首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Members of the sea anemone genus Anthopleura are familiar constituents of rocky intertidal communities. Despite its familiarity and the number of studies that use its members to understand ecological or biological phenomena, the diversity and phylogeny of this group are poorly understood. Many of the taxonomic and phylogenetic problems stem from problems with the documentation and interpretation of acrorhagi and verrucae, the two features that are used to recognize members of Anthopleura. These anatomical features have a broad distribution within the superfamily Actinioidea, and their occurrence and exclusivity are not clear. We use DNA sequences from the nucleus and mitochondrion and cladistic analysis of verrucae and acrorhagi to test the monophyly of Anthopleura and to evaluate the pattern of distribution of acrorhagi and verrucae. We find that Anthopleura is paraphyletic: although species of the genus cluster together, some groups also include members of genera like Bunodosoma, Aulactinia, Oulactis, and Actinia. This paraphyly is explained in part by the discovery that acrorhagi and verrucae are pleisiomorphic for the subset of Actinioidea studied.  相似文献   

2.
Phylogenetic relationships within the Parmeliaceae are analysed cladistically on the basis of DNA characters from partial β-tubulin, partial glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and ITS sequences. 100 taxa representing 73 of the 88 genera currently recognised are included in the analyses. Eight monophyletic groups including two or more genera were identified in the tree calculated from the combined data matrix. Three of the groups cover almost half of the species of the family. The largest and strongest supported group includes seven genera with their distribution centres in the Southern Hemisphere: Almbornia, Chondropsis, Karoowia, Namakwa, Neofuscelia, Xanthomaculina and Xanthoparmelia. The second group is a clade of four essentially tropical genera: Concamerella, Flavoparmelia, Parmotrema and Rimelia. The third large group with strong support is the core of cetrarioid lichens, distributed primarily in cold areas of the Northern Hemisphere. The genus Parmelia sensu Hale is not closely related with most of its segregates. One new combination, Cetrariella commixta, is proposed. Coelopogon abraxas is reported from South America for the first time.  相似文献   

3.
 Using two molecular data sets, the plastid atpB-rbcL intergenic spacer region and the nuclear ribosomal internal transcribed spacer regions (ITS), the taxonomic affinities of two newly available Anemone species from the Southern Hemisphere were tested. From previous work based on morphology and geographic distribution, it was assumed that A. tenuicaulis from New Zealand was most closely related to the Tasmanian A. crassifolia, whereas the affinity of A. antucensis from Chile and Argentina was regarded as uncertain. Analyses of molecular sequence data from these and 18 other species of Anemone s.lat. (with Clematis as outgroup) result in trees largely congruent with past analyses based on morphology and plastid restriction site data. They strongly support A. richardsonii and A. canadensis (with boreal distributions in the Northern Hemisphere) as paraphyletic to a well supported Southern Hemisphere clade consisting of A. antucensis and A. tenuicaulis. This group of four species is part of an otherwise predominantly Northern Hemisphere assemblage (subgenus Anemonidium s.lat., chromosome base number x=7), including A. narcissiflora, A. obtusiloba, A. keiskeana and A. (=Hepatica) americana. All other austral species included in the present sampling, A. crassifolia (Tasmania), A. knowltonia (=Knowltonia capensis), and A. caffra (both South African), form a separate clade, sister to A. (=Pulsatilla) occidentalis and other Northern Hemisphere anemones (subgenus Anemone s.lat., x=8). Possible phytogeographical links of the Southern Hemisphere species are discussed. Received April 23, 2001 Accepted October 4, 2001  相似文献   

