首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mitosis-specific phosphorylation by cdc2 kinase causes nonmuscle caldesmon to dissociate from microfilaments (Yamashiro, S., Yamakita, Y., Ishikawa, R., and Matsumura, F. (1990) Nature 344, 675-678; Yamashiro, S., Yamakita, Y., Hosoya, H., and Matsumura, F. (1991) Nature 349, 169-172). To explore the function of mitosis-specific phosphorylation of caldesmon, in vivo- and in vitro-phosphorylated caldesmons have been characterized. We have found that both in vivo and in vitro phosphorylation of caldesmon causes similar changes in the properties, including reduction in actin, calmodulin, and myosin binding of caldesmon, and a decrease in the inhibition of actomyosin ATPase by caldesmon. Rat non-muscle caldesmon is phosphorylated in vitro up to a ratio of 7 mol/mol of protein. Actin-binding constants of both a high affinity (K a = 1.2 x 10(7) M-1) and a low affinity (K a = 1 x 10(6) M-1) site of unphosphorylated caldesmon are reduced to less than 10(5) M-1 with 5 mol of phosphate incorporation per mol of protein. Actin-bound caldesmon can be phosphorylated by cdc2 kinase, which results in the dissociation of caldesmon from F-actin. Caldesmon has a second myosin-binding site in the C terminus, in addition to the N terminus myosin-binding domain previously reported, because the bacterially expressed C terminus of caldesmon shows binding to myosin. Phosphorylation of the C-terminal fragments decreases their myosin-binding affinity as observed with intact caldesmon. These results suggest that caldesmon loses most of its in vitro functions during mitosis as a result of phosphorylation, which may be required for the reorganization of microfilaments during mitosis.  相似文献   

2.
We measured the concentration of calmodulin required to reverse inhibition by caldesmon of actin-activated myosin MgATPase activity, in a model smooth-muscle thin-filament system, reconstituted in vitro from purified vascular smooth-muscle actin, tropomyosin and caldesmon. At 37 degrees C in buffer containing 120 mM-KCl, 4 microM-Ca2+-calmodulin produced a half-maximal reversal of caldesmon inhibition, but more than 300 microM-Ca2+-calmodulin was necessary at 25 degrees C in buffer containing 60 mM-KCl. The binding affinity (K) of caldesmon for Ca2+-calmodulin was measured by a fluorescence-polarization method: K = 2.7 x 10(6) M-1 at 25 degrees C (60 mM-KCl); K = 1.4 x 10(6) M-1 at 37 degrees C in 70 mM-KCl-containing buffer; K = 0.35 x 10(6) M-1 at 37 degrees C in 120 mM-KCl- containing buffer (pH 7.0). At 37 degrees C/120 mM-KCl, but not at 25 degrees C/60 mM-KCl, Ca2+-calmodulin bound to caldesmon bound to actin-tropomyosin (K = 2.9 x 10(6) M-1). Ca2+ regulation in this system does not depend on a simple competition between Ca2+-calmodulin and actin for binding to caldesmon. Under conditions (37 degrees C/120 mM-KCl) where physiologically realistic concentrations of calmodulin can Ca2+-regulate synthetic thin filaments, Ca2+-calmodulin reverses caldesmon inhibition of actomyosin ATPase by forming a non-inhibited complex of Ca2+-calmodulin-caldesmon-(actin-tropomyosin).  相似文献   

3.
Inositol 1,4,5-trisphosphate (IP3) releases internal stores of calcium by binding to a specific membrane receptor which includes both the IP3 recognition site as well as the associated calcium channel. The IP3 receptor is regulated by ATP, calcium, and phosphorylation by protein kinase A, protein kinase C, and calcium/calmodulin-dependent protein kinase II. Its cDNA sequence predicts at least two consensus sequences where nucleotides might bind, and direct binding of ATP to the IP3 receptor has been demonstrated. In the present study, we demonstrate autophosphorylation of the purified and reconstituted IP3 receptor on serine and find serine protein kinase activity of the IP3 receptor toward a specific peptide substrate. Several independent purification procedures do not separate the IP3 receptor protein from the phosphorylating activity, and many different protein kinase activators and inhibitors do not identify protein kinases as contaminants. Also, renaturation experiments reveal autophosphorylation of the monomeric receptor on polyvinylidene difluoride membranes.  相似文献   

