units: the antibody-derived single chain Fragment variable (scFv) specific for the major histocompatilibility complex (MHC) class II I-E molecules, and the CC chemokine ligand 3 (CCL3). The vaccines were delivered as DNA into muscle of mice with or without electroporation. Targeting of gp120 to MHC class II molecules induced antibodies that neutralized HIV-1 and that persisted for more than a year after one single immunization with electroporation. Targeting by CCL3 significantly increased the number of HIV-1 gp120-reactive CD8+ T cells compared to non-targeted vaccines and gp120 delivered alone in the absence of electroporation. The data suggest that chemokines are promising molecular adjuvants because small amounts can attract immune cells and promote immune responses without advanced equipment such as electroporation.  相似文献   

14.
DNA vaccines have been used widely in experimental primate models of human immunodeficiency virus (HIV), but their effectiveness has been limited. In this study, we evaluated three technologies for increasing the potency of DNA vaccines in rhesus macaques. These included DNA encoding Sindbis virus RNA replicons (pSINCP), cationic poly(lactide-co-glycolide) (PLG) microparticles for DNA delivery, and recombinant protein boosting. The DNA-based pSINCP replicon vaccines encoding HIV Gag and Env were approximately equal in potency to human cytomegalovirus (CMV) promoter-driven conventional DNA vaccines (pCMV). The PLG microparticle DNA delivery system was particularly effective at enhancing antibody responses induced by both pCMV and pSINCP vaccines and had less effect on T cells. Recombinant Gag and Env protein boosting elicited rapid and strong recall responses, in some cases to levels exceeding those seen after DNA or DNA/PLG priming. Of note, Env protein boosting induced serum-neutralizing antibodies and increased frequencies of gamma interferon-producing CD4 T cells severalfold. Thus, PLG microparticles are an effective means of delivering DNA vaccines in nonhuman primates, as demonstrated for two different types of DNA vaccines encoding two different antigens, and are compatible for use with DNA prime-protein boost regimens.  相似文献   

15.
Intramuscular needle injection of HIV-1 DNA vaccines typically elicits weak immune responses in immunized individuals. To improve such responses, the immunogenicity of a vaccine consisting of electroporated DNA followed by intramuscular protein boost was evaluated in rabbits and macaques. In macaques, electroporation of low dose DNA encoding HIV-1 env followed by gp120 protein elicited Th1 cytokines and functional CTL that persisted for over 1 year. In both macaques and rabbits, robust anti-envelope antibodies, elicited by electroporated DNA, were augmented by gp120 protein and such responses neutralized sensitive SHIV isolates. These findings highlight efficient priming of immune responses by electroporated DNA that in conjunction with protein boost may give rise to long-term immunity in immunized hosts.  相似文献   

16.
G Ge  S Wang  Y Han  C Zhang  S Lu  Z Huang 《PloS one》2012,7(7):e41573
Although the use of recombinant hepatitis B virus surface (HBsAg) protein vaccine has successfully reduced global hepatitis B infection, there are still a number of vaccine recipients who do not develop detectable antibody responses. Various novel vaccination approaches, including DNA vaccines, have been used to further improve the coverage of vaccine protection. Our previous studies demonstrated that HBsAg-based DNA vaccines could induce both humoral and CMI responses in experimental animal models. However, one form of the the HBsAg antigen, the large S antigen (HBs-L), expressed by DNA vaccine, was not sufficiently immunogenic in eliciting antibody responses. In the current study, we produced a modified large S antigen DNA vaccine, HBs-L(T), which has a truncated N-terminal sequence in the pre-S1 region. Compared to the original HBs-L DNA vaccine, the HBs-L(T) DNA vaccine improved secretion in cultured mammalian cells and generated significantly enhanced HBsAg-specific antibody and B cell responses. Furthermore, this improved HBsL DNA vaccine, along with other HBsAg-expressing DNA vaccines, was able to maintain predominantly Th1 type antibody responses while recombinant HBsAg protein vaccines produced in either yeast or CHO cells elicited mostly Th2 type antibody responses. Our data indicate that HBsAg DNA vaccines with improved immunogenicity offer a useful alternative choice to recombinant protein-based HBV vaccines, particularly for therapeutic purposes against chronic hepatitis infection where immune tolerance led to poor antibody responses to S antigens.  相似文献   