4.
Phylogenetic relationships, limits of species, and genera within Lycoperdaceae, were inferred by use of ITS and LSU nu-rDNA sequence data. Lycoperdaceae was confirmed as monophyletic, and Mycenastrum corium as a sister taxon to the ingroup. Four major clades were identified and received weak to moderate support and correspond with the genera Lycoperdon, Bovista, Calvatia, and Disciseda. The Lycoperdon clade includes species from Lycoperdon, Vascellum, Morganella, Handkea, Bovistella, and Calvatia. The structure within the Lycoperdon clade is unresolved and several clades are more or less unsupported, which suggests treating the supported Lycoperdon clade as the genus Lycoperdon. L. nigrescens and L. caudatum occur on single branches and their phylogenetic positions could not be resolved. The phylogenetic analyses identified 31 species of Lycoperdon, 11 species of Bovista, six species of Calvatia, and two species of Disciseda. In Lycoperdon three new species were recognized. A new species closely related to B. limosa is identified and discussed. A classification of Lycoperdaceae is proposed based on the results of the phylogenetic analyses. Morphological characters of species within and among identified clades are discussed.  相似文献   

5.
Mycena haushoferi, a new species of the section Intermediae collected in Bavaria, is described and compared with four other species of the sect. Intermediae known from the Northern Hemisphere and with M. cystidiosa and M. metuloidifera, two species of sect. Metuloidiferae. The five known species of Northern Hemisphere of section Intermediae are keyed out.  相似文献   

6.
Cariniana as previously circumscribed is a genus of 16 species restricted to neotropical forest habitats on well-drained sites. A phylogenetic analysis of the genus based on 33 morphological and anatomical characters was undertaken. The results show that Cariniana consists of two clades: the Allantoma/Cariniana decandra clade includes Allantoma lineata and seven species of actinomorphic-flowered Cariniana and is characterized by 5-merous flowers, carnose petals, incurved petal apex, scarcely lobed calyces, eucamptodromous secondary veins, dichotomizing venation, and poorly developed areolation; the C. legalis clade is made up of nine species and is characterized by an obliquely zygomorphic androecium, reticulate tertiary venation, and anomocytic stomata. The actinomorphic-flowered Cariniana are more closely related to the monotypic Allantoma lineata than they are to the species of the C. legalis clade. In order to reflect these relationships, Cariniana is divided into two genera: species in the C. legalis clade, which includes the generic type C. legalis, remain as Cariniana while species of Cariniana in the Allantoma/Cariniana decandra clade are transferred to Allantoma. The following new combinations are proposed: Allantoma decandra, A. integrifolia, A. kuhlmannii, A. pluriflora (a nomen novum for Cariniana multiflora because Allantoma multiflora is a synonym of Couratari multiflora), A. pachyantha, A. pauciramosa, and A. uaupensis.  相似文献   

7.
Veratrum (Melanthiaceae) comprises ca. 27 species with highly variable morphology. This study aims to construct the molecular phylogeny of this genus to infer its floral evolution and historical biogeography, which have not been examined in detail before. Maximum parsimony, maximum likelihood, and Bayesian analyses were performed on the separate and combined ITS, trnL-F, and atpB-rbcL sequences to reconstruct the phylogenetic tree of the genus. All Veratrum taxa formed a monophyletic group, within which two distinct clades were distinguished: species with white-to-green perianth formed one highly supported clade, and the species with black-purple perianth constituted another highly supported clade. Phylogenetic inference on flower color evolution suggested that white-to-green perianth was a plesiomorphic state and black-purple perianth was apomorphic for Veratrum. When species distribution areas were traced as a multi-state character, parsimonious optimization inferred that Veratrum possibly originated in East Asia. Our study confirmed previous phylogenetic and taxonomic suggestions on this genus and provided a typical example of plant radiation across the Northern Hemisphere.  相似文献   

8.
Golovinomyces is a strictly herb-parasitic genus in the Erysiphaceae. Host–parasite co-speciation was reported recently between the genus Golovinomyces and Asteraceae from molecular phylogenetic analyses. The Asteraceae originated in South America and latterly expanded their geographic distribution into the Northern Hemisphere. If the co-speciation between Golovinomyces and Asteraceae originated in South America, the geographic origin of Golovinomyces could be assumed to be South America. To address this question, Golovinomyces species from hosts of the tribe Mutisieae, an asteraceous tribe endemic to South America, were collected and the ITS and 28S rDNA regions sequenced. Results indicate that Oidium mutisiae and Golovinomyces leuceriae isolated from the Mutisieae do not belong at the base of the Golovinomyces tree. Instead, they are situated separately within two different clades of Golovinomyces isolates from the Northern Hemisphere. Therefore, the tribe Mutisieae is not the most early host of Golovinomyces. Present results suggest that Golovinomyces originated in the Northern Hemisphere, and not in South America. The new species Oidium reginae for the previous O. mutisiae on Mutisia decurrens is proposed.  相似文献   