4.
Disulfide cross-linking of caldesmon to actin.   总被引:2,自引:0,他引:2  
Treatment of a solution of actin and smooth muscle caldesmon with 5,5'-dithiobis(2-nitrobenzoic acid) results in the formation of a disulfide cross-link between the C-terminal penultimate residue Cys-374 of actin and Cys-580 in caldesmon's C-terminal actin-binding region. Therefore, these 2 residues are close in the actin-caldesmon complex. Since myosin also binds to actin in the vicinity of Cys-374 and since caldesmon inhibits actomyosin ATPase activity by the reduction of myosin binding to actin, then the inhibition might be by caldesmon sterically hindering or blocking myosin's interaction with actin. [Ca2+]Calmodulin, which reverses the inhibition of the ATPase activity, decreases the yield of the cross-linked species, suggesting a weakening of the caldesmon-actin interaction in the cross-linked region. It is possible to maximally cross-link one caldesmon molecule/every three actin monomers, in the absence or presence of tropomyosin, clearly ruling out an elongated, end-to-end alignment of caldesmon on the actin filament in vitro, and raising the possibility that the N-terminal part of caldesmon projects out from the filament. Reaction of 5,5'-dithiobis(2-nitrobenzoic acid)-modified actin with caldesmon leads to the same disulfide cross-linked product between actin and caldesmon Cys-580, enabling the specific labeling of the other caldesmon cysteine, residue 153, in the N-terminal part of caldesmon with a spectroscopic probe.  相似文献   

5.
Several members of the 70 kDa heat shock protein group are known to be phosphorylated in vivo and have recently been found to undergo a Ca(2+)-stimulated autophosphorylation. The characteristics of the autophosphorylation reaction with Escherichia coli DnaK the mitochondrial and chloroplast homologs, and the endoplasmic reticulum Bip/Grp78 are discussed. Some common features are a requirement for Ca2+, inhibition by Mg2+ and phosphorylation solely on a threonine residue. Although the role of autophosphorylation of these proteins is not clear, it is known that the level of phosphorylation of some Hsp70 proteins in vivo is responsive to stress and other cellular conditions.  相似文献   

6.
The phosphorylation of caldesmon was studied to determine if kinase activity reflected either an endogenous kinase or caldesmon itself. Titration of kinase activity with calmodulin yielded maximum activity at substoichiometric ratios of calmodulin/caldesmon. The sites of phosphorylation on caldesmon for calcium/calmodulin-dependent protein kinase II and endogenous kinase were the same, but distinct from protein kinase C sites. Phosphorylation in the presence of Ca2+ and calmodulin resulted in a subsequent increase of endogenous kinase activity in the absence of Ca2+. These results suggest that caldesmon is not a protein kinase and that kinase activity in caldesmon preparations is due to calcium/calmodulin-dependent protein kinase II.  相似文献   

7.
Properties of caldesmon isolated from chicken gizzard.   总被引:5,自引:4,他引:1       下载免费PDF全文
Chicken gizzard smooth muscle contains two major calmodulin-binding proteins: caldesmon (11.1 microM; Mr 141 000) and myosin light-chain kinase (4.6 microM; Mr 136 000), both of which are associated with the contractile apparatus. The amino acid composition of caldesmon is distinct from that of myosin light-chain kinase and is characterized by a very high glutamic acid content (25.5%), high contents of lysine (13.6%) and arginine (10.3%), and a low aromatic amino acid content (2.4%). Caldesmon lacked myosin light-chain kinase and phosphatase activities and did not compete with either myosin light-chain kinase or cyclic nucleotide phosphodiesterase (both calmodulin-dependent enzymes) for available calmodulin, suggesting that calmodulin may have distinct binding sites for caldesmon on the one hand and myosin light-chain kinase and cyclic nucleotide phosphodiesterase on the other. Consistent with the lack of effect of caldesmon on myosin phosphorylation, caldesmon did not affect the assembly or disassembly of myosin filaments in vitro. As previously shown [Ngai & Walsh (1984) J. Biol. Chem. 259, 13656-13659], caldesmon can be reversibly phosphorylated. The phosphorylation and dephosphorylation of caldesmon were further characterized and the Ca2+/calmodulin-dependent caldesmon kinase was purified; kinase activity correlated with a protein of subunit Mr 93 000. Caldesmon was not a substrate of myosin light-chain kinase or phosphorylase kinase, both calmodulin-activated protein kinases.  相似文献   