17.
Recombinant Semliki Forest virus (rSFV) enables high-level, transient expression of heterologous proteins in vivo, and is believed to be a superior vector for genetic vaccination, compared with the conventional DNA plasmid. Nonetheless, the efficacy of rSFV-based vaccine in eliciting human immune responses has not been tested. We used a Trimera mouse model, consisting of lethally irradiated BALB/c host reconstituted with nonobese diabetes/severe combined immunodeficiency (NOD/SCID) bone marrow plus human peripheral blood mononuclear cells (PBMCs), to characterize the in vivo immune responses against rSFV-encoded human melanoma antigen MAGE-3. MAGE-3–specific antibody and cytotoxic T lymphocyte (CTL) activity were detected by ELISA and 51Cr-release assay, respectively, and the responses were compared with those induced by a plasmid DNA vaccine encoding the same antigen. The results showed that rSFV vaccine could elicit human MAGE-3–specific antibody and CTL response in the Trimera mice, and the antitumor responses were more potent than those by plasmid DNA vaccination. This is the first report to evaluate human immune responses to an rSFV-based tumor vaccine in the Trimera mouse model. Our data suggest that rSFV vector is better than DNA plasmid in inducing protective immunity, and the Trimera model may serve as a general tool to evaluate the efficacy of tumor vaccines in eliciting human primary immune response in vivo.  相似文献   

18.
BACKGROUND: We have previously shown that xenogenic DNA vaccines encoding rat neu and melanosomal differentiation Ag induce tumor immunity. Others have developed vaccines targeting tumor neovasculature. Tumor endothelial marker 8 (TEM8) is expressed in the neovasculature of human tumors, and in the mouse melanoma B16, but its expression is limited in normal adult tissues. We describe a DNA vaccine combining xenogeneic tumor Ag and TEM8. METHODS: In-situ hybridization was used to detect TEM8 RNA in mouse tumors. Mice transgenic for the rat neu proto-oncogene were immunized with DNA vaccines encoding TEM8 and the extracellular domain of rat neu and challenged with the 233-VSGA1 breast cancer cell line. In parallel experiments, C57BL/6 mice were immunized with TEM8 and human tyrosinase-related protein 1 (hTYRP1/hgp75) and challenged with B16F10 melanoma. RESULTS: TEM8 was expressed in the stroma of transplantable mouse breast and melanoma tumors. In both model systems, TEM8 DNA had no activity as a single agent but significantly enhanced the anit-tumor immunity of neu and hTYRP1/hgp75 DNA vaccines when given in concert. The observed synergy was dependent upon CD8+ T cells, as depletion of this cell population just prior to tumor challenge obviated the effect of the TEM8 vaccine in both tumor models. DISCUSSION: A local immune responses to TEM8 may increase inflammation or tumor necrosis within the tumor, resulting in improved Ag presentation of HER2/neu and hTYRP1/hgp75. Alternatively, TEM8 expression in host APC may act more as an adjuvant than an immunologic target.  相似文献   

19.
The antibody-inducing properties of a bacterial/viral bivalent DNA vaccine (pRECFA), expressing a peptide composed of N- and C-terminal amino acid sequences of the herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) fused with an inner segment encoding the major structural subunit of enterotoxigenic Escherichia coli (ETEC) CFA/I fimbriae (CFA/I), was evaluated in BALB/c mice following intramuscular immunization. The bivalent pRECFA vaccine elicited serum antibody responses, belonging mainly to the IgG2a subclass, against both CFA/I and HSV gD proteins. pRECFA-elicited antibody responses cross-reacted with homologous and heterologous ETEC fimbrial antigens as well as with type 1 and type 2 HSV gD proteins, which could bind and inactivate intact HSV-2 particles. On the other hand, CFA/I-specific antibodies could bind but did not neutralize the adhesive functions of the bacterial CFA/I fimbriae. In spite of the functional restriction of the antibodies targeting the bacterial antigen, the present evidence suggests that fusion of heterologous peptides to the HSV gD protein represents an alternative for the design of bivalent DNA vaccines able to elicit serum antibody responses.  相似文献   

20.
Mucosal immunization with subunit vaccines requires new types of antigen delivery vehicles and adjuvants for optimal immune responses. We have developed a non-living and non-genetically modified gram-positive bacterial delivery particle (GEM) that has built-in adjuvant activity and a high loading capacity for externally added heterologous antigens that are fused to a high affinity binding domain. This binding domain, the protein anchor (PA), is derived from the Lactococcus lactis AcmA cell-wall hydrolase, and contains three repeats of a LysM-type cell-wall binding motif. Antigens are produced as antigen-PA fusions by recombinant expression systems that secrete the hybrid proteins into the culture growth medium. GEM particles are then used as affinity beads to isolate the antigen-PA fusions from the complex growth media in a one step procedure after removal of the recombinant producer cells. This procedure is also highly suitable for making multivalent vaccines. The resulting vaccines are stable at room temperature, lack recombinant DNA, and mimic pathogens by their bacterial size, surface display of antigens and adjuvant activity of the bacterial components in the GEM particles. The GEM-based vaccines do not require additional adjuvant for eliciting high levels of specific antibodies in mucosal and systemic compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号