9.
Acontias plumbeus has traditionally been considered a monotypic, invariable species, a fact that highly contrasts with documented examples of high phylogenetic complexity and phenotypic diversity in other members of the Acontinae. We employed mitochondrial and nuclear DNA markers to investigate genetic structuring among A. plumbeus populations and the relationship between A. plumbeus and the closely related A. poecilus. Molecular genetic analyses revealed three clades with non‐overlapping distributions: an Eastern clade, a widely distributed Northern clade, and a Southern clade that includes topotypical A. poecilus. Morphometric analyses of preserved specimens showed that Southern clade populations are comprised of individuals with absolute and proportionally smaller body sizes than their Northern and Eastern relatives. Phylogenetic affinities within A. plumbeus indicate a complex biogeographic scenario within South Africa and suggest that A. poecilus should be considered a junior synonym of A. plumbeus instead of a truly valid species.  相似文献   

10.
Brown algae of the order Laminariales, commonly referred to as kelps, are the largest and most productive primary producers in the coastal inshore environment. The genus Ecklonia (Lessoniaceae, Phaeophyceae) consists of seven species with four species in the Northern Hemisphere and three in the Southern Hemisphere. It was recently transferred to the family Lessoniaceae based on phylogenetic analyses of nuclear and chloroplastic markers, though the type of the genus was not included and its relationship with allied genera Eckloniopsis and Eisenia remained unresolved. The present study is the first to produce a phylogeny focussed on the genus Ecklonia. It included sequences from nuclear, mitochondrial, and chloroplastic DNA, for most of the distribution range of the three current Southern Hemisphere species (Ecklonia radiata, Ecklonia maxima, and a sample of a putative Ecklonia brevipes specimen), sequences for East Asiatic species (Ecklonia cava, Ecklonia kurome, and Ecklonia stolonifera), as well as the closely related genera Eckloniopsis and Eisenia. Results confirmed E. radiata and E. maxima as two distinct species in South Africa, E. radiata as a single species throughout the Southern Hemisphere (in South Africa, Australia, and New Zealand) and East Asiatic species as a distinct lineage from the Southern Hemisphere clade. Results further pointed out a close sister relationship between Eckloniopsis radicosa and two Eisenia species (including the type species: Eisenia arborea) to the genus Ecklonia suggesting that the genera Eckloniopsis and Eisenia are superfluous.  相似文献   

11.
Recent phylogenetic studies of the diatoms indicate that members of the order Thalassiosirales occupy an interesting position in the diatom evolutionary tree. Despite their radial morphology and scaly auxospores, they are consistently recovered in molecular analyses as a member of subdivision Bacillariophytina and a sister clade to non‐fultoportulate and non‐radial lithodesmioids. This study included 46 species from nine traditionally accepted extant genera, and analyzed 43 nuclear small subunit (SSU) rRNA sequences in parallel with a survey of the variation in fultoportula structure. Three possible scenarios leading to the evolution of the fultoportula are discussed in the context of molecular and morphological similarities between the examined Thalassiosirales and their SSU rRNA sister clade Lithodesmiales. We speculate that the fultoportula might be derived by a modification of either a cribrum in an areola (fultoportula within an areola), or structures similar to marginal ridges now seen in lithodesmioids around a cluster of poroids (fultoportula in a tube), or finally, that the central fultoportula may have an origin different from the marginal fultoportulae. Our data confirm that fultoportula‐bearing diatoms constitute a natural phylogenetic group. The families Thalassiosiraceae, Skeletonemaceae, and Stephanodiscaceae and the genus Thalassiosira Cleve were unexpectedly found to be paraphyletic. Further, Cyclotella Kutz. and Stephanodiscus Ehr. may not be closely related and some species of these genera are more closely allied to other species of Thalassiosira. The generitype, T. nordenskioeldii, is embedded within a large poorly structured cluster of species that includes several members of Thalassiosira, Planktoniella sol, Minidiscus trioculatus, and two members of Stephanodiscus. An emendment of the order Lithodesmiales and the family Lauderiaceae are proposed.  相似文献   