8.
Incubation of rabbit muscle lactate dehydrogenase in the presence of Mg[alpha-32p]ATP results in the incorporation of the label into the protein. The autophosphorylation reaction is strongly pH-dependent. The maximal phosphorylation is observed at pH 6.8 with 3-4 moles of phosphate bound per mole of tetrameric enzyme. The enzyme-phosphate complex is readily hydrolyzed by hydroxylamine.  相似文献   

9.
We compared the properties of the ectonucleotidases (nucleoside triphosphatase, EC 3.6.1.15; nucleoside diphosphatase, EC 3.6.1.6; 5'-nucleotidase, EC 3.1.3.5) in intact pig aortic smooth-muscle cells in culture with the properties that we previously investigated for ectonucleotidases of aortic endothelial cells [Cusack, Pearson & Gordon (1983) Biochem. J. 214, 975-981]. In experiments with nucleotide phosphorothioate diastereoisomers, stereoselective catabolism of adenosine 5'-[beta-thio]triphosphate, but not of adenosine 5'-[alpha-thio]triphosphate, by the triphosphatase and stereoselective catabolism of adenosine 5'-[alpha-thio]diphosphate by the diphosphatase were found, as occurs in endothelial cells. In contrast with endothelial ecto-5'-nucleotidase, the smooth-muscle-cell enzyme catabolized adenosine 5'-monophosphorothioate (AMPS) to adenosine: the affinity of the enzyme for AMPS was greater than for AMP, and Vmax for AMPS was about one-sixth that for AMP. In both cell types AMPS was an apparently competitive inhibitor of AMP catabolism by 5'-nucleotidase. The relative rates of catabolism of nucleotide enantiomers in which the natural D-ribofuranosyl moiety is replaced by an L-ribofuranosyl moiety were similar to those in endothelial cells. No ectopyrophosphatase activity was detected in smooth-muscle cells, in contrast with endothelial cells, where modest activity is present.  相似文献   

10.
The nucleoside diphosphate kinase (NDP kinase) from Myxococcus xanthus has been purified to homogeneity and crystallized (J. Munoz-Dorado, M. Inouye, and S. Inouye, J. Biol. Chem. 265:2702-2706, 1990). In the presence of ATP, the NDP kinase was autophosphorylated. Phosphoamino acid analysis was carried out after acid and base hydrolyses of phosphorylated NDP kinase. It was found that the protein was phosphorylated not only at a histidine residue but also at a serine residue. Replacement of histidine 117 with a glutamine residue completely abolished the autophosphorylation and nucleotide-binding activity of the NDP kinase. Since histidine 117 is the only histidine residue that is conserved in all known NDP kinases so far characterized, the results suggest that the phosphohistidine intermediate is formed at this residue during the transphosphorylation reaction from nucleoside triphosphates to nucleoside diphosphates. Preliminary mutational analysis of putative ATP-binding sites is also presented.  相似文献   

11.
12.
Caldesmon, an actin- and calmodulin-binding protein of smooth muscle, is a protein serine/threonine kinase capable of Ca2+/calmodulin-dependent autophosphorylation [Scott-Woo & Walsh (1988) Biochem. J. 252, 463-472]. Phosphorylation nullifies the inhibitory effect of caldesmon on the actin-activated Mg2+-ATPase activity of smooth-muscle myosin [Ngai & Walsh (1987) Biochem. J. 244, 417-425]. We have characterized the kinase activity of caldesmon of chicken gizzard smooth muscle. Autophosphorylation requires Ca2+/calmodulin, but is unaffected by other second messengers (Ca2+/phospholipid/diacylglycerol, cyclic AMP or cyclic GMP), and is inhibited by the calmodulin antagonists chlorpromazine and compound 48/80, with 50% inhibition at 39.8 microM and 12.0 ng/ml respectively. Half-maximal activation of autophosphorylation occurs at 60-80 nM-Ca2+ and 0.14 microM-calmodulin, and maximal activity at 0.14-0.18 microM-Ca2+ and 1 microM-calmodulin; activation is gradually lost at higher Ca2+ and calmodulin concentrations. Autophosphorylation is pH-dependent, with maximal activity over the range pH 7-9, and requires free Mg2+ in addition to the MgATP2- substrate. The Km for ATP is 15.6 +/- 4.1 microM (mean +/- S.D., n = 4), and kinase activity is inhibited by increasing ionic strength [half-maximal inhibition at I = 0.094 +/- 0.009 M (mean +/- S.D., n = 4)]. Autophosphorylation does not affect the rate of hydrolysis of caldesmon (free or bound to calmodulin) by alpha-chymotrypsin. However, a slight difference in peptides generated from phospho- and dephospho-forms of caldesmon is observed. The binding of phospho- or dephospho-caldesmon to F-actin protects the protein against chymotryptic digestion, but does not alter the pattern of peptide generation. Characterization of proteolytic fragments of caldesmon generated by alpha-chymotrypsin and Staphylococcus aureus V8 protease enables localization of the phosphorylation sites and the kinase active site within the caldesmon molecule.  相似文献   

13.
A patient with widespread smooth-muscle disease presented with chronic intestinal pseudo-obstruction but had in addition defects of the bladder, pupils, sweating, and cardiovascular function. There was no evidence of a primary neural lesion, and minor changes in the muscle did not resemble those of a myopathy. In each organ affected muscarinic cholinergic function was at fault, but instead of supersensitivity to cholinergic drugs, which occurs in postganglionic autonomic neuropathies, there was a lack of response to cholinergic drugs and anticholinesterases. It was therefore concluded that the patient had a new type of defect of muscarinic-receptor function. The cause was unknown, but it may have been an autoimmune disease resembling myasthenia, in which there is a postjunctional defect of muscarinic receptors. In similar cases binding of muscarinic agonists and antagonists should be tested. When antibodies to purified human muscarinic receptors become available different patterns of smooth-muscle defect may be identifiable, enabling the lesion to be defined more precisely.  相似文献   

14.
Ca2+/calmodulin-dependent myosin light chain kinase phosphorylates the regulatory light chain of myosin. Rabbit skeletal muscle myosin light chain kinase also catalyzes a Ca2+/calmodulin-dependent autophosphorylation with a rapid rate of incorporation of 1 mol of 32P/mol of kinase and a slower rate of incorporation up to 1.52 mol of 32P/mol. Autophosphorylation was inhibited by a peptide substrate that has a low Km value for myosin light chain kinase. Autophosphorylation at both rates was concentration-independent, indicating an intramolecular mechanism. There were no significant changes in catalytic properties toward light chain and MgATP substrates or in calmodulin activation properties upon autophosphorylation. After digestion with V8 protease, phosphopeptides were purified and sequenced. Two phosphorylation sites were identified, Ser 160 and Ser 234, with the former associated with the rapid rate of phosphorylation. Both sites are located amino terminal of the catalytic domain. These results indicate that the extended "tail" region of the enzyme can fold into the active site of the kinase.  相似文献   

15.
Macrophage caldesmon is an actin bundling protein.   总被引:1,自引:0,他引:1  
M P Arias  M Pacaud 《Biochemistry》2001,40(43):12974-12982
A rapid purification procedure was developed for the isolation of caldesmon (CaD) from rabbit alveolar macrophage. The purified protein migrated with an apparent M(r) of 74,000 +/- 4000 on SDS-PAGE and cross-reacted with anti-gizzard CaD antibodies. A higher M(r) isoform was isolated from chicken gizzard. Their actin-binding parameters and effects on actomyosin-ATPase activity were investigated under identical experimental conditions. Electron microscope studies revealed that macrophage CaD was able to cross-link actin filaments into both networks and bundles. Compact F-actin bundles were predominantly or exclusively seen at cross-linker to actin molar ratios in the 1:20 to 1:10 range. Apparent K(a) at extrapolated saturation of the CaD-binding sites on F-actin was 1.2 x 10(6) M(-1) for macrophage CaD and 1.6 x 10(6) M(-1) for chicken gizzard CaD. CaD from either source was able to stimulate the actin-activated ATPase activity of macrophage myosin. Unexpectedly, chicken gizzard CaD also increased the ATPase activity of gizzard myosin. The degree of stimulation was approximately doubled in the presence of a large excess of Ca(2+)-calmodulin but was unaffected by the presence of macrophage tropomyosin. However, macrophage CaD did not behave as a Ca(2+)- and calmodulin-regulated actin-binding protein. These results, together with published data on other well-characterized actin bundling proteins, suggest that nonmuscle CaD could be essentially involved in the formation and organization of actin bundles at adhesion sites and cell surface projections. However, they afforded no evidence that the macrophage isoform might play a specific role in the Ca(2+)-dependent regulation of actin and myosin II interactions.  相似文献   