12.
Phylogenetic relationships of the genera Russula and Lactarius were investigated using sequence data from the nuclear-encoded large subunit ribosomal DNA (LSU rDNA). Ninety-five sequences belonging to the genera Russula and Lactarius, including 31 sequences from the databases, were used in this study. Analysis of the LSU rDNA region indicated that Russulaceae was divided into six groups (group A–F) in the neighbor-joining (NJ) tree. Lactarius consisted of one large clade (group A). Therefore, this genus was found to be monophyletic. However, the monophyly of genus Russula remained unclear. The genus Russula consisted of five groups in the NJ tree. Group B includes sects. Plorantes and Archaeinae (Heim), and group C includes sects. Delicoarchaeae and Russula in the NJ tree. Neither of the two groups formed a single clade in the most parsimonius (MP) tree. Group D includes many taxa having colored spore prints and amyloid in suprahilar plage of spores in sect. Russula and sect. Rigidae. Group E consists of only sect. Compactae and is further divided into three subclades, represented by R. densifolia, R. nigricans, and R. subnigricans, respectively. Group F contains sects. Rigidae, Ingratae, and Pelliculariae. Sect. Compactae and sect. Plorantes should not be as closely related as previously supposed. Russula earlei may be placed in sect. Archaeinae Heim. Russula flavida (subsect. Amoeninae) is placed in sect. Russula with R. aurea with a high bootstrap value (99%). The nuclear LSU rDNA region is a useful tool in recognization of species of Russulaceae and may provide information concerning phylogenetic relationships between the genera Russula and Lactarius.  相似文献   

13.
The genus Betula comprises various species in boreal and temperate climate zones of the Northern Hemisphere. The taxonomy of Betula is controversial and complicated by parallel evolution of morphological traits, polyploidization events, and extensive hybridization and introgression among species. Multilocus molecular data from AFLPs were used to provide phylogenetic information. A large number of polymorphic markers (321 variable bands) were produced in 107 Betula accessions from 23 species and 11 hybrids. The AFLP results were largely congruent with the results from previously examined nuclear DNA markers. Four distinct subgenera were identified within the genus Betula. These subgenera were partly in disagreement with the traditional (but disputed) division of the genus. In addition, the results indicated several groups of conspecific taxa. The majority of the species fell within subgenus Betula and shared a high degree of similarity with B. pendula. All hybrids were associated with this group, and the AFLP data contained signals on putative parents for some of the interspecific hybrids. Subgenus Chamaebetula and part of the Neurobetula species should be merged with Betula. The subgenera Betulenta, Betulaster, and the remaining part of Neurobetula are distinct and well supported. Although our results indicate that four major taxonomic groups can be recognized within the genus Betula, the relationship between them remains unclear. This may be due to the occurrence of hybridization and introgression, which would have a homogenizing effect on the relationships between species. Naturally occurring Betula species of hybrid origin may explain the low bootstrap values within the Betula clade. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Phylogenetic analysis of the plastid (chloroplast) DNA matK gene of Zosteraceae species was undertaken. A molecular phylogenetic tree based on matK sequence data showed the monophyly of Heterozostera tasmanica and subgenus Zosterella and did not support the separation of Heterozostera from the genus Zostera. The tree based on matK supported the monophyly of the subgenus Zostera, and showed that Zosteraceae consist of three main groups: Phyllospadix, which is clearly defined by being dioecious; the subgenus Zosterella and Heterozostera; and the subgenus Zostera. Character-state reconstruction of chromosome number and geographic distribution for our molecular phylogenetic tree showed that 2n=12 is a plesiomorphic character for Zostera and Heterozostera, that the chromosome number was doubled or tripled in two lineages, and that the initial speciation of Zostera and Heterozostera occurred in the Northern Hemisphere. The matK tree showed the close affinity of Z. noltii and Z. japonica, which have disjunct distributions. Zostera marina, which is the only widely distributed species in the subgenus Zostera, also occurring in the northern Atlantic, was shown to be embedded within other subgenus Zostera species.  相似文献   