16.
Regulation of vascular smooth muscle tone by caldesmon.   总被引:14,自引:0,他引:14  
Caldesmon is an actin-binding protein present in smooth muscle cells that also inhibits actin-activated myosin ATPase activity. To assess the possible role of caldesmon in the regulation of smooth contraction, we investigated the effects of synthetic peptides on force directly recorded from single hyperpermeable smooth muscle cells of ferret aorta and portal vein. GS17C, a peptide that contains the residues from Gly651 to Ser667 of the caldesmon sequence plus an added cysteine at the C terminus, binds calmodulin in a Ca(2+)-dependent manner and also binds to F-actin but does not inhibit actomyosin ATPase activity (Zhan, Q., Wong, S.S., and Wang, C.-L.A. (1991) J. Biol. Chem. 266, 21810-21814). In cells in which Ca2+ was clamped at pCa 7.0, GS17C induced a dose-dependent contraction (EC50 = 0.92 microM) in aorta cells, whereas it evoked little or no contraction in portal vein cells. The GS17C-induced contraction in aorta cells was inhibited at higher Ca2+ concentrations (above pCa 6.6) and by pretreatment with calmodulin. Another peptide, C16AA, which contains the residues from Ala594 to Ala609 and does not bind actin or calmodulin, did not induce contraction. Our results strongly suggest that GS17C induces contraction by the displacement of the inhibitory region of endogenous caldesmon and, furthermore, that caldesmon present in these smooth muscle cells regulates contraction by providing a basal resting inhibition of vascular tone.  相似文献   

17.
Vascular smooth muscle caldesmon   总被引:10,自引:0,他引:10  
Caldesmon, a major actin- and calmodulin-binding protein, has been identified in diverse bovine tissues, including smooth and striated muscles and various nonmuscle tissues, by denaturing polyacrylamide gel electrophoresis of tissue homogenates and immunoblotting using rabbit anti-chicken gizzard caldesmon. Caldesmon was purified from vascular smooth muscle (bovine aorta) by heat treatment of a tissue homogenate, ion-exchange chromatography, and affinity chromatography on a column of immobilized calmodulin. The isolated protein shared many properties in common with chicken gizzard caldesmon: immunological cross-reactivity, Ca2+-dependent interaction with calmodulin, Ca2+-independent interaction with F-actin, competition between actin and calmodulin for caldesmon binding only in the presence of Ca2+, and inhibition of the actin-activated Mg2+-ATPase activity of smooth muscle myosin without affecting the phosphorylation state of myosin. Maximal binding of aorta caldesmon to actin occurred at 1 mol of caldesmon: 9-10 mol of actin, and binding was unaffected by tropomyosin. Half-maximal inhibition of the actin-activated myosin Mg2+-ATPase occurred at approximately 1 mol of caldesmon: 12 mol of actin. This inhibition was also unaffected by tropomyosin. Caldesmon had no effect on the Mg2+-ATPase activity of smooth muscle myosin in the absence of actin. Bovine aorta and chicken gizzard caldesmons differed in several respects: Mr (149,000 for bovine aorta caldesmon and 141,000 for chicken gizzard caldesmon), extinction coefficient (E1%280nm = 19.5 and 5.0 for bovine aorta and chicken gizzard caldesmon, respectively), amino acid composition, and one-dimensional peptide maps obtained by limited chymotryptic and Staphylococcus aureus V8 protease digestion. In a competitive enzyme-linked immunosorbent assay, using anti-chicken gizzard caldesmon, a 174-fold molar excess of bovine aorta caldesmon relative to chicken gizzard caldesmon was required for half-maximal inhibition. These studies establish the widespread tissue and species distribution of caldesmon and indicate that vascular smooth muscle caldesmon exhibits physicochemical differences yet structural and functional similarities to caldesmon isolated from chicken gizzard.  相似文献   