15.
Species of Apiognomonia with their Discula anamorphic states in the Gnomoniaceae, Diaporthales, are known throughout the temperate Northern Hemisphere and cause diseases such as sycamore or plane tree anthracnose. The genus Apiognomonia was described based on A. veneta as the type species; however, there has been disagreement about whether or not A. veneta is a synonym of A. errabunda. Using morphological, ecological, and DNA sequence data we conclude that A. errabunda and A. veneta are different species, although very closely related; thus, A. veneta is the correct name for the type species of Apiognomonia. This conclusion is based on a combined analysis of sequences from the ITS regions of nuclear rDNA for 51 isolates from host plants of eight genera and intron regions from actin, calmodulin and translation elongation factor 1-alpha for over 25 isolates. The type species of the genus Discula is D. nervisequa, the earliest available epithet for D. platani, the lectotype of Discula. D. nervisequa is the anamorph of A. veneta. Based on an examination of the type specimen, we determined that the commonly used name for the anamorph of A. errabunda, D. umbrinella, refers to another species. A. veneta and A. errabunda including their anamorphs are described and illustrated. An account of all synonyms and excluded synonyms is presented.  相似文献   

16.
17.
Molecular and morphological techniques were used to examine New Zealand ascomycetous truffle (Tuber spp.) samples deposited in the Plant & Food Research and Landcare Research Fungi Herbarium collections. Truffles have been found on the roots of many Northern Hemisphere tree species growing in New Zealand, but not on indigenous plant species. Comparisons of ribosomal DNA sequences proved to be a simple and rapid method to identify the Tuber species. Tuber maculatum was by far the predominant species in New Zealand, and was distributed throughout the country. A single truffle sample from Christchurch was identified as T. rufum. Two other groups of truffle samples from Pinus spp. were closely related to anonymous Northern Hemisphere Tuber sequences. Ascocarps with these sequences have not previously been described. Specific primers for the PCR detection of these Pinus isolates were developed. None of these Tuber species accidentally introduced to New Zealand is of economic value.  相似文献   

18.
Carl E. Lewis 《Brittonia》2002,54(2):78-91
Subtribe Oncospermatinae (Arecaceae: Arecoideae: Areceae) is a diverse group of spiny Old World palms. The subtribe includesOncosperma, a widespread Asian genus of five species, along with seven monotypic genera, all endemic to the Seychelles and Mascarene Islands of the western Indian Ocean. A phylogenetic analysis was conducted in order to test the monophyly of subtribe Oncospermatinae with respect to other Old World genera of tribe Areceae. A matrix of 38 morphological characters was scored for 29 taxa, including 11 species of the Oncospermatinae. A single most parsimonious tree was found, resolving the subtribe as a polyphyletic group of two distinct clades. One clade containingAcanthophoenix, Deckenia, Oncosperma, andTectiphiala was placed as sister to a large group that includes members of subtribes Archontophoenicinae, Arecinae, Iguanurinae, and Ptychospermatinae. The other clade of Oncospermatinae, including the Seychelles endemic generaNephrosperma, Phoenicophorium, Roscheria, andVerschaffeltia, was resolved as sister to the Madagascar endemic subtribe Masoalinae, and may have arisen in the western Indian Ocean region.  相似文献   

19.
Sivakumaran  Swarna  Bridge  Paul  Roberts  Peter 《Mycopathologia》2003,156(3):157-162
The three accepted species of Filobasidiella, F. neoformans, F. depauperata, and F. lutea, are compared morphologically and by molecular analysis. Sequences of the internally transcribed spacer (ITS) and the small subunit (SSU) gene of the ribosomal RNA (rRNA) gene cluster were obtained, and analysed by Neighbor-joining and Maximum parsimony methods. The three species of Filobsidiella are shown to form a single monophyletic clade, rooted by Tremella mesenterica. F. lutea was recovered as a distinct, but closely related taxon with the Filobasidiella clade. This is the first report of DNA sequences from herbarium specimens of F. lutea.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号