18.
The catalytic subunit of cAMP-dependent protein kinase contains two stable phosphorylation sites, Thr-197 and Ser-338 (Shoji, S., Titani, K., Demaille, J. G., and Fischer, E. H. (1979) J. Biol. Chem. 254, 6211-6214). Thr-197 is very resistant to dephosphorylation and thus cannot typically be autophosphorylated in vitro once the stable subunit is formed. Ser-338 is slowly dephosphorylated and can be rephosphorylated autocatalytically. In addition to these two stable phosphorylation sites, a new site of autophosphorylation, Ser-10, was identified. Phosphorylation at Ser-10 does not have a major effect on activity, and phosphates from Ser-10 or Ser-338 are not transferred to physiological substrates such as the type II regulatory subunit. Autophosphorylation at Ser-10 is associated with one of the two major isoelectric variants of the catalytic subunit. The form having the more acidic pI can be autophosphorylated at Ser-10 while the more basic form of the catalytic subunit cannot. Phosphorylation at Ser-10 does not account for the two isoenzyme forms. Since the reason for two isoelectric variants of the catalytic subunit is still unknown, it is not possible to provide a structural basis for the difference in accessibility of Ser-10 to phosphorylation. Either Ser-10 is not accessible in the more basic form of the catalytic subunit or some other type of post- or cotranslational modification causes Ser-10 to be a poor substrate. Whether the myristoyl group at the amino-terminal Gly is important for Ser-10 autophosphorylation remains to be established. The isoenzyme forms of the catalytic subunit do not correspond to the gene products coded for by the C alpha and C beta genes.  相似文献   

19.
1. Hydrolysis of the myosins from smooth and from skeletal muscle by a rat trypsin-like serine proteinase and by bovine trypsin at pH 7 is compared. 2. Proteolysis of the heavy chains of both myosins by the rat enzyme proceeds at rates approx. 20 times faster than those obtained with bovine trypsin. Whereas cleavage of skeletal-muscle myosin heavy chain by both enzymes results in the generation of conventional products i.e. heavy meromyosin and light meromyosin, the heavy chain of smooth-muscle myosin is degraded into a fragment of mol. wt. 150000. This is dissimilar from heavy meromyosin and cannot be converted into heavy meromyosin. It is shown that proteolysis of the heavy chain takes place in the head region. 3. The 'regulatory' light chain (20kDa) of smooth-muscle myosin is degraded very rapidly by the rat proteinase. 4. The ability of smooth-muscle myosin to have its ATPase activity activated by actin in the presence of a crude tropomyosin fraction on introduction of Ca2+ is diminished progressively during exposure to the rat proteinase. The rate of loss of the Ca2+-activated actomyosin ATPase activity is very similar to the rate observed for proteolysis of the heavy chain and 3-4 times slower than the rate of removal of the so-called 'regulatory' light chain. 5. The significance of these findings in terms of the functional organization of the smooth muscle myosin molecule is discussed. 6. Since the degraded myosin obtained after exposure to very small amounts of the rat proteinase is no longer able to respond to Ca2+, i.e. the functional activity of the molecule has been removed, the implications of a similar type of proteolysis operating in vivo are considered for myofibrillar protein turnover in general, but particularly with regard to the initiation of myosin degradation, which is known to take place outside the lysosome (i.e. at neutral pH).  相似文献   

20.
Boar sperm plasma membranes and the membranes released during an in vitro acrosome-like reaction were capable of autophosphorylation. The purified membranes were incubated in Tyrode's buffer containing [32P]ATP with or without Ca2+ and/or diacylglycerol. In both membrane fractions, Ca2+ plus diacylglycerol stimulated the autophosphorylation of several sperm membrane proteins. These results suggest a protein kinase C activity is present in sperm membranes and could play a role in the acrosome reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号